
  

Minimum Spanning Tree
● Given a weighted graph G, we want to find the 

least-cost tree that spans the graph.



  

MST vs SPT
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Total Cost: 8
Total Cost of Paths from A:
3+3+2=8

Minimum Spanning tree
Total Cost: 6
Total of Paths from A:
2+4+4=10



  

Kruskal's Algorithm
● One way to find a MST is via Kruskal's 

algorithm:
● Take the smallest edge that does not induce a 

cycle, and insert it into our subgraph.
● Do this until all nodes are connected



  

Kruskal's Algorithm
● One way to find a MST is via Kruskal's 

algorithm:
● Take the smallest edge that does not induce a 

cycle, and insert it into our subgraph.
● Do this until all nodes are connected
● A naive way to make sure an edge does not 

induce a cycle is by using DFS or BFS from one 
of the edge's vertices, and seeing if we reach 
the other. If we do, adding that edge would 
create a cycle.
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Remember the Cut 
Property:
If we spit all the 
vertices into 2 groups,
The least edge 
between them is part of 
some MST
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If we have a MST with 
e, we are done.

Otherwise, we have to 
look closer.
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Since we had a MST, 
adding e creates a 
cycle.

So there must be some 
other edge, e' that goes 
between V1 and V2 in 
that cycle.

(Since it's a cycle, we have to go from V1 to V2, and then back again)



  

.

.

.

V1 V2

e

Cycle

e'

However, since e is 
the least edge 
between V1 and 
V2, we can replace 
e' with e without 
increasing the cost 
of the MST.

The graph is also connected because removing one edge from a 
cycle never disconnects the graph.



  

In Kruskal's algorithm, we adding the least 
edge e that does not form a cycle.

In other words, e is the least edge of some 
cut where V1 is a connected component, 
and V2 is the rest of the edges.
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Priority Queue
● Then, we can just use a Priority Queue to store 

the edges, since we only want the current 
cheapest one.

● However, we may poll an edge that is cheapest, 
but forms a cycle



  

Cycles
● The least cost edge is an edge between two 

connected components.
● So we want to ignore and edge if it is incident to 

two vertices in the same component.



  

Connected Components
● So all we have to do is keep track of the 

connected components we have formed.
● The best way to do this is with a Union-Find 

data structure
● These are in your book



  

Simple Union-Join

● There are more efficient ways, but for our 
purposes we will use an array

● What we can do is have an array that has an 
entry for every vertex.

●  The entry corresponds to which component the 
vertex belongs to



  

Simple Union-Find
● Initially, each entry is just the index of the array 

(each vertex is its own component)
● When we connect two components together, 

with numbers x and y.
● We then iterate through the array, replacing 

each y with x.



  

init:
         for (each node k) do
               groupID[k] = k;         // groupID[k] = id of the group that node k 
belongs
         Edges = queue of edges ordered by the cost of the edge

Kruskal's Algorithm:
         while ( not all nodes included ) {

e = next edge in Edges;     (least cost unprocessed edge)
if ( e connects 2 vertices of the same group)

                   discard edge;
              else               {   // e connect 2 different groups of nodes together
                   Add e to MST;
                 G1 = group ID of one of the groups connected by e;
                 G2 = group ID of the other group connected by e;

                for ( each node k with groupID == G2)
                         groupID[k] = G1;         // Put node in group G2 into group 
G1
                }
         }
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Edges: {(AE,4),(CE,5),(BD,7),(CD,7)}

Vertex Groups: {{A,B,C}, {D,E}}

Edge AB ignored because 
A and B are part of the same
connected component.
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Run Time
● Run time of Kruskal's: n vertices, m edges. 

Assuming heap for priority queue
● Priority Queue operations O(mlog(m)) for 

insertions, but there is a linear way to do it as 
well.

● At worse, we need to remove all edges from the 
PQ, which is O(mlog(m))



  

Run Time
● Since the graph is simple, the number of edges 

is at most n^2/2 which we'll simplify to n^2.
● So our removal is 

O(mlog(n^2))=O(2mlog(n))=O(mlog(n))

● Using a union-join data structure, we can form 
clusters and query clusters in mlog(n) time.

● So the total run time is O(mlog(n))



  

Prim's Algorithm
● Mark a vertex.
● while we still don't have a spanning tree
● Take the least edge that is between a marked 

and unmarked vertex
● mark the unmarked vertex



  

Simple Prim's
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Implementation Notes
● To implement Prim's algorithm, we take some 

ideas from Dijkstra's
● We give each vertex a label corresponding to 

the weight of the least edge connected to a 
marked vertex.

● Since we always want the least, we can use a 
priority queue.
● But as we mark vertices, the label can change.
● So we want to use an adaptable priority queue.



  

Vertex Label Updates
● When we mark a vertex, we iterate through all 

of its edges and update each unmarked vertex.



  

Init:
For each vertex v:

Label v infinity
Vertices = all vertices of the graph ordered by the label

Prims Algorithm:
while(Vertices is not empty):

V = next vertex in Vertices //Least cost vertex
Add V to the subgraph;
if(V has an edge) :

Add the edge to the subgraph; //The first added vertex 
will not have a corresponding edge

for(each edge e that contains V) :
V2 = vertex in e that is not V;
if(e.cost < label of V2) :

V2's label = e.cost;
V2's edge = e;
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Prim's Run Time
● We always need to remove all vertices from the 

PQ, which is O(nlog(n))
● We may have to update a vertex on every edge 

it has, which is O(mlog(n)).
● M priority queue updates, each which is log(n)

● So the total running time is O((m+n)log(n)).
● Since m is either close to n (since the graph 

must be connected) or much greater than n (up 
to O(n^2)), we can write this as O(mlog(n))


