Huffman Coding Thomas Przybylinski

Character Encodings

- The usual encodings in computer are usually either ASCII or UNICODE.
- ASCII is a fixed-width encoding of 7 bits, though its usually stored in 8.
- For most intents and purposes, UNICODE has a fixed-width encoding of 16 bits.

Variable Length Encodings

- A different way to encode characters is to use a variable-length encoding.
- The characters could be encoded in a mixture of 1 bit, 2 bits, 3 bits, etc
- However, to avoid confusion, variable-length encodings need to be prefix-free
- This means no encoding for one character can be the prefix of the other.
- This is to avoid ambiguity

Prefix-Free

- Let's say we have this encoding:
- $E=01, N=100, O=11, S=1$ and $Y=10$
- How would you decode:
- 10011

It could be either of:
10011 "NO" or
10011 "YES"

Variable Length Encodings

- In many cases, certain characters are used more often than others.
- In English usage, e occurs more frequently than other letters. Lower case occurs more frequently than upper case. ASCII 7 (the bell) is rarely if ever used.
- So perhaps we could save some space if we encode more-frequent characters in the smaller encodings.

Assume in a given document, there is a 90% chance a given character is A, 10% chance of $B, 5 \%$ chance of C and 5% chance of D.

Let's see what the average encoding length would be:
Fixed-Width length = 2
Variable-Width length $=.9 * 1+.1^{*} 2+.05 * 3+.05 * 3$

$$
=.9+.2+.15+.15
$$

$=1.4$, which is about 30% less than the fixed-width

Huffman Coding

- Huffman Coding is a greedy algorithm to try and find a good variable-length encoding given character frequencies.
- In the algorithm, we are going to create larger binary trees from smaller trees.
- Initially, our smaller trees are single nodes that correspond to characters and have a frequency stored in them

Hello World "
$\mathrm{H}: 1$

4

Trailing
space

Tree Growing Step

- We take the two trees with roots of smallest frequency (tied broken arbitrarily) and merge them.
- The merge operation takes the two trees, creates a node whose key is the sum of the frequencies of the two roots nodes, and make that node the new root.
- The best way to get the two smallest trees is with a priority queue, using poll() twice, adding the merged tree back into the priority queue.
"Hello World"

"Hello World"

"Hello World "

"Hello World"

"Hello World"

Assigning Bits

- Once we have one tree, we need to make the encoding.
- We do this by encoding the tree traversal from the root to the character node.
- Every time we go left, we add a 0
- Every time we go right, we add a 1

What is the code for I?

10

What is the code for W?

0110

What is the code for e ?

1101

Why we do this

- We merged the least frequent characters first so they will be deeper in the end tree, so have a longer encoding. So the more frequent characters are closer to the top.
- Our encoding is prefix-free since we'd have to traverse past a leaf node to encode a prefix.

Encoding for "Hello World "
11001101101000111011000011110010111
H e l l o _ W or l d _
35 bits vs 36 for a 3-bit encoding, or 96 for ASCII or 192 for Unicode

How would we encode Hole?

110000101101

Decode: 10110100
01111101110101011101000000111

Compression Note

- There is no algorithm that will always achieve a smaller file which we can decompress.
- Otherwise we could keep compressing until a file is 1 bit, or even 0 bits.
- In the case of Huffman Coding, if we are using this to compress a file, we need to store the tree along with the encoding, which means there is always some overhead.

