Minimum Spanning Tree

- Given a weighted graph G, we want to find the least-cost tree that spans the graph.

Shortest path tree from A Total Cost: 8 Total Cost of Paths from A:
$3+3+2=8$

Minimum Spanning tree
Total Cost: 6
Total of Paths from A:
$2+4+4=10$

Kruskal's Algorithm

- One way to find a MST is via Kruskal's algorithm:
- Take the smallest edge that does not induce a cycle, and insert it into our subgraph.
- Do this until all nodes are connected

Kruskal's Algorithm

- One way to find a MST is via Kruskal's algorithm:
- Take the smallest edge that does not induce a cycle, and insert it into our subgraph.
- Do this until all nodes are connected
- A naive way to make sure an edge does not induce a cycle is by using DFS or BFS from one of the edge's vertices, and seeing if we reach the other. If we do, adding that edge would create a cycle.

(Since it's a cycle, we have to go from V 1 to V 2 , and then back again)

The graph is also connected because removing one edge from a cycle never disconnects the graph.

In Kruskal's algorithm, we adding the least edge e that does not form a cycle.

In other words, e is the least edge of some cut where V 1 is a connected component, and V 2 is the rest of the edges.

Priority Queue

- Then, we can just use a Priority Queue to store the edges, since we only want the current cheapest one.
- However, we may poll an edge that is cheapest, but forms a cycle

Cycles

- The least cost edge is an edge between two connected components.
- So we want to ignore and edge if it is incident to two vertices in the same component.

Connected Components

- So all we have to do is keep track of the connected components we have formed.
- The best way to do this is with a Union-Find data structure
- These are in your book

Simple Union-Join

- There are more efficient ways, but for our purposes we will use an array
- What we can do is have an array that has an entry for every vertex.
- The entry corresponds to which component the vertex belongs to

Simple Union-Find

- Initially, each entry is just the index of the array (each vertex is its own component)
- When we connect two components together, with numbers x and y.
- We then iterate through the array, replacing each y with x.

init:

```
for (each node k) do
    groupID[k] = k; // groupID[k] = id of the group that node k
    Edges = queue of edges ordered by the cost of the edge
    while ( not all nodes included ) {
        e = next edge in Edges; (least cost unprocessed edge)
        if ( e connects 2 vertices of the same group)
                discard edge;
            else { // e connect 2 different groups of nodes together
                Add e to MST;
            G1 = group ID of one of the groups connected by e;
            G2 = group ID of the other group connected by e;
            for ( each node k with groupID == G2)
                        groupID[k] = G1; // Put node in group G2 into group
```

belongs
Kruskal's Algorithm:
\}
\}

Edges: $\{(B C, 1),(A C, 2),(D E, 2),(A B, 3),(A E, 4),(C E, 5),(B D, 7),(C D, 7)\}$

Vertex Groups: $\{\{A\},\{B\},\{C\},\{D\},\{E\}\}$

Edges: $\{(\mathrm{AC}, 2),(\mathrm{DE}, 2),(\mathrm{AB}, 3),(\mathrm{AE}, 4),(\mathrm{CE}, 5),(\mathrm{BD}, 7),(\mathrm{CD}, 7)\}$

Vertex Groups: $\{\{\mathrm{A}\},\{\mathrm{B}, \mathrm{C}\},\{\mathrm{D}\},\{\mathrm{E}\}\}$

Edges: \{(DE,2),(AB,3),(AE,4),(CE,5),(BD,7),(CD,7)\}

Vertex Groups: $\{\{A, B, C\},\{D\},\{E\}\}$

Edges: \{(AB,3),(AE,4),(CE,5),(BD,7),(CD,7)\}

Vertex Groups: $\{\{A, B, C\},\{D, E\}\}$

Edge $A B$ ignored because A and B are part of the same connected component.

Edges: $\{(\mathrm{AE}, 4),(\mathrm{CE}, 5),(\mathrm{BD}, 7),(\mathrm{CD}, 7)\}$

Vertex Groups: $\{\{A, B, C\},\{D, E\}\}$

Edges: \{(CE,5),(CD,7)\}

Vertex Groups: \{\{A,B,C,D,E\}\}

End tree

Run Time

- Run time of Kruskal's: n vertices, m edges. Assuming heap for priority queue
- Priority Queue operations $\mathrm{O}(\mathrm{mlog}(\mathrm{m}))$ for insertions, but there is a linear way to do it as well.
- At worse, we need to remove all edges from the $P Q$, which is $O(m \log (m))$

Run Time

- Since the graph is simple, the number of edges is at most $\mathrm{n}^{\wedge} 2 / 2$ which we'll simplify to $\mathrm{n}^{\wedge} 2$.
- So our removal is
$\mathrm{O}\left(m \log \left(\mathrm{n}^{\wedge} 2\right)\right)=\mathrm{O}(2 \mathrm{mlog}(\mathrm{n}))=\mathrm{O}(\mathrm{mlog}(\mathrm{n}))$
- Using a union-join data structure, we can form clusters and query clusters in mlog(n) time.
- So the total run time is $\mathrm{O}(\mathrm{mlog}(\mathrm{n}))$

Prim's Algorithm

- Mark a vertex.
- while we still don't have a spanning tree
- Take the least edge that is between a marked and unmarked vertex
- mark the unmarked vertex

Simple Prim's

V1 (Marked Vertices)

V2 (Unmarked Vertices)

Implementation Notes

- To implement Prim's algorithm, we take some ideas from Dijkstra's
- We give each vertex a label corresponding to the weight of the least edge connected to a marked vertex.
- Since we always want the least, we can use a priority queue.
- But as we mark vertices, the label can change.
- So we want to use an adaptable priority queue.

Vertex Label Updates

- When we mark a vertex, we iterate through all of its edges and update each unmarked vertex.

```
Init:
    For each vertex v:
        Label v infinity
    Vertices = all vertices of the graph ordered by the label
Prims Algorithm:
    while(Vertices is not empty):
        V = next vertex in Vertices //Least cost vertex
        Add V to the subgraph;
            if(V has an edge) :
            Add the edge to the subgraph; //The first added vertex
will not have a corresponding edge
```

```
for(each edge e that contains V) :
```

for(each edge e that contains V) :
V2 = vertex in e that is not V;
V2 = vertex in e that is not V;
if(e.cost < label of V2) :
if(e.cost < label of V2) :
V2's label = e.cost;
V2's label = e.cost;
V2's edge = e;

```
            V2's edge = e;
```


PQ: [(C,2), (B,3), (E,4), (D,infinity)]

PQ: [(B,1), (E,4), (D,7)]

PQ: [(E,4), (D,7)]

PQ: [(D,2)]

Prim's Run Time

- We always need to remove all vertices from the $P Q$, which is $O(n \log (n))$
- We may have to update a vertex on every edge it has, which is $O(m \log (n))$.
- M priority queue updates, each which is $\log (n)$
- So the total running time is $\mathrm{O}((\mathrm{m}+\mathrm{n}) \log (\mathrm{n}))$.
- Since m is either close to n (since the graph must be connected) or much greater than n (up to $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$), we can write this as $\mathrm{O}(\mathrm{mlog}(\mathrm{n}))$

