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Abstract. Location privacy has been extensively studied in the litera-
ture. However, existing location privacy models are either not rigorous
or not customizable, which limits the trade-off between privacy and util-
ity in many real-world applications. To address this issue, we propose a
new location privacy notion called PGLP, i.e., Policy Graph based Loca-
tion Privacy, providing a rich interface to release private locations with
customizable and rigorous privacy guarantee. First, we design a rigorous
privacy for PGLP by extending differential privacy. Specifically, we for-
malize location privacy requirements using a location policy graph, which
is expressive and customizable. Second, we investigate how to satisfy an
arbitrarily given location policy graph under realistic adversarial knowl-
edge, which can be seen as constraints or public knowledge about user’s
mobility pattern. We find that a policy graph may not always be viable
and may suffer location exposure when the attacker knows the user’s mo-
bility pattern. We propose efficient methods to detect location exposure
and repair the policy graph with optimal utility. Third, we design an
end-to-end location trace release framework that pipelines the detection
of location exposure, policy graph repair, and private location release at
each timestamp with customizable and rigorous location privacy. Finally,
we conduct experiments on real-world datasets to verify the effectiveness
and the efficiency of the proposed algorithms.

Keywords: Spatiotemporal data · Location Privacy · Trajectory Pri-
vacy · Differential Privacy · Location-Based Services.

1 Introduction

As GPS-enabled devices such as smartphones or wearable gadgets are pervasively
used and rapidly developed, location data have been continuously generated,
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collected, and analyzed. These personal location data connecting the online and
offline worlds are precious, because they could be of great value for the society
to enable ride sharing, traffic management, emergency planning, and disease
outbreak control as in the current covid-19 pandemic via contact tracing, disease
spread modeling, traffic and social distancing monitoring [4, 19,26,30].

On the other hand, privacy concerns hinder the extensive use of big location
data generated by users in the real world. Studies have shown that location data
could reveal sensitive personal information such as home and workplace, religious
and sexual inclinations [35]. According to a survey [18], 78% smartphone users
among 180 participants believe that Apps accessing their location pose privacy
threats. As a result, the study of private location release has drawn increasing
research interest and many location privacy models have been proposed in the
last decades (see survey [34]).

However, existing location privacy models for private location releases are ei-
ther not rigorous or not customizable. Following the seminal paper [22], the
early location privacy models were designed based on k-anonymity [37] and
adapted to different scenarios such as mobile P2P environments [14], trajectory
release [3] and personalized k-anonymity for location privacy [21]. The follow-up
studies revealed that k-anonymity might not be rigorous because it syntacti-
cally defines privacy as a property of the final “anonymized” dataset [29] and
thus suffers many realistic attacks when the adversary has background knowl-
edge about the dataset [28,31]. To this end, the state-of-the-art location privacy
models [1,12,38,39] were extended from differential privacy (DP) [15] to private
location release since DP is considered a rigorous privacy notion which defines
privacy as a property of the algorithm. Although these DP-based location pri-
vacy models are rigorously defined, they are not customizable for different sce-
narios with various requirements on privacy-utility trade-off. Taking an example
of Geo-Indistinguishability [1], which is the first DP-based location privacy, the
protection level is solely controlled by a parameter ε to achieve indistinguisha-
bility between any two possible locations (the indistinguishability is scaled to
the Euclidean distance between any two possible locations).

This one-size-fits-all approach may not fit every application’s requirement on
utility-privacy trade-off. Different location-based services (LBS) may have differ-
ent usage of the data and thus need different location privacy policies to strike the
right balance between privacy and utility. For instance, a proper location privacy
policy for weather apps could be “allowing the app to access a user’s city-level
location but ensuring indistinguishability among locations in each city”, which
guarantees both reasonable privacy and high usability for a city-level weather
forecast. Similarly, for POI recommendation [2], trajectory mining [32] or crowd
monitoring during the pandemic [26], a suitable location privacy policy could be
“allowing the app to access the semantic category (e.g., a restaurant or a shop)
of a user’s location but ensuring indistinguishability among locations with the
same category”, so that the LBS provider may know the user is at a restaurant
or a shop, but not sure which restaurant or which shop.
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Fig. 1: An example of location policy graph and the constrained domains (i.e.,
possible locations) Ct and Ct+1 at time t and t+ 1, respectively.

In this work, we study how to release private location with customizable and
rigorous privacy. There are three significant challenges to achieve this goal. First,
there is a lack of a rigorous and customizable location privacy metric and mech-
anisms. The closest work regarding customizable privacy is Blowfish privacy [25]
for statistical data release, which uses a graph to represent a customizable pri-
vacy requirement, in which a node indicates a possible database instance to be
protected, and an edge represents indistinguishability between the two possible
databases. Blowfish privacy and its mechanisms are not applicable in our set-
ting of private location release. It is because Blowfish privacy is defined on a
statistical query over database with multiple users’ data; whereas the input in
the scenario of private location release is a single user’s location.

The second challenge is how to satisfy an arbitrarily given location privacy
policy under realistic adversarial knowledge, which is public knowledge about
users’ mobility pattern. In practice, as shown in [39,40], an adversary could take
advantage of side information to rule out inadmissible locations4 and reduce
a user’s possible locations into a small set, which we call constrained domain.
We find that the location privacy policy may not be viable under a constrained
domain and the user may suffer location exposure (we will elaborate how this
could happen in Sec. 4.1).

The third challenge is how to release private locations continuously with high
utility. We attempt to provide an end-to-end solution that takes the user’s true
location and a predefined location privacy policy as inputs, and outputs private
location trace on the fly. We summarize the research questions below.

– How to design a rigorous location privacy metric with customizable location
privacy policy? (Section 3)

– How to detect the problematic location privacy policy and repair it with
high utility? (Sections 4)

– How to design an end-to-end framework to release private location continu-
ously? (Section 5)

1.1 Contributions

In this work, we propose a new location privacy metric and mechanisms for re-
leasing private location trace with flexible and rigorous privacy. To the best of
our knowledge, this is the first DP-based location privacy notion with customiz-
able privacy. Our contributions are summarized below.

4 For example, it is impossible to move from Kyoto to London in a short time.
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First, we formalize Policy Graph based Location Privacy (PGLP), which
is a rigorous privacy metric extending differential privacy with a customizable
location policy graph. Inspired by the statistical privacy notion of Blowfish pri-
vacy [25], we design location policy graph to represent which information needs
to be protected and which does not. In a location policy graph (such as the
one shown in Fig.1), the nodes are the user’s possible locations, and the edges
indicate the privacy requirements regarding the connected locations: an attacker
should not be able to significantly distinguish which location is more probable to
be the user’s true location by observing the released location. PGLP is a general
location privacy model compared with the prior art of DP-based location pri-
vacy notions, such as Geo-Indistinguishability [1] and Location Set Privacy [39].
We prove that they are two instances of PGLP under the specific configurations
of the location policy graph. We also design mechanisms for PGLP by adapting
the Laplace mechanism and Planar Isotropic Mechanism (PIM) (i.e., the optimal
mechanism for Location Set Privacy [39]) w.r.t. a given location policy graph.

Second, we design algorithms that examine the feasibility of a given loca-
tion policy graph under adversarial knowledge about the user’s mobility pattern
modeled by Markov Chain. We find that the policy graph may not always be
viable. Specially, as shown in Fig.1, some nodes (locations) in a policy graph may
be excluded (e.g., s4 and s6 in Fig.1 (b)) or disconnected (e.g., s5 in Fig.1 (b))
due to the limited set of the possible locations. Protecting the excluded nodes is
a lost cause, but it is necessary to protect the disconnected nodes since it may
lead to location exposure when the user is at such a location. Surprisingly, we
find that a disconnected node may not always result in the location exposure,
which also depends on the protection strength of the mechanism. Intuitively, this
happens when a mechanism “overprotects” a location policy graph by implicitly
guaranteeing indistinguishability that is not enforced by the policy. We design an
algorithm to detect the disconnected nodes that suffer location exposure , which
are named isolated node. We also design a graph repair algorithm to ensure no
isolated node in a location policy graph by adding an optimal edge between the
isolated node and another node with high utility.

Third, we propose an end-to-end private location trace release framework
with PGLP that takes inputs of the user’s true location at each time t and
outputs private location continuously satisfying a pre-defined location policy
graph. The framework pipelines the calculation of constrained domains, isolated
node detection, policy graph repair, and private location release mechanism. We
also reason about the overall privacy guarantee in multiple releases.

Finally, we implement and evaluate the proposed algorithms on real-world
datasets, showing that privacy and utility can be better tuned with customizable
location policy graphs.

2 Preliminaries

2.1 Location Data Model

Similar to [39, 40], we employ two coordinate systems to represent locations for
applicability for different application scenarios. A location can be represented by



PGLP: Customizable and Rigorous Location Privacy through Policy Graph 5

an index of grid coordinates or by a two-dimension vector of longitude-latitude
coordinate to indicate any location on the map. Specifically, we partition the
map into a grid such that each grid cell corresponds to an area (or a point of
interest); any location represented by a longitude-latitude coordinate will also
have a grid number or index on the grid coordinate. We denote the location
domain as S = {s1, s2, · · · , sN} where each si corresponds to a grid cell on
the map, 1 ≤ i ≤ N . We use s∗t and zt to denote the user’s true location and
perturbed location at time t. We also use t in s∗ and z to refer the locations at
a single time when it is clear from the context.
Location Query For the ease of reasoning about privacy and utility, we use
a location query f : S → R2 to represent the mapping from locations to the
longitude and latitude of the center of the corresponding grid cell.

2.2 Problem Statement
Given a moving user on a map S in a time period {1, 2, · · · , T}, our goal is to re-
lease the perturbed locations of the user to untrusted third parties at each times-
tamp under a pre-defined location privacy policy. We define ε-Indistinguishability
as a building block for reasoning about our privacy goal.

Definition 1 (ε-Indistinguishability). Two locations si and sj are ε-indistin-
guishable under a randomized mechanism A iff for any output z ⊆ Range(A),

we have Pr(A(si)=z)
Pr(A(sj)=z) ≤ eε, where ε ≥ 0.

As we exemplified in the introduction, different LBS applications may have
different metrics of utility. We aim at providing better utility-privacy trade-off
by customizable ε-Indistinguishability between locations.
Adversarial Model We assume that the attackers know the user’s mobility
pattern modeled by Markov chain, which is widely used for modeling user mo-
bility profiles [10, 20]. We use matrix M ∈ [0, 1]N×N to denote the transition
probabilities of Markov chain with mij being the probability of moving from lo-
cation si to location sj . Another adversarial knowledge is the initial probability
distribution of the user’s location at t = 1. To generalize the notation, we denote
probability distribution of the user’s location at t by a vector pt ∈ [0, 1]1×N , and
denote the ith element in pt by pt[i] = Pr(s∗t = si), where s∗t is the user’s true
location at t and si ∈ S. Given the above knowledge, the attackers could in-
fer the user’s possible locations at time t, which is probably smaller than the
location domain S, and we call it a constrained domain.

Definition 2 (Constrained domain). We denote Ct = {si|Pr(s∗t = si) >

0, si ∈ S} as constrained domain, which indicates a set of possible locations at t.

We note that the constrained domain can be explained as the requirement
of LBS applications. For example, an App could only be used within a certain
area, such as a university free shuttle tracker.

3 Policy Graph based Location Privacy
In this section, we first formalize the privacy requirement using location policy
graph in Sec. 3.1. We then design the privacy metric of PGLP in Sec. 3.2. Finally,
we propose two mechanisms for PLGP in Sec. 3.3.
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3.1 Location Policy Graph

Inspired by Blowfish privacy [25], we use an undirected graph to define what
should be protected, i.e., privacy policies. The nodes are secrets, and the edges
are the required indistinguishability, which indicates an attacker should not be
able to distinguish the input secrets by observing the perturbed output. In our
setting, we treat possible locations as nodes and the indistinguishability between
the locations as edges.

Definition 3 (Location Policy Graph). A location policy graph is an undi-
rected graph G = (S, E) where S denotes all the locations (nodes) and E represents
indistinguishability (edges) between these locations.

Definition 4 (Distance in Policy Graph). We define the distance between
two nodes si and sj in a policy graph as the length of the shortest path (i.e., hops)
between them, denoted by dG(si, sj). If si and sj are disconnected, dG(si, sj) =∞.

In DP, the two possible database instances with or without a user’s data are
called neighboring databases. In our location privacy setting, we define neighbors
as two nodes with an edge in a policy graph.

Definition 5 (Neighbors). The neighbors of location s, denoted by N (s), is
the set of nodes having an edge with s, i.e., N (s) = {s′|dG(s, s′) = 1, s′ ∈ S}.

We denote the nodes having a path with s by NP (s), i.e., the nodes in the
same connected component with s. In our framework, we assume the policy
graph is given and public. In practice, the location privacy policy can be defined
application-wise and identical for all users using the same application.

3.2 Definition of PGLP

We now formalize Policy Graph based Location Privacy (PGLP), which guar-
antees ε-indistinguishability in Definition 1 for every pair of neighbors (i.e., for
each edge) in a given location policy graph.

Definition 6 ({ε,G}-Location Privacy). A randomized algorithm A satisfies
{ε,G}-location privacy iff for all z ⊆ Range(A) and for all pairs of neighbors s
and s′ in G, we have Pr(A(s)=z)

Pr(A(s′)=z)
≤ eε.

In PGLP, privacy is rigorously guaranteed through ensuring indistinguisha-
bility between any two neighboring locations specified by a customizable location
policy graph. The above definition implies the indistinguishability between two
nodes that have a path in the policy graph.

Lemma 1. An algorithm A satisfies {ε,G}-location privacy, iff any two nodes
si, sj ∈ G are ε · dG(si, sj)-indistinguishable.

Lemma 1 indicates that, if there is a path between two nodes si, sj in the
policy graph, the corresponding indistinguishability is required at a certain de-
gree; if two nodes are disconnected, the indistinguishability is not required (i.e.,
can be ∞) by the policy. As an extreme case, if a node is disconnected with any
other nodes, it is allowed to be released without any perturbation.
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Fig. 2: Two examples of location policy graphs.

Comparison with Other Location Privacy Models. We analyze the rela-
tion between PGLP and two well-known DP-based location privacy models, i.e.,
Geo-Indistinguishability (Geo-Ind) [1] and δ-Location Set Privacy [39]. We show
that PGLP can represent them under proper configurations of policy graphs.

Geo-Ind [1] guarantees a level of indistinguishability between two locations si
and sj that is scaled with their Euclidean distance, i.e., ε·dE(si, sj)-indistinguish-
ability, where dE(·, ·) denotes Euclidean distance. Note that the unit length
used in Geo-Ind scales the level of indistinguishability. We assume that, for any
neighbors s and s′, the unit length used in Geo-Ind makes dE(s, s′) ≥ 1.

Let G1 be a location policy graph that every location has edges with its closest
eight locations on the map, as shown in Fig.2 (a). We can derive Theorem 1 by
Lemma 1 with the fact of dG(si, sj) ≤ dE(si, sj) for any si, sj ∈ G1 (e.g., in Fig.2(a),
dG(s1, s2) = 3 and dE(s1, s2) =

√
10).

Theorem 1. An algorithm satisfying {ε,G1}-location privacy also achieves ε-
Geo-Indistinguishability.

δ-Location Set Privacy [39] extends differential privacy on a subset of possi-
ble locations, which is assumed as adversarial knowledge. We note that the con-
strained domain in Definition 2 can be considered a generalization of δ-location
set, whereas we do not specify the calculation of this set in PGLP. δ-Location Set
Privacy ensures indistinguishability among any two locations in the δ-location
set. Let G2 be a location policy graph that is complete, i.e., fully connected
among all locations in the δ-location set as shown in Fig.2(b).

Theorem 2. An algorithm satisfying {ε,G2}-location privacy also achieves δ-
Location Set privacy.

We defer the proofs of the theorems to a full version because of space limitation.

3.3 Mechanisms for PGLP

In the following, we show how to transform existing DP mechanisms into one
satisfying PGLP using graph-calibrated sensitivity. We temporarily assume the
constrained domain C = S and study the effect of C on policy G in Section 4.

As shown in Section 2.1, the problem of private location release can be seen
as answering a location query f : S → R2 privately. Then we can adapt the
existing DP mechanism for releasing private locations by adding random noises
to longitude and latitude independently. We use this approach below to adapt
the Laplace mechanism and Planar Isotropic Mechanism (PIM) (i.e., an optimal
mechanism for Location Set Privacy [39]) to achieve PGLP.
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Policy-based Laplace Mechanism (P-LM). Laplace mechanism is built on
the `1-norm sensitivity [16], defined as the maximum change of the query results
due to the difference of neighboring databases. In our setting, we calibrate this
sensitivity w.r.t. the neighbors specified in a location policy graph.

Definition 7 (Graph-calibrated `1-norm Sensitivity). For a location s and
a query f(s): s→ R2, its `1-norm sensitivity SGf is the maximum `1 norm of ∆fG

where ∆fG is a set of points (i.e., two-dimension vectors) of
(
f(si) − f(sj)

)
for

si, sj ∈ NP (s) (i.e., the nodes with the same connected component of s).

We note that, for a true location s, releasing NP (s) does not violate the
privacy defined by the policy graph. It is because, for any connected s and
s′, NP (s) and NP (s′) are the same; while, for any disconnected s and s′, the
indistinguishability between NP (s) and NP (s′) is not required by Definition 6.

Algorithm 1 Policy-based Laplace Mechanism (P-LM)

Require: ε, G, the user’s true location s.
1: Calculate SGf = sup||

(
f(si)− f(sj)

)
||1 for all neighbors si, sj ∈ NP (s);

2: Perturb location z′ = f(s) + [Lap(SGf /ε), Lap(S
G
f /ε)]

T ;

3: return a location z ∈ S that is closest to z′ on the map.

Theorem 3. P-LM satisfies {ε,G}-location privacy.

Policy-based Planar Isotropic Mechanism (P-PIM). PIM [39] achieves
the low bound of differential privacy on two-dimension space for Location Set
Privacy. It adds noises to longitude and latitude using K-norm mechanism [24]
with sensitivity hull [39], which extends the convex hull of the sensitivity space
in K-norm mechanism. We propose a graph-calibrated sensitivity hull for PGLP.

Definition 8 (Graph-calibrated Sensitivity Hull). For a location s and a
query f(s): s→ R2, the graph-calibrated sensitivity hull K(G) is the convex hull
of ∆fG where ∆fG is a set of points (i.e., two-dimension vectors) of

(
f(si) −

f(sj)
)

for any si, sj ∈ NP (s) and si, sj are neighbors, i.e., K(G) = Conv(∆fG).

We note that, in Definitions 7 and 8, the sensitivities are independent of the
true location s and all the nodes in N (s) have the same sensitivity.

Definition 9 (K-norm Mechanism [24]). Given any function f(s): s→ Rd
and its sensitivity hull K, K-norm mechanism outputs z withh probability below.

Pr(z) =
1

Γ (d+ 1)Vol(K/ε)
exp (−ε||z− f(s)||K) (1)

where Γ (·) is Gamma function and Vol(·) denotes volume.

Algorithm 2 Policy-based Planar Isotropic Mechanism (P-PIM)

Require: ε, G, the user’s true location s.
1: Calculate K(G) = Conv

(
f(si)− f(sj)

)
for all neighbors si, sj ∈ NP (s);

2: z′ = f(s) + Y where Y is two-dimension noise drawn by Eq.(1) with sensitivity hull K(G);
3: return a location z ∈ S that is closest to z′ on the map.

Theorem 4. P-PIM satisfies {ε,G}-location privacy.
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We can prove Theorems 3 and 4 using Lemma 1. The sensitivity is scaled
with the graph-based distance. We note that directly using Laplace machanism or
PIM can satisfy a fully connected policy graph over locations in the constrained
domain as shown in Fig.2(b).

Theorem 5. Algorithm 2 has the time complexity O(|C| log(h)+h2 log(h)) where
h is number of vertices on the polygon of Conv(∆fG).

4 Policy Graph under Constrained Domain
In this section, we investigate and prevent the location exposure of a policy
graph under constrained domain in Sec. 4.1 and 4.2, respectively; then we repair
the policy graph in Sec. 4.3.

4.1 Location Exposure

As shown in Fig.1 (right) and introduced in Section 1, a given policy graph may
not be viable under adversarial knowledge of constrained domain (Definition 2).
We illustrate the potential risks due to the constrained domain shown in Fig.3.

o 21 3

1

2

f(s4)

f(s5)

f(s3)

f(s2)

f1(longitude)

f2(latitude)

f(s1)

f(s6)

s4

s5

s3

s2

s1

s6

(East)

(North) (a) (b)

Fig. 3: (a) The constrained domain C = {s2, s3, s5}; (b) The constrained policy graph.

We first examine the immediate consequences of the constrained domain to
the policy graph by defining the excluded and disconnected nodes. We then show
the disconnected node may lead to location exposure.

Definition 10 (Excluded node). Given a location policy graph G = (S, E)
and a constrained domain C ⊂ S, if s ∈ S and s 6∈ C, s is an excluded node.

Definition 11 (Disconnected node). Given a location policy graph G = (S, E)
and a constrained domain C ⊂ S, if a node s ∈ C, N (s) 6= ∅ and N (s) ∩ C = ∅,
we call s a disconnected node.

Intuitively, the excluded node is outside of the constrained domain C, such
as the gray nodes {s1, s4, s6} in Fig.3; whereas the disconnected node (e.g., s5
in Fig.3) is inside of C and has neigbors, yet all its neighbors are outside of C.

Next, we analyze the feasibility of a location policy graph under a constrained
domain. The first problem is that, by the definition of excluded nodes, it is not
possible to achieve indistinguishability between the excluded nodes and any other
nodes. For example in Fig.3, the indistinguishability indicated by the gray edges
is not feasible because of Pr(A(s4) = z) = Pr(A(s6) = z) = 0 for any z given
the adversarial knowledge of Pr(s4) = Pr(s6) = 0. Hence, one can only achieve a
constrained policy graph, such as the one with nodes {s2, s3, s5} in Fig.3(b).

Definition 12 (Constrained Location Policy Graph). A constrained loca-
tion policy graph GC is a subgraph of the original location policy graph G un-
der a constrained domain C that only includes the edges inside of C. Formally,
GC = (C, EC) where C ⊆ S and EC ⊆ E.
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Definition 13 (Location Exposure under constrained domain). Given
a policy graph G, constrained domain C and an algorithm A satisfying (ε,GC)-
location privacy, for a disconnected node s, if A does not guarantee ε-indistinguish-
ability between s and any other nodes in C, we call s an isolated node. The user
suffers location exposure when she is at the location of the isolated node.

4.2 Detecting Isolated Node

An interesting finding is that a disconnected node may not always lead to loca-
tion exposure, which also depends on the algorithm for PGLP. Intuitively, the
indistinguishability between a disconnected node and a node in the constrained
domain could be guaranteed implicitly. We design Algorithm 3 to detect the
isolated node in a constrained policy graph w.r.t. P-PIM. It could be extended
to any other PGLP mechanism. For each disconnected node, we check whether
it is indistinguishable with other nodes. The problem is equivalent to checking
if there is any node inside the convex body f(si) +K(GC), which can be solved
by the convexity property (if a point sj is inside a convex hull K, then sj can
be expressed by the vertices of K with coefficients in [0, 1]) with complexity
O(m3). We design a faster method with complexity O(m2log(m)) by exploiting
the definition of convex hull: if sj is inside f(si) +K(GC), then the new convex
hull of the new graph by adding edge sisj will be the same as K(GC). We give
an example of disconnected but not isolated node in appendix A.

Algorithm 3 Finding Isolated Node

Require: G, C, disconnected node si ∈ C.
1: ∆fG = ∨

sjsk∈EC
(f(sj)− f(sk)); . We use ∨ to denote Union operator.

2: K(GC)← Conv(∆fG);
3: for all sj ∈ C, sj 6= si do

4: if Conv(∆fG , f(sj)− f(si)) == K(GC) then
5: return false . not isolated
6: end if
7: end for
8: return true . isolated

4.3 Repairing Location Policy Graph

To prevent location exposure under the constrained domain, we need to make
sure that there is no isolated node in a constrained policy graph. A simple way
is to modify the policy graph to ensure the indistinguishability of the isolated
node by adding an edge between it and another node in the constrained domain.
The selection of such a node could depend on the requirement of the application.
Without the loss of generality, a baseline method for repairing the policy graph
could be choosing an arbitrary node from the constrained domain and adding
an edge between it and the isolated node.

A natural question is how can we repair the policy graph with better utility.
Since different ways of adding edges in the policy graph may lead to distinct
graph-based sensitivity, which is propositional to the area of the sensitivity hull
(i.e., a polygon on the map), the question is equivalent to adding an edge with
the minimum area of sensitivity hull (thus the least noise). We design Algorithm
4 to find the minimum area of the new sensitivity hull, as shown in an example
in Fig.4. The analysis is shown in Appendix B.
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We note that both Algorithms 3 and 4 are oblivious to the true location,
so they do not consume the privacy budget. Additionally, the adversary may
be able to “reverse” the process of graph repair and extract the information
about the original location policy graph; however, this does not compromise our
privacy notion since the location policy graph is public in our setting.
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Fig. 4: An example of graph repair with high utility. (a): if C = {s3, s4, s5, s6}, then s3
is isolated because f(s3) +K(GC) only contains s3; to protect s3, we can re-connect s3
to one of the valid nodes {s4, s5, s6}. (b) shows the new sensitivity hull after adding

f(s4)−f(s3) to K(GC); (c) shows the new sensitivity hull after adding f(s6)−f(s3) to

K(GC); (d) shows the new sensitivity hull after adding f(s5)−f(s3) to K(GC). Because

(b) has the smallest area of the sensitivity hull, s3 should be connected to s4.

Algorithm 4 Graph Repair with High Utility

Require: G, C, isolated node si
1: GC ← G ∧ C;
2: K ← K(GC);
3: sk ← ∅;
4: minArea←∞;
5: for all sj ∈ C, sj 6= si do

6: K ← K(GC ∨ sisj); . new sensitivity hull in O(mlog(m))

7: Area =
i=h∑

i=1,j=i+1
det(vi,vj) where vh+1 = v1; . Θ(h) time

8: if Area < minArea then
9: sk ← sj ;
10: minArea = Area; . find minimum area
11: end if
12: end for
13: GC ← GC ∨ sisk . add edge sisk to the graph
14: return repaired policy graph GC;

5 Location Trace Release with PGLP
5.1 Location Release via Hidden Markov Model

A remaining question for continuously releasing private location with PGLP is
how to calculate the adversarial knowledge of constrained domain Ct at each time
t. According to our adversary model described in Sec. 2.2, the attacker knows
the user’s mobility pattern modeled by the Markov chain and the initial prob-
ability distribution of the user’s location. The attacker also knows the released
mechanisms for PGLP. Hence, the problem of calculating the possible location
domain (i.e., locations that Pr(s∗t ) > 0) can be modeled as an inference problem
in Hidden Markov Model (HMM) in Figure 5: the attacker attempts to infer the
probability distribution of the true location s∗t , given the PGLP mechanism, the
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Markov model of s∗t , and the observation of z1, · · · , zt at the current time t. The
constrained domain at each time is derived as the locations in the probability
distribution of s∗t with non-zero probability.

· · ·

· · ·

s⇤t=1

z1

s⇤t=2

z2

s⇤t=3

z3

s⇤t=T

zT

Private Location Release Mechanism

time

Released locations:

Hidden:

Observable:

True locations:

Mechanisms for PGLP

Fig. 5: Private location trace release via HMM.

We elaborate the calculation of the probability distribution of s∗t as follows.
The probability Pr(zt|s∗t ) denotes the distribution of the released location zt
where s∗t is the true location at any timestamp t. At timestamp t, we use p−t
and p+

t to denote the prior and posterior probabilities of an adversary about
current state before and after observing zt respectively. The prior probability
can be derived by the (posterior) probability at previous timestamp t − 1 and
the Markov transition matrix as p−t = p+

t−1M. The posterior probability can be
computed using Bayesian inference as follows. For each state si:

p
+
t [i] = Pr(s

∗
t = si|zt) =

Pr(zt|s∗t = si)p
−
t [i]∑

j Pr(zt|s∗t = sj)p
−
t [j]

(2)

Algorithm 5 shows the location trace release algorithm. At each timestamp t,
we compute the constrained domain (Line 2). For all disconnected nodes under
the constrained domain, we check if they are isolated by Algorithm 3. If so, we
derive a minimum protectable graph Gt by Algorithm 4. Next, we use the pro-
posed PGLP mechanisms (i.e., P-LM or P-PIM) to release a perturbed location
zt. Then the released zt will also be used to update the posterior probability
p+
t (in the equation below) by Equation (2), which subsequently will be used to

compute the prior probability for the next time t+ 1. We note that, only Line 9
(invoking PGLP mechanisms) uses the true location s∗t . Algorithms 3 and 4 are
independent of the true location, so they do not consume the privacy budget.

Algorithm 5 Location Trace Release Mechanism for PGLP

Require: ε, G, M, p+
t−1, s

∗
t

1: p−t ← p+
t−1M; . Markov transition

2: Ct ← {si|p−t [i] > 0}; . constraint

3: GCt ← G ∧ Ct; . Definition 12

4: for all disconnected node si in GCt do
5: if si is isolated then . isolated node detection by Algorithm 3
6: GCt ← Algorithm 4(GCt , Ct, si); . repair graph Gt by Algorithm 4
7: end if
8: end for
9: mechanisms for PGLP with parameters ε, s∗t , Gt; . Algorithms 1 or 2

10: Derive p+
t by Equation (2); . inference go to next timestamp

11: return Algorithm 5(ε, GCt , M, p+
t , s∗t+1);

Theorem 6 (Complexity). Algorithm 5 has complexity O(dm2log(m)) where
d is the number of disconnected nodes and m is the number of nodes in GCt .
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5.2 Privacy Composition

We analyze the composition of privacy for multiple location releases under
PGLP. In Definition 6, we define {ε,G}-location privacy for single location re-
lease, where ε can be considered the privacy leakage w.r.t. the privacy policy G.
A natural question is what would be the privacy leakage of multiple releases at
a single timestamp (i.e., for the same true location) or at multiple timestamps
(i.e., for a trajectory). In either case, the privacy guarantee (or the upper bound
of privacy leakage) in multiple releases depends on the achievable location policy
graphs. Hence, the key is to study the composition of the policy graphs in mul-
tiple releases. Let A1, · · · ,AT be T independent random algorithms that takes
true locations s∗1, · · · , s∗T as inputs (note that it is possible s∗1 = · · · = s∗T ) and
outputs z1, · · · , zT , respectively. When the viable policy graphs are the same at
each release, we have Lemma 2 as below.

Lemma 2. If all A1, · · · ,AT satisfy (ε,G)-location privacy, the combination of
{A1, · · · ,AT } satisfies (Tε,G)-location privacy.

As shown in Sec. 4, the feasibility of achieving a policy graph is affected by
the constrained domain, which may change along with the released locations.
We denote G1, · · · ,GT as viable policy graphs at each release (for single location
or for a trajectory), which could be obtained by algorithms in Sec. 4.2 and Sec.
4.3. We give a more general composition theorem for PGLP below.

Theorem 7. If A1, · · · ,AT satisfy (ε1,G1), · · · , (εT ,GT ), -location privacy, respec-
tively, the combination of {A1, · · · ,AT } satisfies

(∑T
i=1 εi,G1 ∧ · · · ∧ GT

)
-location

privacy, where ∧ denotes the intersection between the edges of policy graphs.

The above theorem provides a method to reason about the overall privacy
in continuous releases using PGLP. We note that the privacy composition does
not depend on the adversarial knowledge of Markov model, but replies on the
soundness of the policy graph and PGLP mechanisms at each t. However, the
resulting G1 ∧ · · · ∧ GT may not be the original policy graph. It is an interesting
future work to study how to ensure a given policy graph across the timeline.

6 Experiments

6.1 Experimental Setting

We implement the algorithms use Python 3.7. The code is available in github5.
We run the algorithms on a machine with Intel core i7 6770k CPU and 64 GB
of memory running Ubuntu 15.10 OS.
Datasets. We evaluate the algorithms on three real-world datasets with similar
configurations in [39] for comparison purpose. The Markov models were learned
from the raw data. For each dataset, we randomly choose 20 users’ location trace
with 100 timestamps for testing.

5 https://github.com/emory-aims/pglp.

https://github.com/emory-aims/pglp
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– Geolife dataset [41] contains tuples with attributes of user ID, latitude, lon-
gitude and timestamp. We extracted all the trajectories within the Fourth
Ring of Beijing to learn the Markov model, with the map partitioned into
cells of 0.34× 0.34 km2.

– Gowalla dataset [13] contains 6, 442, 890 check-in locations of 196, 586 users
over 20 months. We extracted all the check-ins in Los Angeles to train the
Markov model, with the map partitioned into cells of 0.37× 0.37 km2.

– Peopleflow dataset6 includes 102, 468 locations of 11, 406 users with semantic
labels of POI in Tokyo. We partitioned the map into cells of 0.27× 0.27 km2.

Policy Graphs. We evaluate two types of location privacy policy graphs for dif-
ferent applications as introduced in Section 1. One is for the policy of “allowing
the app to access a user’s location in which area but ensuring indistinguishabil-
ity among locations in each area”, represented by Gk9, Gk16, Gk25 below. The
other is for the policy of “allowing the app to access the semantic label (e.g., a
restaurant or a shop) of a user’s location but ensuring indistinguishability among
locations with the same category”, represented by Gpoi below.

– Gk9 is a policy graph that all locations in each 3× 3 region (i.e., 9 grid cells
using grid coordinates) are fully connected with each other. Similarly, we
have Gk16 and Gk25 for region size 4× 4 and 5× 5, respectively.

– Gpoi: all locations with both the same category and the same 6×6 region are
fully connected. We test the category of restaurant in Peopleflow dataset.

Utility Metrics. We evaluate three types of utility (error) for different appli-
cations. We run the mechanisms 200 times and average the results. Note that
the lower value of the following metrics, the better utility.

– The general utility was measured by Euclidean distance (km), i.e., Eeu,
between the released location and the true location as defined in Sec. 2.2.

– The utility for weather apps or road traffic monitoring, i.e., “whether the
released location is in the same region with the true location”. We measure
it by Er = ||R(s∗), R(z)||0 where R(·) is a region query that returns the index
of the region. Here we define the region size as 5× 5 grid cells.

– The utility for POI mining or crowd monitoring during the pandemic, i.e.,
“whether the released location is the same category with the true location”.
We measure it by Epoi = ||C(s∗), C(z)||0 where C(·) returns the category of the
corresponding location. We evaluated the location category of “restaurant”.

6.2 Results and Analysis

P-LM vs. P-PIM. Fig.6 compares the utility of two proposed mechanisms P-
LM and P-PIM for PGLP under the policy graphs Gk9, Gk16 , Gk25 and Gpoi on
Peopleflow dataset. The utility of P-PIM outperforms P-LM for different policy
graphs and different ε since the sensitivity hull could achieve lower error bound.

6 http://pflow.csis.u-tokyo.ac.jp/

http://pflow.csis.u-tokyo.ac.jp/
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Fig. 6: Utility of P-LM vs. P-PIM with respect to Gk9, Gk16 and Gpoi.
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Fig. 7: Utility of different policy graphs.

Utility Gain by Tuning Policy Graphs. Fig.7 demonstrates that the utility
of different applications can be boosted with appropriate policy graphs. We eval-
uate the three types of utility metrics using different policy graphs on Peopleflow
dataset. Fig.7 shows that, for utility metrics Eeu, Er and Epoi, the policy graphs
with the best utility are Gk9, Gk25 and Gpoi, respectively. Gk9 has smallest Eeu
because of the least sensitivity. When the query is 5× 5 region query, Gk25 has
the full usability (Er=0). When the query is POI query like the one mentioned
above, Gpoi leads to full utility (Er=0) since Gpoi allows to disclose the semantic
category of the true location while maintaining the indistinguishability among
the set of locations with the same category. Note that Epoi is decreasing with
larger ε for policy graph G9 because the perturbed location has a higher probabil-
ity to be the true location; while this effect is diminished in larger policy graphs
such as G16 or G25 due to their larger sensitivities. We conclude that location
policy graphs can be tailored flexibly for better utility-privacy trade-off.

0.5 1.0 1.5 2.0
ε

0.5

1.0

1.5

E e
u

 Alg 4 
baseline

0 10 20 30 40
area of a constraint domain (km2)

0

2

4

6

8

tim
e 

(s
ec

on
d)

0 10 20 30 40
area of a constraint domain (km2)

0.6

0.8

1.0

1.2

E e
u

Fig. 8: Evaluation of Graph Repair.

Evaluation of Graph Repair. Fig. 8 shows the results of graph repair al-
gorithms. We compare the proposed Algorithm 4 with a baseline method that
repairs the problematic policy graph by adding an edge between the isolated
node with its nearest node in the constrained domain. It shows that the utility
measured by Eeu of Algorithm 4 is always better than the baseline but at the
cost of higher runtime. Notably, the utility is decreasing (i.e., higher Eeu ) with
larger constrained domains because of larger policy graph (thus higher sensi-
tivity); a larger constrained domain also incurs higher runtime because more
isolated nodes need to be processed.
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Fig. 10: Utility of Private Trajectory Release with different Policy Graphs.

Evaluation of Location Trace Release. We demonstrate the utility of pri-
vate trajectory release with PGLP in Fig. 9 and Fig.10. In Fig. 9, we show the
results of P-LM and P-PIM on the Geolife Dataset. We test 20 users’ trajecto-
ries with 100 timestamps and report average Eeu at each timestamp. We can see
P-PIM has higher utility than P-PIM, which in line with the results for single
location release. The error Eeu is increasing along with timestamps due to the
enlarged constrained domain, which is in line with Fig.8. The average of Eeu
across 100 timestamps on different policy graphs, i.e., Gk9, Gk16 and Gk25 is
also in accordance with the single location release in Fig.7. Gk9 has the least
average error of Eeu due to the smallest sensitivity.

In Fig.10, we show the utility of P-PIM with different policy graphs on two
different datasets Geolife and Gowalla. The utility of Gk9 is always the best
over different timestamps for both datasets. In general, the Gowalla dataset
has better utility than the Geolife dataset because the constraint domain of the
Gowalla dataset is smaller. The reason is that the Gowalla dataset collects check-
in locations that have an apparent mobility pattern, as shown in [13]. While
Geolife dataset collects GPS trajectory with diverse transportation modes such
as walk, bus, or train; thus, the trained Markov model is less accurate.

7 Conclusion

In this paper, we proposed a flexible and rigorous location privacy framework
named PGLP, to release private location continuously under the real-world con-
straints with customized location policy graphs. We design an end-to-end private
location trace release algorithm satisfying a pre-defined location privacy policy.

For future work, there are several promising directions. One is to study how
to use the rich interface of PGLP for the utility-privacy tradeoff in the real-
world location-based applications, such as carefully designing location privacy
policies for COVID-19 contact tracing [4]. Another exciting direction is to design
advanced mechanisms to achieve location privacy policies with less noise.
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Appendix A An example of Isolated Node

Intuition. We examine the privacy guarantee of P-PIM w.r.t. GC in Fig.3(a).
According to K-norm Mechanism [24] in Definition 9, P-PIM guarantees that,
for any two neighbors si and sj , their difference is bounded in the convex body
K, i.e. f(si) − f(sj) ∈ K. Geometrically, for a location s, all other locations in
the convex body of K + f(s) are ε-indistinguishable with s.

Example 1 (Disconnected but Not Isolated Node). In Figure 11, s2 is discon-
nected under constraint C = {s2, s4, s5, s6}. However, s2 is not isolated because
f(s2) +K contains f(s4) and f(s5). Hence, s2 and other nodes in C are indistin-
guishable.
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Fig. 11: (a) A policy graph under C = {s2, s4, s5, s6}; (b) the ∆fG of vectors f(si) −
f(sj); (c) the sensitivity hull K(GC) covering the ∆fG ; (d) the shape f(s2) + K(GC)
containing f(s4) and f(s5). That is to say, s2 is indistinguishable with s4 and s5.

Appendix B Policy Graph Repair Algorithm

Figure 4(a) shows the graph under constraint C = {s3, s4, s5, s6}. Then s3 is
exposed because f(s3)+KG contains no other node. To satisfy the PGLP without
isolated nodes, we need to connect s3 to another node in C, i.e. s4, s5 or s6.

If s3 is connected to s4, then Figure 4(b) shows the new graph and its sensi-
tivity hull. By adding two new edges {f(s3)−f(s4), f(s4)−f(s3)} to ∆fG , the shaded
areas are attached to the sensitivity hull. Similarly, Figures 4(c) and (d) show
the new sensitivity hulls when s3 is connected to s6 and s5 respectively. Because
the smallest area of KG is in Figure 4(b), the repaired graph is GC ∨ s3s4, i.e.,
add adge s3s4 to the graph GC .

Theorem 8. Algorithm 4 takes O(m2log(m)) time where m is the number of
valid nodes (with edge) in the policy graph.

Algorithm. Algorithm 4 derives the minimum protectable graph for location
data when an isolated node is detected. We can connect the isolated node si to
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the rest (at most m) nodes, generating at most m convex hulls where m = |V| is
the number of valid nodes. In two-dimensional space, it only takes O(mlog(m))
time to find a convex hull. To derive Area of a shape, we exploit the computation
of determinant whose intrinsic meaning is the Volume of the column vectors.

Therefore, we use
i=h∑

i=1,j=i+1
det(vi,vj) to derive the Area of a convex hull with

clockwise nodes v1,v2, · · · ,vh where h is the number of vertices and vh+1 = v1.
By comparing the area of these convex hulls, we can find the smallest area in
O(m2log(m)) time where m is the number of valid nodes. Note that Algorithms
3 and 4 can also be combined together to protect any disconnected nodes.

Appendix C Related Works
C.1 Differential Privacy

While differential privacy [15] has been accepted as a standard notion for privacy
protection, the concept of standard differential privacy is not generally applica-
ble for complicated data types. Many variants of differential privacy have been
proposed, such as Pufferfish privacy [27], Geo-Indistinguishability [1] and Voice-
Indistinguishability [23] (see Survey [33]). Blowfish privacy [25] is the first generic
framework with customizable privacy policy. It defines sensitive information as
secrets and known knowledge about the data as constraints. By constructing
a policy graph, which should also be consistent with all constraints, Blowfish
privacy can be formally defined. Our definition of PGLP is inspired by Blow-
fish framework. Notably, we find that the policy graph may not be viable under
temporal correlations represented by Markov model, which was not considered
in the previous work. This is also related to another line of works studying how
to achieve differential privacy under temporal correlations [8–10,36].

C.2 Location Privacy

A close line of works focus on extending differential privacy to location setting.
The first DP-based location privacy model is Geo-Indistinguishability [1], which
scales the sensitivity of two locations to their Euclidean distance. Hence, it is
suitable for proximity-based applications. Following by Geo-Indistinguishability,
several location privacy notions [38,40] have been proposed based on differential
privacy. A recent DP-based location privacy, spatiotemporal event privacy [5–7],
proposed a new representation for secrets in spatiotemporal data called spatiote-
moral events using Boolean expression. It is essentially different from this work
since here we are considering the traditional representation of secrets, i.e., each
single location or a sequence of locations.

Several works considered Markov models for improving utility of released
location traces or web browsing activities [11, 17], but did not consider the in-
ference risks when an adversary has the knowledge of the Markov model. Xiao
et al. [39] studied how to protect the true location if a user’s movement follows
Markov model. The technique can be viewed as a special instantiation of PGLP.
In addition, PGLP uses a policy graph to tune the privacy and utility to meet
diverse the requirement of location-based applications.
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