

Variation of Boyer-Moore String Matching
Algorithm: A Comparative Analysis

Ramshankar Choudhary Prof. Akhtar Rasool Dr. Nilay Khare
Department Of Computer Science

And Engineering
Maulana Azad National Institute of

Technology
Bhopal-462051,India

ramshankar.choudhary2010@gmail.com

Asst. Professor Department Of
Computer Science And Engineering
Maulana Azad National Institute of

Technology
Bhopal-462051,India
akki262@yahoo.co.in

Associate Professor, HOD
Department Of Computer Science

And Engineering
Maulana Azad National Institute of
Technology Bhopal-462051,India

nilay_khare@yahoo.co.in

Abstract- String matching plays an important role in field of
Computer Science and there are many algorithm of String
matching, the important aspect is that which algorithm is to be
used in which condition. BM(Boyer-Moore) algorithm is
standard benchmark of string matching algorithm so here we
explain the BM(Boyer-Moore) algorithm and then explain its
improvement as BMH (Boyer-Moore-Horspool), BMHS
(Boyer-Moore-Horspool-Sundays), BMHS2 (Boyer-Moore-
Horspool-Sundays 2), improved BMHS(improved Boyer-
Moore-Horspool-Sundays) ,BMI (Boyer-Moore improvement)
and CBM (composite Boyer-Moore).And also analyze and
compare them using a example and find which one is better in
which conditions.

 Keywords-String Matching: BM; BMH; BMHS; BMHS2;
improved BMHS; BMI; CBM

I. INTRODUCTION

 In computer science, the Boyer-Moore string search
algorithm is a particularly efficient string searching
algorithm, and it has been the standard benchmark for the
practical string search literature.

 It was developed by Bob Boyer and J Strother Moore in
1977. The algorithm preprocesses the pattern string that is
being searched in text string. [5]

 Before BM algorithm was proposed, the direction of
character comparison was consistent to the moving direction
of the pattern i.e. both are from left to the right. But in BM
the direction of character comparison is different from the
moving direction of the pattern i.e. from right to left in
pattern.[4]

After BM algorithm was proposed there were some
algorithms are proposed to improve it. In 1980, Horspool
simplified BM algorithm and proposed BMH algorithm
Although it only used the information of the table Right,
BMH algorithm acquired no bad efficiency. In 1990 Sunday
proposed BMHS algorithm that improved the BMH
algorithm.[6]

 In 2010, Lin quan Xie, Xiao ming liu proposed BMHS2,
which is strictly based on the analysis of BMHS algorithm
to improve is in the match fails, the text string matches last
bit characters to participate in the next match, a character

string in the case appear to increase the last bit character and
appear in the character string matching the first characters of
a position if there is consideration.[3]

In 2010 BMI algorithm is proposed by Jingbo Yuan,
Jisen Zheng, Shunli Ding which is improvement of BM
algorithm. The BMI algorithm combines with the good-
suffix function and the advantages of BMH and BMHS.At
the same time the BMI algorithm also takes into account the
singleness and combination features of the Next-Character
and the Last- Character. [8, 9]

There are two important factors which influence the
efficiency and speed of pattern matching and they are the
cost to find the mismatching character in the text string and
the shift distance to right.On basis of the two factors, an
improved algorithm called Improved BMHS algorithm
which is given by Yuting Han, Guoai Xu in 2010. [7]

Another improved algorithm called composite Boyer-
Moore was proposed in 2010 by Zhengda Xiong. The key
issue of the composite Boyer-Moore algorithm is how to
utilize the history comparison information achieved at
previous iteration. So a new concept of two-dimensional
table Jump[m][m] is introduced.[4]

II. BM ALGORITHM

The BM algorithm scans the characters of the pattern
from right to left beginning with the rightmost one and
performs the comparisons from right to left. In case of a
mismatch (or a complete match of the whole pattern) it uses
two pre-computed functions to shift the window to the right.
These two shift functions are called the good-suffix shift
(also called matching shift and the bad-character shift (also
called the occurrence shift).

Assume that a mismatch occurs between the character
P[i] =b of the pattern and the character T [i+j] =a of the
text during an attempt at position j. Then, P[i+1 .. m-
1]=T[i+j+1 .. j+m-1]=u and P[i]≠T[i+j].The good-suffix
shift consists in aligning the segment T[i+j+1 .. j+m-
1]=P[i+1 .. m-1] with its rightmost occurrence in P that is
preceded by a character different from P[i].

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 10, No. 2, February 2012

95 http://sites.google.com/site/ijcsis/
ISSN 1947-5500

BM algorithm will carry through shift computing as
follow.

(1) good-suffix function
The algorithm looks up string u leader character is not b

in P from right to left. If there exist such segment, shift right
P to get a new attempt window. If there exists no such
segment, the shift consists in aligning the longest suffix v of
T[i+j+1 .. j+m- 1] with a matching prefix of P.

(2) bad-char function
The bad-character shift consists in aligning the text

character T [i+j] with its rightmost occurrence in P [0 ... m-
2].

 If T[i+j] does not occur in the pattern P, no occurrence
of P in T can include T[i+j], and the left end of the
window is aligned with the character immediately after
T[i+j], namely T[i+j+1]

BM algorithm uses good-suffix function and bad-char
function to calculate the new comparing position, shifting
rightward P by taking maximum of these two values. [1]

Practice shows that BM Algorithm is fast in the case of
larger alphabet. In preprocessing phase, time and space
complexity is O (m+ σ), where σ is the size of the finite
character set relevant with pattern and text. In searching

phase time complexity is in O (mn). There are 3n text
character comparisons in the worst case when searching for
a non periodic pattern. Under best performance time
complexity is O (n/m). Under the worst time complexity is O
(mn). [1]

Advantages

• The both good-suffix and bad-char combined provides
a good shift value as maximum of two is taken as shift
value.

Disadvantages

• The preprocessing of good-suffix is complex to
implement and understand.

• Bad-char of mismatch character may give small shift,
if mismatch after many matches.

Example: We have a text string
“STRINGMATCHINGISTOFINDTHEPATTERN”. And a
pattern “PATTERN” which is to find in a text string, so we
apply all above algorithm as discussed below to solve this
example. Example of BM is shown in Table 1.

TABLE 1.BM Example (5 Shift and 13 Comparisons)

III. IMPROVEMENT OF BM ALGORITHM

A. BMH Algorithm

 The preprocessing of good suffix is hard to be
understood and implemented; BMH algorithm only uses the
bad characters shift. In BMH algorithm, no matter the
location of mismatching, the distance of shift to right is
determined by the character in the text string which is
aligned to the last one of pattern string.[7]
 In preprocessing phase, time complexity isO(m+ s). In
searching phase, time complexity is O(mn). In the best
performance, time complexity is O(n /m). Practical
applications show that BMH algorithm is much more
efficient than BM algorithm. [2] [10]
Example: shown in Table 2.

Advantages

• The concept of Good-suffix is removed so easy to
implement.

• In case of mismatch ,the shift value is determined by
the bad char value of last character instead of
character that caused mismatch so more jump is
archived using bad char than in BM.

Disadvantages

• The removal of good-suffix sometime may not give
shift as much as in BM.

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 10, No. 2, February 2012

96 http://sites.google.com/site/ijcsis/
ISSN 1947-5500

TABLE 2.BMH Example (5 Shift and 13 Comparisons)

B. BMHS Algorithm

The core idea is in the calculation of Bad char function;
consider the situation of the next character, namely the use
of the next character T[m] to determine the right offset. If
the character does not appear in the matching string is skip
that step by pattern length + 1; otherwise, the mobile step=
match strings in the far right of the character to the end of
the range+1.In the matching process, the mode string must
not be asked to compare, it does not match is found, the
algorithm can skip as many characters to match the next
step to improve the matching efficiency. [3]

BMHS algorithm worst case time complexity is O (mn),
the best case time complexity is O (n/m+1). For a short
pattern string matching problem, the algorithm is faster. [3]

Example: shown in Table 3

Advantages

• In BMH the maximum shift achieved is equal to
pattern length but in BMHS the maximum shift that
can be achieved is equal to one more than pattern
length.

Disadvantages

• Suppose last character is not in pattern but next-to-
last character is in pattern so In state of mismatch
less shift is achieved as compared to BMH.

TABLE 3.BMHS Example (4 Shift and 13 Comparisons)

 C. BMHS2 Algorithm

The idea of algorithm is when mismatch occur at any
position then the Right Shift value is determined by Next-
to-Last character and Last character of Text corresponding
to Pattern that is T[i+m] and T[i+m-1] where m is length of
Pattern.

Now matching start from Last character of Pattern, if
mismatch at any position than consider Next-to-Last
character (T[i+m]) of Text and find its position in pattern

(1) If not in pattern than right shift by m+1.
(2) If occur at first position than right shift by m.
(3) If occur other than first position than shift

calculated is X than
§ Consider Last character of Text corresponding to

pattern and calculate shift, if shift calculated by
this is X than shift by X.
§ Otherwise shift by m+1.

 BMHS2 algorithm worst case time complexity is O(mn),
the best case time complexity is O(n),where n is length of
text and the maximum moving distance of m+1. [3]

Example: shown in Table 4

Advantages

• This algorithm considers last character and next-to-
last character both so it combined advantages of both
BMH and BMHS.

Disadvantages

• Searching overhead increases as we have to take care
of two characters for calculation of shift.

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 10, No. 2, February 2012

97 http://sites.google.com/site/ijcsis/
ISSN 1947-5500

TABLE 4.BMHS2 Example (4 Shift and 11 Comparisons)

D. Improved BMHS Algorithm

 The improved algorithm uses the comparative order
from right to left. Supposing that the pattern string P0P1…
PM-1 aligns with the part of the text string Tk-m+1 …Tk-1 Tk.

The preprocessing phase is as follows: construct the
array Skip[x] according to the bad-character rules, in the
conditions of x € ∑. In addition, improved algorithm needs
to construct Num[y] which records the times of each
character appearing in the pattern string.

The searching phase is as follows: compare the
character Pm-1 with T k.
 When mismatch occurs between Pm-1 and T k, calculate
Skip [Tk+1] and Skip [Tk+2]. If Skip [Tk+1] is equal with one,
the pattern string will shift one point to right. Otherwise,
the movement will be determined by the larger one between
Skip [Tk+1] and Skip [Tk+2].
 When Pm-1 and T k match successfully, compare the
character Pm-2 with character Tk-1. If the match is successful,
continue to comparing Pm-3 and T k-2, Pm-4 and T k-3, and so
on, until the text string is matched completely. If mismatch
occurs at Pm-4 ≠ T k-3, calculate Skip [Tk+1] and Skip [Tk+2].
If Skip [Tk+1] is equal with one, check Num [Pm-3] whether
it is equal with one, if Num [Pm-3] is equal with one, change
Skip [Tk+1] to m+1. Then compare between Skip [Tk+1] and

Skip [Tk+2], select the larger one as the movement of the
Pattern shift. [2]

In preprocessing phase, time complexity is O (m+ s). In
searching phase, if the successful match takes place in Ti, it
is compared (i-1)*m times before successful matching, and
m times during article i time of comparison. So it is
compared i*m times.

The time complexity is O (mn). In the best case, if
successful match takes place in Ti, it is compared i /(m+2)
times before successful matching, and m times during
article i time of comparison. So it is compared m+i / (m+2)
times. The best time complexity is O (n /m+2). [2]
Example: shown in Table 5

Advantages

• Maximum shift that can be achieved using this
algorithm is pattern length + 2.

Disadvantages

• Calculation of shift using Next-to-Last and Next-to-
Next-to-Last character increase searching over head
and for that preprocessing of Num[] is done which
increases preprocessing overhead.

TABLE 5.Improved BMHS Example (4 Shift and 12 Comparisons)

E. BMI Algorithm

The BMI algorithm combines with the good-suffix
function and the advantages of BMH and BMHS [8][9]. At
the same time the BMI algorithm also takes into account
the singleness and combination features of the Next-
Character and the Last- Character.

The basic idea behind the algorithm is to achieve the
maximum shift distance in the event of a mismatch.
Assume that now P [0]…P[m-1] correspond to
T[i]…T[i+m-1] during the attempt. If a mismatch occurs,
the shift right position will be calculated with function
Onechar(x) and TwoChar(x) as following formula (1) and
(2).[1]

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 10, No. 2, February 2012

98 http://sites.google.com/site/ijcsis/
ISSN 1947-5500

Define: The Last-Character refers to the rightmost
character of each attempting window in text T. The Next-
Character refers to the first character on right side of
attempting window in text T.

Now if m comparisons have completed and TiTi+1…Ti+m-

1=P1P2…Pm-1, the matching is successful. If (Pj=a) ≠
(Ti+j=b) in (m-j)-th comparison, the BMI algorithm
calculates the jump shift as below methods. Denote
Ti+j+1Ti+j+2…Ti+m-1=Pj+1Pj+2…Pm-1=u and Ti+j≠Pj.
(1)Calculate the jump shift using the Last-Character d in
pattern and OneChar function. The algorithm looks up the
position of the first occurrence of the Last-Character d
from right to left in P0P1…Pm-2. If found the position, the
pattern P right shifts to align with character d. If not found
the position, the pattern P right shifts to align with right
side of character d. Then the algorithm begins to compare
in new attempt window.
(2)Calculate the jump shift using the Next-Character c and
OneChar function. The algorithm look up the position of
the first occurrence of Next-Character c from right to left
in P0P1…Pm-1. If found the position, the pattern P right
shifts to align with character c. If not found the position,
the pattern P right shifts to align with right side of
character c. Then the algorithm begins to compare in new
attempt window.
(3)Calculate the jump shift using the Last-Character d, the
Next-Character c and TwoChar function. Denote X as the
combination of character b and c, that is, X=bc. The

algorithm look up the position of the first occurrence of X
from right to left in P0P1…Pm-1. If found the position, the
pattern P right shifts to align with character b. If not found
the position, the pattern P right shifts to align with right
side of character b. Then the algorithm begins to compare
in new attempt window.

In the case of mismatch, the BMI algorithm combines
three different shift functions to optimize the number of
characters that can be skipped during the skip process.

If the Last-Character d is matching with the rightmost
character of Pattern, the algorithm calculates the jump shift
using above three methods and takes the maximum value of
its results as final jump shift. If failed, the algorithm
calculates the jump shift using above method (1) and
method (2) and takes the maximum value as final jump
shift. [1]

Under best performance the time complexity of BM and
BMH algorithm all are O(n/m), the time complexity of
BMHS and BMI algorithm all are O(n/m+1), but the
average time complexity of BMI algorithm is better. [1]
Example: shown in Table 6

Advantages

• BMI uses last character, Next-to-Last character and
combination of these two characters for calculation
of shift means BMI Takes advantages of BMH,
BMHS and good-suffix feature of BM for
combination of last character and Next-to-Last
character.

Disadvantages

• In calculation of shift using three different methods
and taking maximum of these increases overhead in
searching.

TABLE 6.BMI Example (4 Shift and 11 Comparisons)

F. CBM Algorithm

 The key issue of the CBM algorithm is how to utilize
the history comparison information achieved at previous
iteration. So we construct a two-dimensional table
Jump[m][m]. Jump[i][j] denotes the shift distance of pattern

P, when the mismatch at previous iteration appears at p[i],
and the mismatch at current iteration appears at p[j]. This
table is only related to pattern P. Once Jump[m][m] is
constructed, it can be utilized for searching P in different
texts.

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 10, No. 2, February 2012

99 http://sites.google.com/site/ijcsis/
ISSN 1947-5500

The comparison principle of algorithm CBM is shown
in Figure 1. Suppose P is at place P0 at previous iteration,
and the mismatch appears at index i of P0; and suppose P is
at place P1 at current iteration, the mismatch appears at
index j of P1; then P2, P’s new position, must meet
following conditions: its substring at B matches with P1’s
substring at B; its character at b does not match P1’s
character at j; its substring at A matches P0’s substring at A;
and its character at a does not matches with P1’s character
at i. Above four matching conditions make a large shift
distance Jump[i][j] for pattern P.[4]

Figure1.Working principle of CBM

 In the procedure, the initial values of Jump[i][j] is set to
Jump[j] for every i. Then the values increased gradually by
test, until it satisfies above four matching conditions. After
generating table Jump[m][m], the specific matching process
is similar to the BM algorithm.
 In the case of small alphabet and long pattern, values in
Jump[m][m] that is close to the right column are usually
larger than the corresponding values in Jump[m], and the
matching efficiency are improved. Binary searching in
Computer Science and DNA sequence tests in genetic
engineering are such kind of applications. [4]

IV. COMPARISON AND ANALYSIS

BMH algorithm is more efficient when last character
does not occur in pattern. BMHS is more effective than
BMH when last character occur in pattern but next to last
character does not occur in pattern. Improved BMHS
algorithm is efficient when next to last character and next to
next to last character does not occur in pattern. BMHS2
perform better when next to last character does not occur in
pattern or occur at first position in pattern. BMI algorithm
perform better when Next to Last character does not occur
in pattern; Or when Last character does not occur in
pattern; Or when combination of Last character with Next
to Last character does not occur in pattern. CBM is
effective in case of small alphabet and long pattern such as
Binary Searching.

Analysis Based on Example:

• In our example BM and BMH performance was equal
as SHIFT=5 and Comparison=13.

• In case of BMHS SHIFT decreases to 4 but Comparison
remains to 13, so we can’t say that BMHS always
perform better than BMH, it totally depends on Input.

• Improved BMHS performance is better than BM, BMH
and BMHS as SHIFT=4 and Comparison=12.

• Performance of BMI and BMHS2 is even better than
Improved BMHS as SHIFT=4 and Comparison=11.

• In example performance of BMI and BMHS2 is equal
but we also can’t say that there performance remains
always same, it is also depends on Input.

Table 7.Comparison

Analysis Based on Experiment:
Experimental Environment
Processor: i7
 RAM: 8 GB
 OS: windows 7
 Language: visual C++ runs on visual studios 2008

Experimental Data
Text File: of size 2, 68,196 KB in which large number of
occurrence of pattern.
Pattern of length 15

Experiment

 In the experiment we have search a pattern in text and
calculated number of comparison which is how many times
we compare pattern character with text character and search
time is also calculated in milliseconds. The results as search
time and number of comparison, corresponding to different
algorithm are shown in table 8.

TABLE 8: Experimental Results

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 10, No. 2, February 2012

100 http://sites.google.com/site/ijcsis/
ISSN 1947-5500

On the basis of experimental results we plot bar graphs for
comparison and search time as shown in graph1 and
graph2.

Graph1: Number of Comparison of Different Algorithm

Graph2: Searching Time of Different Algorithm

 V. CONCLUSION

 The comparison of BM and its relative algorithm is
performed on the basis two factors; one is number of
comparison performed and second is search time. In
example and in experiment we present a comparison on the
basis of number of comparison performed that performance
of BM, BMH and BMHS are almost equal as number of
comparison is almost same. Improved BMHS perform
better than BMHS as number of comparison decreases.BMI
and BMHS2 perform even better than Improved BMHS as
number of Comparison decreases. In Experiment we also
present a comparison on the basis of search time in which
BM and BMH perform almost same but BMHS search time
increases. Improved BMHS search time is less in
comparison to BM, BMH and BMHS. In BMI searching is
faster than above four and BMHS2 search time is even less
than BMI. So finally we can say that BMHS2 is best of all
six algorithms as search time and number of comparison
both are less than in all other algorithm.

 Composite Boyer-Moore algorithm is efficient in case of
binary searching where small varieties of alphabet and long
pattern.
 The performance of algorithm depends on two factors,
first on Input, number of inputs and type of inputs, Second
is Methodology of algorithm, so there may be possible that
some variation in performance occur as input changes.

VI. FUTURE WORK

The focus of future work is to improve existing
algorithm and finding the efficient string searching
algorithm so that searching speed can be increased and
performance as well.

REFERENCES
[1]. Jingbo Yuan, Jisen Zheng, Shunli Ding,”An Improved Pattern

Matching Algorithm”, 978-0-7695-4020-7/10 2010 IEEE DOI
10.1109/IITSI.2010.73.

[2]. Yuting Han, Guoai Xu,” Improved Algorithm of Pattern Matching
based on BMHS”, 978-1-4244-6943-7/10 2010 IEEE.

[3]. .Lin quan Xie, Xiao ming Liu and Guangxue Yue, “Improved Pattern
Matching Algorithm of BMHS”, 978-0-7695-4360-4/10 2010 IEEE
DOI 10.1109/ISISE..2010.154

[4]. Zhengda Xiong,” A Composite Boyer-Moore Algorithm for the
String Matching Problem”, 978-0- 7695-4287-4/10 2010 IEEE,
DOI 10.1109/PDCAT.2010.58

[5]. http://en.wikipedia.org/wiki/Boyer_Moore_string_search_algorithm.
[6]. Horspool R.N.” Practical Fast Searching in Strings” .Software

Practice and Expiroence,1980, 10(6):501-506.
[7]. Zhen LIIU, Su XU, Jue ZHANG, “Improved Alogorithm of pattern

matching for Instusion Detection” . 2009 International Conference
on Multimedia Infoemation Networkong and Security, Wuhan,
CHINA, 2009, pp.446-449

[8]. Thierry Lecroq. Fast exact string matching algorithms
[J].Information Processing Letters, 2007, 6(102):229-235.

[9]. Chuanhan Liu, PYongcheng Wang, PDerong Liu, et al. Two
Improved Single Pattern Matching Algorithms [C]//Proceedings of
the 16th International Conference on Artificial Reality and
Telexistence- Workshops, 2006:419-422.

[10]. Yihui SHAN, Yuming JIANG, Shiyuan TIAN, “Improved Pattern
Matching Algorithm of BMHS for Intrusion Detection”. Computer
Engineering, vol.35, 2009, pp.170-173

AUTHORS PROFILE

Ramshankar Choudhary, B.E in Information Technology From Oriental
Institute of Science and Technology, Bhopal.Currentaly persuing M.Tech
in Computer Science Engineering From Maulana Azad National Institute
of Technology, Bhopal.

Prof. Akhtar Rasool, B.E in Computer Science from Rajiv Gandhi
Technical University,M.Tech in Computer Science from Maulana Azad
National Institute of Technology. Presently Working as Asst. Prof in
Department of Computer Science in Maulana Azad National Institute
Technology, Bhopal.

Dr. Nilay Khare, Associate Prof. and Head in Department of Computer
Science in Maulana Azad National Institute of Technology,Bhopal.
Reviewer of Journal Elsevier

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 10, No. 2, February 2012

101 http://sites.google.com/site/ijcsis/
ISSN 1947-5500

