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Abstract—Local Differential Privacy (LDP) provides provable
privacy protection for data collection without the assumption of
the trusted data server. Existing mechanisms that satisfy LDP or
its variants either only consider aggregate queries from a group
of users (e.g., frequency estimation) or individual queries for a
single user (e.g., range queries). However, in complex real-world
analytics applications, it is desirable to support both types of
queries at the same time.

In this paper, we tackle the challenge of privately answering
range queries and providing frequency estimation at the same
time with high utility. We develop a data perturbation mecha-
nism, which is proved to satisfy local d-privacy (a generalized
version of LDP with distance metric) and have optimal utility
for the co-location query (a specific type of range query).
Then, we utilize an inversion approach for frequency estimation
using the perturbed data. We analyze the theoretical Mean
Square Error (MSE) of this estimation method and show the
relationship to another existing estimation method under LDP.
The results on both synthetic and real-world location datasets
validate the correctness of our theoretical analysis and show that
the proposed mechanism has better utility for both range queries
and frequency estimation than the state-of-the-art mechanisms.

I. INTRODUCTION

Differential Privacy (DP) [1], [2] has become the de facto
standard for private data releases. It provides provable privacy
protection, which is independent of the adversary’s back-
ground knowledge and computational power [3]. In recent
years, Local Differential Privacy (LDP) has been proposed for
preserving privacy at data collection stage (traditional DP is
used after data collection). In the local setting, the server is
assumed to be untrusted, and each user randomly perturbs her
raw data independently using a privacy-preserving mechanism
that satisfies LDP. Then, the server collects these perturbed
data to perform data analytics or answer queries from users
or third parties. Thus the local setting is more preferable
than the traditional centralized setting. For example, RAPPOR
[4] proposed by Google has been employed in Chrome to
collect web browsing behavior with LDP guarantees; Apple is
also using LDP-based mechanism to identify popular emojis,
popular health data types, and media playback preference in
Safari [5].
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In the LDP setting, the most existing mechanisms [3], [4],
[6], [7] are studied in the context of aggregate queries (e.g.,
frequency estimation) and the utility requires the aggregation
of the perturbed values from a large group of users, while
the individual perturbed value may not provide much utility.
In order to provide reasonable utility of the perturbed value
for an individual user, variants of LDP have been studied. For
example, in the Location-Based Services (LBS) setting where
users submit their locations to a service provider for range
queries (e.g., finding the nearest restaurants), the goal is to
accurately answer the range query using the perturbed location.
In order to provide better utility in such cases, Chatzikokolakis
[8] et al. presented a generalized notion, termed d-privacy,
which scales the privacy in DP with the distance between the
input pairs. When Euclidean distance is considered in the local
setting, the d-privacy is called geo-indistinguishability [9],
which is often used in the LBS setting. The intuition is that we
require a stronger indistinguishability between two locations
when they are close to each other, i.e. the indistinguishabilty
is scaled by the distance between two input locations.

However, existing studies on LDP or its variants only focus
on one type of queries, i.e. frequency estimation or range
queries, but not simultaneously. Our primary viewpoint in
this paper is that for certain applications, it is desirable to
support both types of queries with high utility. For example,
in the LBS setting, suppose a location service provider is
offering services such as POI (points of interest) search. In
order to protect users’ location privacy, users can submit their
perturbed location to the service provider. The service provider
then uses the perturbed location to answer individual ranges
queries to support POI search. At the same time, the service
provider also wishes to aggregate the perturbed data from all
the users to analyze trends, e.g., number of users at a certain
location (i.e., frequency estimation). Another example is the
study of social relationship analysis from location data [10],
[11], which is more accurate than from self-report survey data.
The co-location events of two users and the location entropy
(i.e., the expected number of users visiting a location) are
both needed to compute the social strength between them.
The former indicates whether they frequently meet with each
other; the latter indicates the attribute of the meeting places
such as a public hotspot or a private place. Since only users



who frequently meet in private places can be considered to
have strong social ties, both types of queries must be answered
with high accuracy to get the good utility of social relationship
analysis.

In this paper, we focus on the d-privacy notion in the local
setting, i.e., local d-privacy (a generalized version of LDP),
and two specific types of queries: range queries that involve
individual information and frequency estimation that involves
aggregate information. The former asks the value range (such
as location range) of a specific user, the latter asks how many
users have the value of interest or are visiting a location. To
the best of our knowledge, existing mechanisms that satisfy
LDP or its variants only deal with one of these queries. For
example, based on a surveying technique termed Randomized
Response [12], perturbation mechanisms [3], [4], [6], [7] are
developed for frequency estimation under LDP and have good
performance. These mechanisms do not consider individual
queries such as range queries in their design goals, which may
yield poor utility for the latter. On the other hand, some noise-
adding mechanisms have been shown to provide high utility
for range queries in the local setting. For example, Andrés
et al. [9] proposed the Planar Laplace mechanism (satisfying
geo-indistinguishability) which adds two-dimensional Laplace
noise to a user’s location, where a higher probability is
associated with an output location that is closer to the original
location. However, this mechanism is only applicable to the
Euclidean distance metric and is designed for range queries
not for frequency estimation, so it may not be suitable for
the latter. Thus, it still remains an open question to design
a privacy-preserving mechanism that can well support both
types of queries.

Intuitively, since randomized response mechanisms have
good performance for frequency estimation while Planar
Laplace Mechanism yields better utility for range queries, we
can combine these two types of mechanisms to get the best of
both worlds. The basic idea is to assign different perturbation
probabilities for different inputs and outputs during the ran-
domized response in a way related to the distance. However,
there are several challenges to design such a mechanism: (1)
The mechanism design can be formulated as an optimization
problem with the goal of maximizing both utilities while
satisfying local d-privacy with any distance metric, but solving
this problem requires a high computational cost due to a large
number of privacy constraints. (2) The utility function (or
expected error) of various types of queries (e.g., frequency
estimation) may not be easily expressed in closed form, and
even if possible, the function can be non-linear and non-convex
which makes the optimization problem hard to solve. (3)
Planar Laplace Mechanism can only handle Euclidean distance
metric thus has limited applications. Therefore, it is necessary
to design a mechanism satisfying local d-privacy that can
handle any distance metric with affordable computational cost.

The main contributions of this paper are summarized below:
(1) We apply the notion of local d-privacy to privacy

protection to support both individual range queries for each
single user and frequency estimation from multiple users. We

present a utility-privacy optimization framework with the goal
of maximizing the utility while satisfying the local d-privacy
constraints.

(2) Considering a large number of constraints and the
complex objective function, we develop a new mechanism,
which solves the linear equations of perturbation probabilities,
to obtain the solution rather than solving the optimization
problem directly. We prove that this mechanism satisfies local
d-privacy with any distance metric and can obtain the optimal
result for co-location query (a specific type of range query).

(3) We utilize the inversion approach to implement fre-
quency estimation of our mechanism under local d-privacy
and analyze the theoretical Mean Square Error (MSE). We
also show the relationship to an existing estimation method in
the LDP setting.

(4) We validate the effectiveness of our mechanism and the
correctness of the theoretical analysis by experiments on both
synthetic and real-world location datasets. It turns out that the
proposed mechanism outperforms the existing ones for both
range queries and frequency estimation. Moreover, empirical
results show that domain size has relatively little impact on
the utility of mechanisms that satisfy local d-privacy, while
the MSE for frequency estimation of mechanisms satisfying
LDP is proportional to the domain size.

II. RELATED WORK

There are several mechanisms designed for answering in-
dividual queries (e.g., range queries) with LDP guarantee.
Exponential Mechanism [13] provides a differentially private
selection from a discrete set of candidate outputs. It relies
on a score function that assigns a valued score to a pair
of input-output, where higher scores indicate more desirable
outputs related to the input. Planar Laplace Mechanism [9]
is an extended version of the Laplace Mechanism [2] (a
mechanism for traditional DP) in the planar scenario. It
satisfies geo-indistinguishability but only uses the Euclidean
distance metric. Chatzikokolakis et al. [14] studied the optimal
trade-off between utility and privacy under local d-privacy
with an arbitrary distance metric, and formulated it as a
linear programming (LP) problem, where any distance metric
is applicable. Considering solving the LP problem might
suffer from a high computational cost due to a large number
of privacy constraints, the authors reduced the number of
constraints via a graph-based approximation technique, but
their result is not optimal.

For answering aggregate queries (e.g., frequency estima-
tion), Erlingsson et al. [4] developed RAPPOR satisfying LDP
for Chrome to collect URL click counts. It is based on the
ideas of Randomized Response [12], which is a technique for
collecting statistics on sensitive queries when a respondent
wants to retain confidentiality. In the basic RAPPOR, they
adopt unary encoding to obtain better performance of fre-
quency estimation. Wang et al. [6] optimized the parameters
of basic RAPPOR by minimizing the variance of frequency
estimation. Qin et al. [15] developed a two-phase mechanism
LDPMiner to obtaining accurate heavy hitters with LDP.



Some other works studied privacy-preserving techniques in
context-aware scenario, which consider prior knowledge to
improve the utility. For example, Pingley et al. [16] proposed
the context-aware privacy protection system for LBS, and
Jiang et al. [17] presented Localized Information Privacy (LIP)
for context-aware data aggregation. In this paper, we study
the privacy-preserving techniques under LDP and its variants,
which provide strong protection that is independent of the
adversary’s prior knowledge (i.e. context-free scenario).

III. PROBLEM FORMULATION

A. System Model and Threat Model

Our system model involves one data server and n users
U = {u1, u2 · · · , un}. Each user has one record (discrete
data) and perturbs it independently via a random perturbation
mechanism M before uploading it to the server. Then, the
server collects users’ data and learns some information to
answer the queries requested by users or a third party. For
the perturbation mechanism M, we assume the input domain
and output domain are the same D = {l1, l2, · · · , lm}, where
m is the domain size, and element li has finite dimension. For
example, li can be a numerical value for survey collection, or
a two-dimensional vector representing two coordinate values
of the rectangular coordinate system for locations. With the
discrete setting, the integer set I = {1, 2, · · · ,m} can be
used to index the elements in domain D. Then, the randomized
response mechanism M can be implemented by a probability
matrix P ∈ [0, 1]m×m, where the element pij denotes the
probability that the input x = li (raw data) is perturbed to
the output y = lj (perturbed data). In this paper, we consider
two kinds of specific queries: range queries and frequency
estimation. The former asks whether the value of a specific
user ut is in a range R, then the server would return a
positive or negative response. The latter asks how many users
have an interested value li, then the server would return a
corresponding counting result.

In the threat model, we assume the server is untrusted
and each user only trusts herself because the privacy leakage
can be caused by either deliberate commercial transactions
or hacking activities. Therefore, the adversary is assumed to
possess the uploaded (perturbed) data of all users and know the
perturbation mechanism adopted by the users. In this paper,
we only focus on providing event-level privacy guarantees [9],
[14] (protecting each individual record) rather than the user-
level such as protecting the whole location trace of a user [18],
[19]. The latter will be our future work.

B. Privacy and Utility Definitions

We first review two privacy definitions and then explain why
the second one is adopted in this paper.
Definition 1 (ε-Local Differential Privacy (LDP)) For a given
ε ∈ R+, randomized mechanismM satisfies ε-LDP if and only
if for any input x, x′, and any output y ∈ Range(M)

Pr(M(x) = y)

Pr(M(x′) = y)
6 eε (1)

where Range(M) is the set of all possible outputs of the
mechanism M. The smaller ε indicates a stronger privacy
protection.
Definition 2 (Local d-Privacy [8]) For a given ε ∈ R+,
randomized mechanismM satisfies local d-privacy if and only
if for any input x, x′, and any output y ∈ Range(M)

Pr(M(x) = y)

Pr(M(x′) = y)
6 eε·d(x,x

′) (2)

where d(·, ·) is a distance metric, which satisfies three prop-
erties by definition: d(x, x) = 0, d(x, x′) = d(x′, x) for any
x, x′, and triangle inequality

d(x, x′) + d(x, x′′) > d(x′, x′′), ∀x, x′, x′′ (3)

Local d-privacy is a generalized version of LDP. It in-
troduces the distance metric that scales the privacy with
the distance between the input pairs and relaxes the privacy
constraint when d(x, x′) > 1, thus can provide better utility
especially for individual range queries. Selection of the dis-
tance metric depends on the practical scenario and data format.
For example, Euclidean distance is suitable for location data in
location-based systems, while Hamming distance is often used
for databases. In this paper, we consider local d-privacy with
any distance metric so it is generalizable to various application
scenarios.

Since the probability matrix P = [pik]m×m determines the
perturbation mechanism M, and the input (output) domain
D is indexed by integer set I, we can rewrite the privacy
constraint of local d-privacy as

pik/pjk 6 eεdij ⇒ pik − eεdij · pjk 6 0 (∀i, j, k) (4)

where the element of probability matrix P is defined by pik =
Pr(y = k|x = i), and dij = d(x = i, x′ = j) (i, j ∈ I) is the
distance between i and j.

Utility of range query. The accuracy (quantified by false-
positive and false-negative) of the server’s response to a
range query depends on not only the mechanism but also the
requested range, which makes the evaluation more complex.
Considering both a larger range size of range query and a
smaller distance between input and output data would yield a
higher accuracy of the response, we utilize the portion of users
whose perturbed data is outside a range (with size r) of the
raw data to approximate the error rate for the range queries

Errorrange =
1

n

∑n

t=1
(1− 1Rxt,r (yt)) (5)

where xt, yt are the raw data and perturbed data for user ut,
Rxt,r , {k|k ∈ I, d(k, xt) 6 r} is the neighboring set of xt
in range size r. Indicator function 1Rxt,r (yt) equals to 1 when
yt ∈ Rxt,r and equals to 0 otherwise. Then the theoretical
Error (expectation) is

Errorrange =
1

n

∑n

t=1

(
1−

∑
yt∈Rxt,r

pxtyt

)
(6)

Particularly, Errorrange = 1− 1
n

∑n
t=1 pxtxt when r = 0.



Utility of frequency estimation. The utility of frequency
estimation is quantified by the Mean Square Error (MSE) of
a frequency estimator, where the MSE of an estimator θ̂ with
respect to an unknown parameter θ is defined as

MSEθ̂ = Eθ̂[(θ̂ − θ)
2] = Var(θ̂) + Bias(θ̂, θ)2 (7)

The estimator is usually designed to be unbiased, i.e.,
Bias(θ̂, θ) = 0, hence the MSE is equivalent to the variance of
θ̂. We compute the overall MSE as the summation of the MSEs
of frequency estimators at all lk. More details of frequency
estimator and MSE analysis are shown in Section V.

C. Objectives and Challenges

In general, our goal is to minimize the Error of range query
and the MSE of frequency estimation at the same time while
satisfying local d-privacy with any distance metric. The design
of probabilities in the perturbation matrix can be represented
by the following optimization problem

min
06pij61

f(p) (8)

s.t. g
(k)
ij (p) , pik − eεdij · pjk 6 0 (∀i, j ∈ I)

hk(p) ,
∑m

i=1
pki − 1 = 0 (∀k ∈ I)

where p ∈ Rm×m is the optimization variable whose elements
are pij (i, j ∈ I). The inequality constraint function g

(k)
ij is

obtained by (4), where g(k)ij = 0 for i = j. The equality con-
straint function hk is obtained by the property of probability
matrix. The objective function in (8) can be defined by any
linear combination of utility for range query and frequency
estimation, i.e., f(p) = α · Errorrange + β · MSEfreq, where
α, β > 0 are the combination coefficients whose values can
be determined according to application requirements.

There are several challenges to solve this problem. (1)
The existing mechanisms only consider one type of query;
thus they might have bad performance on a different type
of query or even unable to handle it. (2) The notion of
local d-privacy can provide better utility than LDP due to
the relaxed privacy constraints, but designing a mechanism
applicable to any distance metric or solving the optimization
problem becomes much harder because of the large number
of variables and constraints, especially when domain size is
large. For example, assume domain size is m, then the opti-
mization problem has m2 variables, m3 inequality constraints,
m equality constraints, and m2 lower-bound and upper-bound
constraints according to the privacy definition. In [14], the
original constraints are transformed into O(m2) constraints,
but the result is not optimal after this transformation. (3) The
theoretical MSE of a frequency estimator is often related to
the true frequency, which is unknown in practice because each
user only uploads the perturbed data instead of the raw data
in the local setting. Thus, it is difficult to get the accurate
theoretical MSE, then the solution of the optimization problem
that minimizes the theoretical MSE may not provide optimal
performance in practice.

IV. PROPOSED DATA PERTURBATION MECHANISM

Considering the complex objective function and a large
number of constraints in (8), we adopt another way with an
affordable computational cost to obtain a good utility. First, we
present a linear equations based mechanism, which satisfies
local d-privacy with any distance metric, with the goal of
optimizing the utility for range queries. Then, the optimality
of this mechanism for co-location query (a specific range
query) is proved via optimization theorem. We will extend this
mechanism for frequency estimation and analyze its utility in
the next section.

A. Linear Equations Based Mechanism

Our goal is to design the probability matrix P ∈ [0, 1]m×m

whose element is pij = Pr(y = j|x = i) such that the utility
function f(p) is approximately optimized and we first focus on
f(p) = Errorrange. Intuitively, in order to obtain optimal utility,
a part of probability ratios pik/pjk would reach to the privacy
constraints due to the privacy-utility tradeoff, i.e., inequality
constraint function g

(k)
ij (p) = 0 for a subset of {i, j, k ∈ I}

in optimization problem (8). An intuitive idea is to make the
pkk as large as possible; thus we let pkk = eεdkj · pjk, i.e.,
g
(k)
kj (p) = 0, then

pjk = e−εdkjpkk, ∀j, k ∈ I (9)

After combining equations in (9) and another set of equations∑m
k=1 pjk = 1 (∀j ∈ I), we get the following linear equations

Ep ,


e11 e12 · · · e1m
e21 e22 · · · e2m

...
...

. . .
...

em1 em2 · · · emm



p11
p22

...
pmm

 =


1
1
...
1

 (10)

where ejk , e−εdjk , and ekk = 1 because of dkk = 0 (∀k).
Since djk = dkj , matrix E is symmetric. Denote vector 1 =
[1, 1, · · · , 1]T, then the linear equations (10) can be rewritten
as Ep = 1. When E is an invertible matrix, and the elements
of p = E−11 are non-negative, we can get the values of pkk
for all k ∈ I. Finally, the remaining probabilities pjk (j 6= k)
can be calculated by (9).

Note that equations in (9) only guarantee the privacy con-
straint pik/pjk 6 eεdij for i = k, not all possible i, j, k. Thus,
it is necessary to show that the privacy constraint is satisfied
for all i, j, k ∈ I as well.
Proposition 1 If the solutions of linear equations (10) are
non-negative, then the probability matrix P = [pij ]m×m
solved by (10) and (9) satisfies local d-privacy with any
distance metric.

Proof: When the solutions pkk > 0 (∀k ∈ I) in (10), we
have pjk = e−εdjk · pkk > 0, then 0 6 pjk 6

∑m
k=1 pjk 6

1 (∀j, k ∈ I). Considering the triangle inequality of the
distance metric in (3), we have djk − dik 6 dij , then the
probability ratio is constrained by

pik
pjk

=
pkk
pjk
· pik
pkk

= eε(djk−dik) 6 eεdij (∀i, j, k) (11)



which means the proposed mechanism satisfies local d-privacy
with any distance metric.

In some cases, the precondition that solutions of (10) are
non-negative is not satisfied for very small ε, which might
be caused by the strong proportional setting in (9), where a
smaller ε leads to a larger e−εdkj then a larger pkk, while the
summation of some probabilities equals to 1. In the simulation,
we observe that for two-dimensional data with Euclidean
distance, this precondition is not satisfied for some ε less than
1, but for one-dimensional data with absolute value distance,
this precondition is still satisfied even for ε less than 10−5.
Considering that the privacy budget ε is usually not very
small in practice to obtain reasonable utility, our mechanism
is applicable to most practical cases, and how to improve this
mechanism to accommodate smaller ε will be our future work.

The proportional relationship in (9) seems very similar to
the Exponential Mechanism [13], but there is an important
difference. Eq. (9) focuses on the probabilities related to the
same output, while the proportional relationship in Exponential
Mechanism focuses on the probabilities with the same input.
The Exponential Mechanism is more general than the proposed
one because it can handle any real-valued score functions.

Note that our mechanism can be easily extended to con-
tinuous data via discretization. It is applicable to both types
of queries including individual queries (such as co-location
queries and POI search) and aggregate queries (such as fre-
quency estimation and mean estimation). For POI (points of
interest) queries where the user uploads a perturbed location,
the server can directly return the list of POIs that are related
to this location with good performance because the output of
our mechanism is close to the input with high probability,
where the perturbation probability is exponentially decreased
with the distance according to (9). For mean estimation, the
server can utilize the frequency estimation results to estimate
the mean of a large number of values with good performance
due to the unbiased property of frequency estimation.

B. Optimality for a Specific Range Query

In this part, we show the optimality of the proposed mech-
anism for a specific range query (i.e., co-location query) via
Karush–Kuhn–Tucker (KKT) Conditions [20], which provides
the necessary conditions of an optimal solution for the con-
strained optimization problem. Furthermore, KKT Conditions
are also sufficient for an optimal solution when the optimiza-
tion problem is convex. We omit the details of KKT Conditions
in this paper due to the limited pages.

Assume range size r = 0 for range queries, which
corresponds to the co-location queries. When raw data are
distributed uniformly, minimizing Errorrange in (6) is equivalent
to minimizing the following objective function

f(p) , −
∑m

k=1
pkk (12)

In this case, we show that the solution of the proposed
mechanism satisfies KKT Conditions and then is optimal for
this optimization problem.

Theorem 1 If symmetric matrix E in (10) is invertible, and
the solutions of (10) are non-negative, i.e., elements of vector
p , E−11 are non-negative, then the probability matrix
p∗ ∈ Rm×m calculated by (10) and (9) is optimal for the
optimization problem in (8) with objective function (12).

Proof: (Sketch) The Lagrangian function of optimization
problem (8) can be represented by

L(p, µ, λ) = f(p) +
∑
i,j,k

µ
(k)
ij g

(k)
ij (p) +

m∑
k=1

λkhk(p) (13)

where the objective function f(p) is defined by (12). Since
p = E−11 is non-negative, then 0 6 p∗ik 6 1 for
i, k ∈ I (according to Proposition 1). Let multipliers λ =
[λ1, λ2, · · · , λm]T = p and

µ
(k)
ij =

{
λje
−εdij , k = i and i 6= j

0, otherwise
(14)

where µ(k)
ij > 0 (∀i, j, k). Then, we can validate that p∗, µ(k)

ij

and λk satisfy the KKT Conditions (detailed derivation is
shown in Appendix A). Since p∗ satisfies constraints 0 6
p∗ij 6 1 and the optimization problem is linear and thus
convex, then p∗ is optimal for the considered optimization
problem.

Note that the objective function in (12) is only a particular
case for range query. We will validate the performance of our
mechanism in general cases via simulation results.

V. FREQUENCY ESTIMATION AND ERROR ANALYSIS

Since the perturbation matrix of randomize response mecha-
nisms satisfying local d-privacy no longer have the symmetric
property like mechanisms under LDP, the frequency estimator
in LDP setting is not applicable to our work. Thus, we utilize
another unbiased estimator via inversion approach to imple-
ment frequency estimation of our mechanism. We analyze the
theoretical MSE of this estimator and show the relationship to
the estimator in LDP setting.

A. Frequency Estimation

Assume ck and c∗k are the reported and true frequency
(count) at lk that is indexed by k

ck =
∑n

t=1
1k(yt), c∗k =

∑n

t=1
1k(xt)

where xt, yt ∈ I are the mechanism input and output of the
user ut. Indicator function 1k(yt) equals to 1 when yt = k,
and equals to 0 otherwise. For convenience, denote vectors

c = [c1, c2, · · · , cm]T, c∗ = [c∗1, c
∗
2, · · · , c∗m]T

For a randomized response based mechanism with probability
matrix P ∈ [0, 1]m×m whose element is pij = Pr(y = j|x =
i), assume PT is invertible and denote matrix Q = (PT)−1.
The inversion approach [21] considers the following estimator

ĉ = (PT)−1c = Qc (15)

We briefly show that ĉ is an unbiased estimator of c∗.



Proposition 2 For any invertible probability matrix P, we
have E[ĉ] = c∗, where ĉ is defined in (15).

Proof: The expectation of ck and c are

E[ck] =
∑m

i=1
c∗i pik ⇒ E[c] = PTc∗

Due to the linear property of expectation, we have

E[ĉ] = E[Qc] = QE[c] = QPTc∗ = c∗ (16)

where QPT = I because of Q = (PT)−1.

B. Error Analysis of Frequency Estimation
For convenience, denote the elements of Q as qij (∀i, j ∈

I). Since ĉ = Qc, the element of ĉ can be calculated by

ĉk =

m∑
i=1

qkici =

m∑
i=1

qki

n∑
t=1

1i(yt) =

n∑
t=1

m∑
i=1

qki1i(yt)

Denote z(t)k as a function of the random variable yt

z
(t)
k =

∑m

i=1
qki1i(yt) (17)

then ĉk =
∑n
t=1 z

(t)
k . Considering y1, y2, · · · , yn are indepen-

dent because each user independently perturbs her data, then
z
(1)
k , z

(2)
k , · · · , z(n)k are independent. The MSE of ĉk in (7) can

be rewritten as

MSEĉk = Var(ĉk) = Var

(
n∑
t=1

z
(t)
k

)
=

n∑
t=1

Var(z
(t)
k ) (18)

where ĉk is an unbiased estimator of c∗k, and Var(z
(t)
k ) can be

interpreted as the MSE that the user ut contributes to MSEĉk .
According to the definition in (17), the possible values

of random variable z
(t)
k are {qk1, qk2, · · · , qkm} with the

probability Pr(z
(t)
k = qki) = Pr(yt = i|xt) = pxti. Thus

Var(z
(t)
k ) = E[(z(t)k )2]− E2[z

(t)
k ] =

∑m

i=1
q2kipxti − 1k(xt)

where E[z(t)k ] =
∑m
i=1 qkipxti = 1k(xt) because of QPT = I.

Since pxti =
∑m
j=1 1j(xt)pji, then the MSE of estimator ĉk

in (18) can be calculated by

MSEĉk =

n∑
t=1

Var(z
(t)
k ) =

n∑
t=1

m∑
i=1

q2kipxti −
n∑
t=1

1k(xt)

=

m∑
j=1

(
n∑
t=1

1j(xt)

m∑
i=1

q2kipji

)
−

n∑
t=1

1k(xt)

=

m∑
j=1

(
c∗j

m∑
i=1

q2kipji

)
− c∗k (19)

In this paper, we consider the overall MSE as the utility of
frequency estimation, defined by

MSEfreq =

m∑
k=1

MSEĉk =

m∑
k=1

m∑
j=1

(
c∗j

m∑
i=1

q2kipji

)
− n (20)

where
∑m
k=1 c

∗
k = n. We can get the closed-form expressions

(elements of matrix Q) for some special cases where the
matrix has certain structure, and how to solve it without
closed-form expression will be dealt with in future works.

C. Relationship to the Estimator under LDP

The frequency estimator presented in [6] is only applicable
to mechanisms with symmetric probability (two different
probability values) in the LDP setting, while the estimator
in (15) can be used for mechanisms with arbitrary invertible
probability matrix P. We show that the estimator in [6] is a
reduced case of estimator in (15) under LDP.

When dij = 1 for any i 6= j, the notion of local d-privacy
reduces to LDP. In this case, the elements of perturbation prob-
ability matrix P = [pij ]m×m and Q = (PT)−1 = [qij ]m×m
can be represented as

pij =

{
a, i = j

b, otherwise
qij =

{
1−b
a−b , i = j
−b
a−b , otherwise

(21)

where a 6= b and
∑m
j=1 pij = a + (m − 1)b = 1. In

(21), the formula of qij is deducted in Appendix B from the
representation of pij .

According to (15), the unbiased estimator of c∗k is

ĉk =

m∑
i=1

qkici =
(1− b) · ck − b ·

∑
i 6=k ci

a− b
=
ck − b · n
a− b

which is identical to the one proposed in [6] for LDP setting,
i.e., the estimator in [6] is a special case of the one in (15).
Then the MSE of frequency estimation defined in (20) can be
calculated by

MSEfreq =
nmb(1− b)
(a− b)2

+
n(1− a− b)

a− b
(22)

where a larger domain size m would lead to a larger MSEfreq,
which is caused by the privacy constraint of worst-case in
LDP. However, for mechanisms satisfying local d-privacy with
distance metric, the domain size has little influence on the
utility, which can be observed in the simulation.

VI. EVALUATION

In this section, we numerically validate the effectiveness
of our mechanism and the correctness of our theoretical
error analysis by synthetic data and real-world datasets. The
following five mechanisms are considered for comparison:
RR: generalized Random Response [6], satisfying LDP. The

perturbation probabilities are

pij = Pr(y = j|x = i) =

{
eε

eε+m+1 , i = j
1

eε+m+1 , otherwise

OU: Optimized Unary Encoding Mechanism [6], satis-
fying LDP. The input x is encoded into m bits Bx =
[0, · · · , 0, 1, 0, · · · , 0] (only the x-th bit is 1), then each bit
is perturbed independently with the probabilities

Pr(By[i] = 1|Bx[i] = 1) = 1/2

Pr(By[i] = 1|Bx[i] = 0) = 1/(eε + 1)

Due to the unary encoding, the output By might correspond to
multiple values, thus is not applicable to answering individual
queries such as range queries. We only evaluate its utility for
frequency estimation.
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(a) Varying ε with fixed m = 100 (one-dimentional data)
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Fig. 1. Comparisons of theoretical and empirical results

PL: Planar Laplace Mechanism [9], satisfying local d-
privacy only with Euclidean distance metric (i.e., geo-
indistinguishability). Since it is not based on randomized
response type of perturbation (not applicable to the estimator
in (15)), we use the raw frequency (without estimator) and only
show its empirical performances for two-dimensional data.
EM: Exponential Mechanism [13], which designs the per-

turbation probability by

pij = Pr(y = j|x = i) ∝ exp(ε/2 · Q(x, y))

where Q(x, y) is a score function to quantify the desirability
of outputs. We utilize Q(x, y) = −d(x, y) in order to satisfy
local d-privacy.
LE: Linear Equations Mechanism (the proposed one), sat-

isfying local d-privacy with any distance metric. It might not
obtain the optimal solution of the optimization problem (12)
in general case, but it can reach the optimum for some specific
objective functions (refer to Section IV-B).

Considering that the above mechanisms satisfy different
privacy notions, the distance metric is normalized by dij ←
dij/dmin, where dmin is the minimal distance of i, j ∈ I, and
in the case of location it represents the size of the grid that
divides the area. Then, local d-privacy is a relaxed version of
LDP because of dij > 1 (∀i, j ∈ I).

The evaluation metrics are the Error of range query defined
in (6) and the MSE of frequency estimation defined in (20).
Since MSEfreq in (20) is proportional to the number of users,
we scale the metric via MSEfreq ← MSEfreq/n in evaluation,
where n is the number of users. Note that all of the considered
mechanisms are independent of evaluation metrics, thus we
show the two utilities separately in order to clearly observe
the performance of these mechanisms.
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(b) Varying m with fixed ε = 2 (two-dimensional data)

Fig. 2. Influence of domain size m on utilities

A. Synthetic Data

We consider two formats of synthetic data: one-dimensional
and two-dimensional. For one-dimensional data, the domain
is D = {1, 2, · · · ,m} (identical to the index set I), and the
distance metric is dij = |i − j|. For two-dimensional data,
assume

√
m is an integer for simplicity. Then the data domain

is D = {(i1, i2)}
√
m

i1,i2=1 (the domain size is still m), and the
distance metric is dij =

√
(i1 − j1)2 + (i2 − j2)2 (Euclidean

distance). In the two cases, the number of users is n = 10 ·m
and the empirical results are averaged with five repeats.

Validation of theoretical analysis. Considering that the
data distribution is often uneven and sparse, we randomly
generate the raw data with random distribution on only 20%
of the domain. The theoretical and empirical results for both
one-dimensional and two-dimensional data are compared in
Fig. 1. The empirical utilities are computed as Errorrange =
1 − 1

n

∑n
t=1 1xt(yt) (with range size r = 0) and MSEfreq =

1
n

∑m
k=1(ĉk−c∗k)2. For two-dimensional data, the ε starts from

1 because the precondition of LE (solutions of linear equations
(10) are non-negative) is not satisfied for some ε less than 1
in this Euclidean distance case (explained in Section IV-A).
The difference between theoretical and empirical results are
almost negligible in Fig. 1, which validates the correctness of
our theoretical error analysis. In the following simulation, we
only show the empirical results for simplicity.

Influence of domain size. The simulation results with
different domain size m are shown in Fig. 2, where the MSEfreq
of RR and OU (satisfying LDP) is proportional to m. But for
PL, EM and LE (satisfying local d-privacy), the domain size
m has relatively less influence on the performance. Generally
speaking, the privacy definition with distance metric relaxes
LDP notion and improves utility, especially for large-scale data
domain. Under the considered ε and m in Fig. 1 and Fig. 2, the
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Fig. 4. Comparisons of MSEfreq under two types of distributions when m =
200 (one-dimensional data). Under the uniform distribution, user’s raw data
are uniformly distributed in the domain. While under the sparse distribution,
user’s raw data are distributed only on 1% of the domain.

proposed LE has the best or near-best performance for both
range query and frequency estimation. Since the proportional
relationship in EM focuses on probabilities with the same input,
it does not directly guarantee privacy constraints, thus needs a
factor 1

2 for privacy guarantees, which deteriorates the utility.
Influence of range size for range query. In previous cases,

we let r = 0 in range query for simplicity, which corresponds
to co-location query. Fig. 3 shows the Errorrange when r is
greater than 0. Since distance dij is normalized by dij/dmin,
the range size r is normalized as well. For the mechanisms
satisfying local d-privacy with distance metric (e.g., PL, EM
and LE), a larger r for range query would reduce the Errorrange
significantly because the raw data are perturbed to nearby
values (with small distance) with higher probabilities.

Benefit of estimator for frequency estimation. In the
previous simulation, mechanisms satisfying local d-privacy
adopted the unbiased estimator ĉ = Qc in (15) for frequency
estimation, and mechanisms with LDP guarantees (RR and OU)
adopted the estimator presented in [6], which is a special case
of the estimator in (15). However, the unbiasedness does not
always lead to the minimum MSE. The MSEs of c (without
estimator) and ĉ (with estimator) under two distributions are
compared in Fig. 4. For OU with unary encoding, the single
output vector might correspond to multiple values; thus the
unbiased estimator can efficiently reduce the MSE. While
for other mechanisms with direct encoding, an output only
corresponds to one value. Without the estimator, the perfor-
mance significantly depends on the distribution of data. But for
mechanisms with estimator, the data distribution has relatively
less influence on the performance. Generally speaking, the
frequency estimation method with estimator is superior to that
without estimator for two reasons: (i) The data distribution has
less impact on the MSE, thus is more stable and reliable. (ii)
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Fig. 5. Empirical results of real-world data (m = 10, 000)

It has better performance for sparse distribution, which is very
common in practice.

B. Real-World Data

We compare the performances of these mechanisms with the
real-world dataset Gowalla [22], which is available in [23].
There are 196,585 users who share their locations (latitude
and longitude) by checking-in, and 6,442,890 check-ins are
recorded. For simplicity, we consider the locations that are
first checked-in by users within an area where the latitude is
from 50 to 55 and the longitude is from 0 to -5 (this area covers
most of the United Kingdom). We uniformly divide this area
into 100× 100 districts by latitude and longitude. Each user’s
check-in location corresponds to one of these districts, where
majority of the districts have few users and approximately 25%
users are distributed in the top-5 popular districts. The utility
is shown in Fig. 5, where the privacy and utility definitions
are the same as the settings in the synthetic two-dimensional
data. The performances are very similar to the previous results,
where LE outperforms all other mechanisms in both range
queries and frequency estimation queries and the utility of
mechanisms satisfying LDP deteriorate extremely due to the
large domain size.

VII. CONCLUSION AND FUTURE WORK

In this paper, a new mechanism is proposed to answer
range queries and provide frequency estimation with good
performance at the same time while satisfying local d-privacy
with any distance metric. It is proved to have optimal utility
for co-location query (a specific type of range query). It
can be applied to frequency estimation with an unbiased
estimator. We validate the effectiveness of our mechanism
and correctness of the theoretical MSE analysis via synthetic
data and real-world dataset. The simulation results show the
advantage of our mechanism and the mechanisms satisfying
local d-privacy, compared with the ones satisfying LDP.

For future work, we will extend our work to handle more
types of queries and general utility functions, such as heavy
hitter estimation. We will improve our mechanism to obtain
better properties for frequency estimation.
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APPENDIX A
VERIFICATION OF KKT CONDITIONS IN THEOREM 1

Proof: Considering ETλ = Ep = 1, we have

λi +
∑

j 6=i
µ
(i)
ij = λi +

∑
j 6=i

λje
−εdij = 1 (∀i) (23)

According to the definition, only the following partial deriva-
tives are non-zero

∂f/∂pkk = −1, ∂hk/∂pki = 1,

∂g
(k)
ij /∂pik = 1, ∂g

(k)
ji /∂pik = −eεdij (i 6= j)

For L(p, µ, λ) in (13), the partial derivative ∂L/∂ptt at p∗ is

∂L
∂ptt

= −1 +
m∑
j=1

µ
(t)
tj

∂g
(t)
tj

∂ptt
+

m∑
i=1

µ
(t)
it

∂g
(t)
it

∂ptt
+ λt

∂ht
∂ptt

= −1 +
∑

j 6=t
µ
(t)
tj + 0 + λt = λt +

∑
j 6=t

µ
(t)
tj − 1

= 1− 1 = 0 (according to (23))

And the partial derivative ∂L/∂pst (s 6= t) at p∗ is

∂L
∂pst

= 0 +

m∑
j=1

µ
(t)
sj

∂g
(t)
sj

∂pst
+

m∑
i=1

µ
(t)
is

∂g
(t)
is

∂pst
+ λs

∂hs
∂pst

= 0 + 0 + µ
(t)
ts

∂g
(t)
ts

∂pst
+ λs = λs − µ(t)

ts · eεdst

= λs − λs = 0 (by definition µ(i)
ij = λje

−εdij )

Thus we have ∇pL(p∗, µ, λ) = 0. For any i, j, k ∈ I, the
remaining KKT Conditions (refer to [20]) are satisfied as well:
g
(k)
ij (p∗) 6 0, hk(p∗) = 0 and µ

(k)
ij > 0 are guaranteed by

Proposition 1 and definitions; Equation µ
(k)
ij · g

(k)
ij (p∗) = 0

is satisfied because of g(i)ij (p
∗) = 0 (from (9)) and µ

(k)
ij = 0

when k 6= i or i = j.

APPENDIX B
THE DEDUCTION OF qij IN (21)

We first show a useful lemma and then implement the
deduction.
Lemma 1 (Woodbury Matrix Identity [24]) Given matrices
A ∈ Rn×n,B ∈ Rn×k,C ∈ Rk×k,D ∈ Rk×n, if both A and
C are invertible, then

(A+BCD)−1 = A−1 −A−1B(DA−1B+C−1)−1DA−1

If b = 0, the formula of qij in (21) is obvious. If b 6= 0, let

A = (a− b)I, C = b, B = DT = [1, 1, · · · , 1]m×1

where I is identity matrix with size m×m. Considering that
the element pij of P has the format in (21), we have

PT = P = (a− b)I+ b ·BBT = A+BCD

where a 6= b and a+ (m− 1)b = 1, then

DA−1B+C−1 =
m

a− b
+

1

b
=
a+ (m− 1)b

(a− b)b
=

1

(a− b)b
According to Woodbury Matrix Identity, we have

Q = (PT)−1 = A−1 −A−1B(DA−1B+C−1)−1DA−1

= A−1 − (a− b)b ·A−1BDA−1 =
1

a− b
(I− b ·BD)

Thus we get the formula of qij in (21).


