
  

Minimum Spanning Trees



  

What we want
● Sometimes we wish to find a connected 

spanning subgraph that has the least cost.

● For example, maybe you are a power company 
who wants to hook several towns to a new 
power plant in the cheapest way possible.
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More specific
● We can use a weighted graph to think about 

this problem.
● Each vertex represents something we want to 

connect.
● Each edge represents a potential connection 

between to vertices
● Each edge's weight is the cost to add that 

connection
● We want to minimize the sum of the edge 

weights while still getting a connected spanning 
subgraph.
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Notes on our graph
● Note: Our graph must be connect to be able to 

find a minimum connected spanning subgraph. 
If it's not connected, we can just find it for each 
connected component

● We also assume there are no self-loops (which 
are useless) and the graph is simple (we'll only 
add the cheapest edge between two vertices)



  

Tree
● If all our edge-weights are positive, then the 

cheapest way to connect the graph is with a 
spanning tree.



  

Why Tree
● Let's say we have found the cheapest way to 

make the graph connected, and it is not a tree.



  

● Since it is not a tree, it contains some cycle. 
● Since all edges in the graph are nonnegative, 

removing an edge from this cycle will not 
increase the total cost. Also, removing an edge 
from this graph does not effect connectivity.



  



  

● We just do this until all of the cycles are gone, 
and so we are left with a fully connect graph 
with no cycles, and so is a tree.

●  Also, we never increased the cost in our 
procedure, so the tree is also a cheapest way to 
connect the vertices.

● Since the tree spans the graph, and is a 
minimal way to create such a graph, we call 
such a tree a Minimal Spanning Tree (MST)



  

MST vs SPT
● In a minimum spanning tree we are worried 

about the total cost of the tree, not the cost of 
any paths



  

MST vs SPT
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Shortest path tree from A
Total Cost: 8
Total Cost of Paths from A:
3+3+2=8

Minimum Spanning tree
Total Cost: 6
Total of Paths from A:
2+4+4=10



  

Main Concerns
● When finding the MST, our main concerns are:

● Making sure we get a tree, which means no cycles
● Making sure the edge weights are minimized.



  

Kruskal's Algorithm
● One way to find a MST is via Kruskal's 

algorithm:
● Take the smallest edge that does not induce a 

cycle, and insert it into our subgraph.
● Do this until all nodes are connected
● A naive way to make sure an edge does not 

induce a cycle is by using DFS or BFS from one 
of the edge's vertices, and seeing if we reach 
the other. If we do, adding that edge would 
create a cycle.
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Greedy
● This is a greedy algorithm. The basic idea is to 

find the valid edge with the smallest weight and 
add it to the tree.



  

Ensuring Minimality
● How do we know this simple, greedy algorithm 

forms a MST?
● First we must look at what is know as the Cut 

Property.
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We have two distinct 
groups of vertices.

Together they have 
all the vertices of our 
graph G
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Since our graph is 
connected, there is a 
least edge between 
them.

We want to say the e is 
in a MST
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If we have a MST with 
e, we are done.

Otherwise, we have to 
look closer.
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Since we had a MST, 
adding e creates a 
cycle.

So there must be some 
other edge, e' that goes 
between V1 and V2 in 
that cycle.

(Since it's a cycle, we have to go from V1 to V2, and then back again)
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However, since e is 
the least edge 
between V1 and 
V2, we can replace 
e' with e without 
increasing the cost 
of the MST.

The graph is also connected because removing one edge from a 
cycle never disconnects the graph.



  

In Kruskal's algorithm, we adding the least 
edge e that does not form a cycle.

In other words, if our current connected 
components are C1, C2, C3...Cn, then e is 
a least edge between Ck and V-Ck for 
some connected component.


