

Huffman Coding
Thomas Przybylinski

Character Encodings

● The usual encodings in computer are usually
either ASCII or UNICODE.

● ASCII is a fixed-width encoding of 7 bits, though
its usually stored in 8.

● For most intents and purposes, UNICODE has
a fixed-width encoding of 16 bits.

Variable Length Encodings

● A different way to encode characters is to use a
variable-length encoding.

● The characters could be encoded in a mixture
of 1 bit, 2 bits, 3 bits, etc

● However, to avoid confusion, variable-length
encodings need to be prefix-free
● This means no encoding for one character can be

the prefix of the other.
● This is to avoid ambiguity

Prefix-Free

● Let's say we have this encoding:
● E=01, N=100, O=11, S=1 and Y=10

● How would you decode:
● 10011

It could be either of:
100 11 “NO” or
10 01 1 “YES”

Variable Length Encodings

● In many cases, certain characters are used
more often than others.

● In English usage, e occurs more frequently than
other letters. Lower case occurs more
frequently than upper case. ASCII 7 (the bell) is
rarely if ever used.

● So perhaps we could save some space if we
encode more-frequent characters in the smaller
encodings.

A

B

C

D

0 0

0 1

1 0

1 1 1 1

1 1

1 0

0

0

1

Fixed
Width

Variable
Width Compared to the fixed-width

encoding:
A uses 1 less bit
C and D use 1 more bits each.

So for there to be space savings:
A must be more frequent than C
and D combined.

Assume in a given document, there is a 90% chance a given character is
A, 10% chance of B, 5% chance of C and 5% chance of D.

Let's see what the average encoding length would be:
Fixed-Width length = 2
Variable-Width length = .9*1 +.1*2 + .05*3 + .05*3

= .9 + .2 + .15 + .15
= 1.4, which is about 30% less than the fixed-width

Huffman Coding

● Huffman Coding is a greedy algorithm to try and
find a good variable-length encoding given
character frequencies.

● In the algorithm, we are going to create larger
binary trees from smaller trees.

● Initially, our smaller trees are single nodes that
correspond to characters and have a frequency
stored in them

“Hello World ”

H:1 e:1 “ “:2W:1 r:1 d:1 l:3o:2

Trailing
space

Tree Growing Step

● We take the two trees with roots of smallest
frequency (tied broken arbitrarily) and merge
them.

● The merge operation takes the two trees,
creates a node whose key is the sum of the
frequencies of the two roots nodes, and make
that node the new root.

● The best way to get the two smallest trees is
with a priority queue, using poll() twice, adding
the merged tree back into the priority queue.

“Hello World ”

H:1 e:1 “ “:2W:1 r:1 d:1 l:3o:2

H:1 e:1

“ “:2W:1 r:1 d:1 l:3o:22

“Hello World ”

H:1 e:1

“ “:2W:1 r:1 d:1 l:3o:22

H:1 e:1

“ “:2

W:1 r:1

d:1 l:3o:222

“Hello World ”

H:1 e:1

“ “:2

W:1 r:1

d:1 l:3o:222

H:1 e:1

“ “:2

W:1 r:1

d:1

l:3o:22

2

3

“Hello World ”

H:1 e:1

“ “:2

W:1 r:1

d:1

l:3o:22

2

3

H:1 e:1

“ “:2

W:1 r:1

d:1

l:3o:2

22

3 4

“Hello World ”

H:1 e:1

“ “:2

W:1 r:1

d:1

l:3o:2

22

3 4

H:1 e:1

“ “:2

W:1 r:1

d:1

l:3

o:22

2

3

4 5

“Hello World ”

H:1 e:1

“ “:2

W:1 r:1

d:1

l:3

o:22

2

3

4 5

H:1 e:1

“ “:2

W:1 r:1

d:1

l:3

o:2

2

2

3

4

5

7

H:1 e:1

“ “:2

W:1 r:1

d:1

l:3o:2

22

3 4

5 7

H:1 e:1

“ “:2

W:1 r:1

d:1

l:3o:2

22

3 4

5 7

12

Assigning Bits

● Once we have one tree, we need to make the
encoding.

● We do this by encoding the tree traversal from
the root to the character node.
● Every time we go left, we add a 0
● Every time we go right, we add a 1

H:1 e:1

“ “:2

W:1 r:1

d:1

l:3o:2

22

3 4

5 7

12
0

0

0

0

0

0

0

1

1

1

1

1

1

1

H:1 e:1

“ “:2

W:1 r:1

d:1

l:3o:2

22

3 4

5 7

12
0

0

0

0

0

0

0

1

1

1

1

1

1

1

What is the code for l?

10

H:1 e:1

“ “:2

W:1 r:1

d:1

l:3o:2

22

3 4

5 7

12
0

0

0

0

0

0

0

1

1

1

1

1

1

1

What is the code for W?

0110

H:1 e:1

“ “:2

W:1 r:1

d:1

l:3o:2

22

3 4

5 7

12
0

0

0

0

0

0

0

1

1

1

1

1

1

1

What is the code for e?

1101

Why we do this

● We merged the least frequent characters first
so they will be deeper in the end tree, so have a
longer encoding. So the more frequent
characters are closer to the top.

● Our encoding is prefix-free since we'd have to
traverse past a leaf node to encode a prefix.

H:1 e:1

“ “:2

W:1 r:1

d:1

l:3o:2

22

3 4

5 7

12
0

0

0

0

0

0

0

1

1

1

1

1

1

1

Encoding for “Hello World “
1100 1101 10 10 00 111 0110 00 0111 10 010 111
 H e l l o _ W o r l d _

35 bits vs 36 for a 3-bit encoding, or 96 for ASCII or 192 for Unicode

H:1 e:1

“ “:2

W:1 r:1

d:1

l:3o:2

22

3 4

5 7

12
0

0

0

0

0

0

0

1

1

1

1

1

1

1

How would we encode Hole?

1100 00 10 1101

H:1 e:1

“ “:2

W:1 r:1

d:1

l:3o:2

22

3 4

5 7

12
0

0

0

0

0

0

0

1

1

1

1

1

1

1

Decode: 10110100

01111101110101011101000000111

Compression Note

● There is no algorithm that will always achieve a
smaller file which we can decompress.
● Otherwise we could keep compressing until a file is

1 bit, or even 0 bits.
● In the case of Huffman Coding, if we are using

this to compress a file, we need to store the
tree along with the encoding, which means
there is always some overhead.

