Minimum Spanning Tree

* Given a weighted graph G, we want to find the
least-cost tree that spans the graph.

MST vs SPT

Shortest path tree from A
Total Cost: 8

Total Cost of Paths from A:
3+3+2=8

Minimum Spanning tree
Total Cost: 6

Total of Paths from A:
2+4+4=10

Kruskal's Algorithm

 One way to find a MST is via Kruskal's
algorithm:

» Take the smallest edge that does not induce a
cycle, and insert it into our subgraph.

Do this until all nodes are connected

Kruskal's Algorithm

 One way to find a MST is via Kruskal's
algorithm:

» Take the smallest edge that does not induce a
cycle, and insert it into our subgraph.

Do this until all nodes are connected

* A naive way to make sure an edge does not
induce a cycle is by using DFS or BFS from one
of the edge's vertices, and seeing if we reach
the other. If we do, adding that edge would
create a cycle.

Remember the Cut
Property:
V1 If we spit all the V2
vertices into 2 groups,
The least edge
between them is part of
some MST

If we have a MST with
e, we are done.

V1 V2
Otherwise, we have to

look closer.

Since we had a MST,
adding e creates a

V1 CyCIe. V2

So there must be some
other edge, €' that goes
between V1 and V2 in
that cycle.

Cycle

(Since it's a cycle, we have to go from V1 to V2, and then back again)

However, since e is
the least edge
V1 between V1 and V2
V2, we can replace
e' with e without
increasing the cost
of the MST.

Cycle

O ol

The graph is also connected because removing one edge from a
cycle never disconnects the graph.

ot
L

o¥5
oY

In Kruskal's algorithm, we adding the least
edge e that does not form a cycle.

In other words, e is the least edge of some
cut where V1 is a connected component,
and V2 is the rest of the edges.

Priority Queue

* Then, we can just use a Priority Queue to store
the edges, since we only want the current
cheapest one.

« However, we may poll an edge that is cheapest,
but forms a cycle

Cycles

* The least cost edge is an edge between two
connected components.

SO we want to ignore and edge if it is incident to
two vertices in the same component.

Connected Components

» So all we have to do is keep track of the
connected components we have formed.

* The best way to do this is with a Union-Find
data structure

 These are in your book

Simple Union-Join

* There are more efficient ways, but for our
purposes we will use an array

 What we can do is have an array that has an
entry for every vertex.

* The entry corresponds to which component the
vertex belongs to

Simple Union-Find

* |nitially, each entry is just the index of the array
(each vertex is its own component)

* \When we connect two components together,
with numbers x and .

* We then iterate through the array, replacing
each y with x.

init:
for (each node k) do
groupID[k] = k; // groupID[k] = id of the group that node k
belongs
Edges = queue of edges ordered by the cost of the edge

Kruskal's Algorithm:
while (not all nodes included) {
e = next edge 1n Edges; (least cost unprocessed edge)
if (e connects 2 vertices of the same group)
discard edge;
else { // e connect 2 different groups of nodes together
Add e to MST;
Gl = group ID of one of the groups connected by e;
G2 = group ID of the other group connected by e;

for (each node k with groupID == G2)
groupID[k] = G1; // Put node in group G2 into group
Gl

Edges: { (BC,1),(AC,2),(DE,2),(AB,3),(AE,4),(CE,5),(BD,7),(CD,7)}

Vertex Groups: {{A}, {B}, {C}, {D}, {E}}

Edges: {(AC,2),(DE,2),(AB,3),(AE 4),(CE,5),(BD,7),(CD,7)}

Vertex Groups: {{A}, {B,C}, {D}, {E}}

Edges: {(DE,2),(AB,3),(AE,4),(CE,5),(BD,7),(CD,7)}

Vertex Groups: {{A,B,C}, {D}, {E}}

Edges: {(AB,3),(AE,4),(CE,5),(BD,7),(CD,7)}

Vertex Groups: {{A,B,C}, {D,E}}

Edge AB ignored because
2 A and B are part of the same
connected component.

Edges: {(AE,4),(CE,5),(BD,7),(CD,7)}

Vertex Groups: {{A,B,C}, {D,E}}

Edges: {(CE,5),(CD,7)}

Vertex Groups: {{A,B,C,D,E}}

End tree

Run Time

* Run time of Kruskal's: n vertices, m edges.
Assuming heap for priority queue

* Priority Queue operations O(mlog(m)) for
insertions, but there is a linear way to do it as
well.

* At worse, we need to remove all edges from the
PQ, which is O(mlog(m))

Run Time

» Since the graph is simple, the number of edges
Is at most n*2/2 which we'll simplify to n?2.

e SO our removal is
O(mlog(n”2))=0(2mlog(n))=0(mlog(n))

» Using a union-join data structure, we can form
clusters and query clusters in mlog(n) time.

* So the total run time is O(mlog(n))

Prim's Algorithm

Mark a vertex.
while we still don't have a spanning tree

Take the least edge that is between a marked
and unmarked vertex

mark the unmarked vertex

Simple Prim's

V1 (Marked Vertices) V2 (Unmarked Vertices)

Implementation Notes

* To iImplement Prim's algorithm, we take some
ideas from Dijkstra's

* \We give each vertex a label corresponding to
the weight of the least edge connected to a
marked vertex.

e Since we always want the least, we can use a
priority queue.

 But as we mark vertices, the label can change.
 So we want to use an adaptable priority queue.

Vertex Label Updates

 When we mark a vertex, we iterate through all
of its edges and update each unmarked vertex.

Init:
For each vertex v:
Label v infinity
Vertices = all vertices of the graph ordered by the label

Prims Algorithm:
while (Vertices 1s not empty) :
V = next vertex 1n Vertices //Least cost vertex

Add V to the subgraph;

1f(V has an edge)
Add the edge to the subgraph; //The first added vertex
will not have a corresponding edge

for (each edge e that contains V)
V2 = vertex in e that 1s not V;
if(e.cost < label of V2)

V2's label = e.cost;
V2's edge = e;

PQ: [(C,2), (B,3), (E,4), (D,infinity)]

PQ: [(B,1), (E,4), (D,7)]

PQ: [(E,4), (D,7)]

PQ: [(D,2)]

Prim's Run Time

* \We always need to remove all vertices from the
PQ, which is O(nlog(n))

* \We may have to update a vertex on every edge
it has, which is O(mlog(n)).

« M priority queue updates, each which is log(n)
* So the total running time is O((m+n)log(n)).

» Since m is either close to n (since the graph
must be connected) or much greater than n (up
to O(n”2)), we can write this as O(mlog(n))

