Torsion subgroups of rational elliptic curves over the compositum of all cubic fields.

Drew Sutherland
MIT

Abstract: Let E/Q be an elliptic curve and let $Q(3^\infty)$ denote the compositum of all cubic extensions of Q. While the group $E(3^\infty)$ is not finitely generated, one can show that its torsion subgroup is finite; this holds more generally for any Galois extension of Q that contains only finitely many roots of unity. I will describe joint work with Daniels, Lozano-Robledo, and Najman, in which we obtain a complete classification of the 20 torsion subgroups that can and do occur, along with an explicit description of the elliptic curves E/Q that realize each possibility (up to twists). This is achieved by determining the rational points on a corresponding set of modular curves and relies on several recent results related to the mod-n Galois representations attached to elliptic curves over Q.

Friday, March 18, 2016, 4:00 pm
Mathematics and Science Center: W303