

Minimum Spanning Tree
● Given a weighted graph G, we want to find the

least-cost tree that spans the graph.

MST vs SPT
A

3
3

3

2 2

2

A

3
32

A

2 2

2

Shortest path tree from A
Total Cost: 8
Total Cost of Paths from A:
3+3+2=8

Minimum Spanning tree
Total Cost: 6
Total of Paths from A:
2+4+4=10

Kruskal's Algorithm
● One way to find a MST is via Kruskal's

algorithm:
● Take the smallest edge that does not induce a

cycle, and insert it into our subgraph.
● Do this until all nodes are connected

Kruskal's Algorithm
● One way to find a MST is via Kruskal's

algorithm:
● Take the smallest edge that does not induce a

cycle, and insert it into our subgraph.
● Do this until all nodes are connected
● A naive way to make sure an edge does not

induce a cycle is by using DFS or BFS from one
of the edge's vertices, and seeing if we reach
the other. If we do, adding that edge would
create a cycle.

.

.

.

V1 V2

e

Remember the Cut
Property:
If we spit all the
vertices into 2 groups,
The least edge
between them is part of
some MST

.

.

.

V1 V2

e

If we have a MST with
e, we are done.

Otherwise, we have to
look closer.

.

.

.

V1 V2

e

Cycle

e'

Since we had a MST,
adding e creates a
cycle.

So there must be some
other edge, e' that goes
between V1 and V2 in
that cycle.

(Since it's a cycle, we have to go from V1 to V2, and then back again)

.

.

.

V1 V2

e

Cycle

e'

However, since e is
the least edge
between V1 and
V2, we can replace
e' with e without
increasing the cost
of the MST.

The graph is also connected because removing one edge from a
cycle never disconnects the graph.

In Kruskal's algorithm, we adding the least
edge e that does not form a cycle.

In other words, e is the least edge of some
cut where V1 is a connected component,
and V2 is the rest of the edges.

3

2

4

1

3

2

4

1

3

2

4

1

Priority Queue
● Then, we can just use a Priority Queue to store

the edges, since we only want the current
cheapest one.

● However, we may poll an edge that is cheapest,
but forms a cycle

Cycles
● The least cost edge is an edge between two

connected components.
● So we want to ignore and edge if it is incident to

two vertices in the same component.

Connected Components
● So all we have to do is keep track of the

connected components we have formed.
● The best way to do this is with a Union-Find

data structure
● These are in your book

Simple Union-Join

● There are more efficient ways, but for our
purposes we will use an array

● What we can do is have an array that has an
entry for every vertex.

● The entry corresponds to which component the
vertex belongs to

Simple Union-Find
● Initially, each entry is just the index of the array

(each vertex is its own component)
● When we connect two components together,

with numbers x and y.
● We then iterate through the array, replacing

each y with x.

init:
 for (each node k) do
 groupID[k] = k; // groupID[k] = id of the group that node k
belongs
 Edges = queue of edges ordered by the cost of the edge

Kruskal's Algorithm:
 while (not all nodes included) {

e = next edge in Edges; (least cost unprocessed edge)
if (e connects 2 vertices of the same group)

 discard edge;
 else { // e connect 2 different groups of nodes together
 Add e to MST;
 G1 = group ID of one of the groups connected by e;
 G2 = group ID of the other group connected by e;

 for (each node k with groupID == G2)
 groupID[k] = G1; // Put node in group G2 into group
G1
 }
 }

A

B

C

D

E1

2

3

7

5
2

4

Edges: { (BC,1),(AC,2),(DE,2),(AB,3),(AE,4),(CE,5),(BD,7),(CD,7)}

Vertex Groups: {{A}, {B}, {C}, {D}, {E}}

7

A

B

C

D

E1

2

3

7

5
2

7

Edges: {(AC,2),(DE,2),(AB,3),(AE,4),(CE,5),(BD,7),(CD,7)}

Vertex Groups: {{A}, {B,C}, {D}, {E}}

4

A

B

C

D

E1

2

3

7

5
2

4

7

Edges: {(DE,2),(AB,3),(AE,4),(CE,5),(BD,7),(CD,7)}

Vertex Groups: {{A,B,C}, {D}, {E}}

A

B

C

D

E1

2

3

7

5
2

4

7

Edges: {(AB,3),(AE,4),(CE,5),(BD,7),(CD,7)}

Vertex Groups: {{A,B,C}, {D,E}}

A

B

C

D

E1

2

3

7

5
2

4

7

Edges: {(AE,4),(CE,5),(BD,7),(CD,7)}

Vertex Groups: {{A,B,C}, {D,E}}

Edge AB ignored because
A and B are part of the same
connected component.

A

B

C

D

E1

2

3

7

5
2

4

7

Edges: {(CE,5),(CD,7)}

Vertex Groups: {{A,B,C,D,E}}

A

B

C

D

E1

2

2

4

End tree

Run Time
● Run time of Kruskal's: n vertices, m edges.

Assuming heap for priority queue
● Priority Queue operations O(mlog(m)) for

insertions, but there is a linear way to do it as
well.

● At worse, we need to remove all edges from the
PQ, which is O(mlog(m))

Run Time
● Since the graph is simple, the number of edges

is at most n^2/2 which we'll simplify to n^2.
● So our removal is

O(mlog(n^2))=O(2mlog(n))=O(mlog(n))

● Using a union-join data structure, we can form
clusters and query clusters in mlog(n) time.

● So the total run time is O(mlog(n))

Prim's Algorithm
● Mark a vertex.
● while we still don't have a spanning tree
● Take the least edge that is between a marked

and unmarked vertex
● mark the unmarked vertex

Simple Prim's

3

2

4

1

3

2

4

1

3

2

4

1

3

2

4

1

.

.

.

V1 (Marked Vertices) V2 (Unmarked Vertices)

e

Implementation Notes
● To implement Prim's algorithm, we take some

ideas from Dijkstra's
● We give each vertex a label corresponding to

the weight of the least edge connected to a
marked vertex.

● Since we always want the least, we can use a
priority queue.
● But as we mark vertices, the label can change.
● So we want to use an adaptable priority queue.

Vertex Label Updates
● When we mark a vertex, we iterate through all

of its edges and update each unmarked vertex.

Init:
For each vertex v:

Label v infinity
Vertices = all vertices of the graph ordered by the label

Prims Algorithm:
while(Vertices is not empty):

V = next vertex in Vertices //Least cost vertex
Add V to the subgraph;
if(V has an edge) :

Add the edge to the subgraph; //The first added vertex
will not have a corresponding edge

for(each edge e that contains V) :
V2 = vertex in e that is not V;
if(e.cost < label of V2) :

V2's label = e.cost;
V2's edge = e;

A

B

C

D

E1

2

3

7

5
2

4

7

(3)

(inf)

(2)

(4)

PQ: [(C,2), (B,3), (E,4), (D,infinity)]

A

B

C

D

E1

2

3

7

5
2

4

7

(1)

(7)

(4)

PQ: [(B,1), (E,4), (D,7)]

A

B

C

D

E1

2

3

7

5
2

4

7

(7)

(4)

PQ: [(E,4), (D,7)]

A

B

C

D

E1

2

3

7

5
2

4

7

(2)

PQ: [(D,2)]

A

B

C

D

E1

2

3

7

5
2

4

7

Prim's Run Time
● We always need to remove all vertices from the

PQ, which is O(nlog(n))
● We may have to update a vertex on every edge

it has, which is O(mlog(n)).
● M priority queue updates, each which is log(n)

● So the total running time is O((m+n)log(n)).
● Since m is either close to n (since the graph

must be connected) or much greater than n (up
to O(n^2)), we can write this as O(mlog(n))

