

Minimum Spanning Trees

What we want
● Sometimes we wish to find a connected

spanning subgraph that has the least cost.

● For example, maybe you are a power company
who wants to hook several towns to a new
power plant in the cheapest way possible.

Power Station

Mountains

New
Deliberg

Atlanta

Pizzatown

Riverview

Old
Deliberg

Power StationNew
Deliberg

Atlanta

Pizzatown

Riverview

Old
Deliberg

More specific
● We can use a weighted graph to think about

this problem.
● Each vertex represents something we want to

connect.
● Each edge represents a potential connection

between to vertices
● Each edge's weight is the cost to add that

connection
● We want to minimize the sum of the edge

weights while still getting a connected spanning
subgraph.

Simple Example

3

2

4

1

Notes on our graph
● Note: Our graph must be connect to be able to

find a minimum connected spanning subgraph.
If it's not connected, we can just find it for each
connected component

● We also assume there are no self-loops (which
are useless) and the graph is simple (we'll only
add the cheapest edge between two vertices)

Tree
● If all our edge-weights are positive, then the

cheapest way to connect the graph is with a
spanning tree.

Why Tree
● Let's say we have found the cheapest way to

make the graph connected, and it is not a tree.

● Since it is not a tree, it contains some cycle.
● Since all edges in the graph are nonnegative,

removing an edge from this cycle will not
increase the total cost. Also, removing an edge
from this graph does not effect connectivity.

● We just do this until all of the cycles are gone,
and so we are left with a fully connect graph
with no cycles, and so is a tree.

● Also, we never increased the cost in our
procedure, so the tree is also a cheapest way to
connect the vertices.

● Since the tree spans the graph, and is a
minimal way to create such a graph, we call
such a tree a Minimal Spanning Tree (MST)

MST vs SPT
● In a minimum spanning tree we are worried

about the total cost of the tree, not the cost of
any paths

MST vs SPT
A

3
3

3

2 2

2

A

3
32

A

2 2

2

Shortest path tree from A
Total Cost: 8
Total Cost of Paths from A:
3+3+2=8

Minimum Spanning tree
Total Cost: 6
Total of Paths from A:
2+4+4=10

Main Concerns
● When finding the MST, our main concerns are:

● Making sure we get a tree, which means no cycles
● Making sure the edge weights are minimized.

Kruskal's Algorithm
● One way to find a MST is via Kruskal's

algorithm:
● Take the smallest edge that does not induce a

cycle, and insert it into our subgraph.
● Do this until all nodes are connected
● A naive way to make sure an edge does not

induce a cycle is by using DFS or BFS from one
of the edge's vertices, and seeing if we reach
the other. If we do, adding that edge would
create a cycle.

Simple Example
3

2

4

1

3

2

4

1

3

2

4

1

Simple Example

3

2

4

1

3

2

4

1

Greedy
● This is a greedy algorithm. The basic idea is to

find the valid edge with the smallest weight and
add it to the tree.

Ensuring Minimality
● How do we know this simple, greedy algorithm

forms a MST?
● First we must look at what is know as the Cut

Property.

.

.

.

V1 V2

We have two distinct
groups of vertices.

Together they have
all the vertices of our
graph G

.

.

.

V1 V2

e

Since our graph is
connected, there is a
least edge between
them.

We want to say the e is
in a MST

.

.

.

V1 V2

e

If we have a MST with
e, we are done.

Otherwise, we have to
look closer.

.

.

.

V1 V2

e

Cycle

e'

Since we had a MST,
adding e creates a
cycle.

So there must be some
other edge, e' that goes
between V1 and V2 in
that cycle.

(Since it's a cycle, we have to go from V1 to V2, and then back again)

.

.

.

V1 V2

e

Cycle

e'

However, since e is
the least edge
between V1 and
V2, we can replace
e' with e without
increasing the cost
of the MST.

The graph is also connected because removing one edge from a
cycle never disconnects the graph.

In Kruskal's algorithm, we adding the least
edge e that does not form a cycle.

In other words, if our current connected
components are C1, C2, C3...Cn, then e is
a least edge between Ck and V-Ck for
some connected component.

