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Abstract—Functional dependencies (FDs) have been extensively
employed in discovering inferential relationships in databases,
which provide feasible approaches for many data mining tasks,
such as data obfuscation, query optimization, and schema
normalization. Since the explosive growth of data leads to a
rapid increase of FDs on large datasets, existing algorithms that
pay more attention to the exact FD discovery cannot extract
FDs efficiently. To bridge this gap, we propose an Efficient
double-cycle approximation of Functional Dependency (EulerFD)
discovery algorithm, which ensures both efficiency and accuracy
of FD discovery. EulerFD induces FDs from invalid ones as
invalidating an FD only requires comparing and verifying some
pairs of tuples (that violate the dependency) while validating an
FD requires examining and verifying all tuples. Considering the
abundant tuple pairs in large datasets, a novel sampling strategy
is employed in EulerFD to quickly extract invalid FDs by revising
the sampling range according to previous sampling results. Fur-
thermore, EulerFD evaluates the stopping criteria in a double-
cycle structure as feedback for further sampling. The sampling
strategy and the double-cycle structure complement each other to
achieve a more efficient sampling effect. Experimental results on
real-world and synthetic datasets, especially the massive datasets
from DMS of Alibaba Cloud, justify the design and verify the
efficiency and effectiveness of the proposed EulerFD.

I. INTRODUCTION

Functional dependencies (FDs) are one of the most funda-
mental concepts in relational databases. FDs refer to relation-
ships among attributes in a relational instance, which states
that values of some attributes can uniquely determine that of
another attribute. Consequently, the definition of FDs can be
explained by the well-known primary key and other unique
keys of a database as they uniquely identify a tuple together
with all its attributes. For example, Table I illustrates a patient
dataset with nine tuples and five attributes, where attribute
Age uniquely depends on attribute Name, and Blood pressure
is uniquely determined by Gender and Medicine jointly.

FDs have wide applications in the fields of data cleaning
[4, 21, 30, 31, 39], data integration [13, 23, 27], and query
optimization [5, 15, 17, 19, 28]. In data cleaning, the problem
of computing the number of repairs in inconsistent databases
has been studied with the constraints of FDs [21]. Extended
FDs that are modeled by combining patterns and integrity
constraints can also be used for error detection [30]. When
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TABLE I: Patient dataset.
Name Age Blood pressure Gender Medicine

t1 Kelly 60 High Female drugA
t2 Jack 32 Low Male drugC
t3 Nancy 28 Normal Female drugX
t4 Lily 49 Low Female drugY
t5 Ophelia 32 Normal Female drugX
t6 Anna 49 Normal Female drugX
t7 Esther 32 Low Female drugC
t8 Richard 41 Normal Male drugY
t9 Taylor 25 Low Gender-queer drugC

it comes to data integration, FDs are processed as keys and
foreign keys to normalize relational databases into Boyce-
Codd Normal Form (BCNF), eliminating duplicate values and
making data constraints explicit [27]. Moreover, FDs are of
great significance to the operation of sophisticated query op-
timization [5, 15, 28], and a type of query optimization called
predicate move-around [19] achieves a better performance on
evaluating SQL queries through FDs.
Applications on DMS. As one of the most fundamental
functions of Alibaba Could (aka Aliyun), Data Management
Service (DMS) is a database research and development service
which supports unified management of multiple databases
including relational databases (e.g., MySQL, SQL Server, and
PolarDB), data warehouse related databases (e.g., AnalyticDB
and ClickHouse), and NoSQL databases (e.g., MongoDB
and Redis). DMS applies FDs for data obfuscation with
the following steps: 1) industry experts of Alibaba manually
label sensitive attributes (e.g., age and gender) that may leak
private information based on domain knowledge, 2) DMS
identifies FDs to find the unlabeled attributes that can uniquely
determine the labeled sensitive attributes, and the newfound
attributes are named underlying sensitive attributes, 3) DMS
employs data obfuscation techniques (e.g., masking, encryp-
tion, and tokenization) to protect the sensitive attributes and
the underlying sensitive attributes.
Motivation. Given such extensive applications of FDs in
relational databases, devising efficient algorithms to discover
FDs from relations has attracted widespread attention. Most
existing works [1, 11, 14, 22, 24, 36, 37] that focus on
discovering exact FDs can be classified into four categories:
1) lattice traversal algorithms, 2) difference- and agree-set
algorithms, 3) dependency induction algorithms, and 4) hybrid



algorithms. Lattice traversal algorithms (e.g., Tane [14], Fun
[24], FD Mine [37], and Dfd [1]) formulate the search space
as power set lattices over attributes and traverse the lattices
to validate the FD candidates. Difference- and agree-set algo-
rithms (e.g., Dep-Miner [22] and FastFDs [36]) calculate the
sets of attributes with the same or different values in certain
tuple pairs to derive FDs. Dependency induction algorithms
(e.g., Fdep [11]) view FD discovery as an induction problem,
comparing all tuples pairwise to find invalid FDs and then
inverting them into valid FDs. Lattice traversal algorithms have
been proven to scale well with the number of tuples while
dependency induction algorithms scale well with the number
of attributes, and difference- and agree-set algorithms scale
moderately with both the number of tuples and the number of
attributes [25]. The recent HyFD [26] combines the validation
techniques in lattice traversal algorithms and the induction
of FD candidates in dependency induction algorithms for
a hybrid discovery algorithm. Despite decades of research,
efficiently discovering exact FDs from relational databases
remains a formidable challenge with the prohibitively high
computational complexity of O(n2(m2 )

22m) [20, 25], where
n is the number of tuples and m is the number of attributes.
These exact discovery algorithms are able to find the exact
FDs in a reasonable time when n and m are relatively small,
but quickly become impractical with the explosive growth of
data due to the exponential time complexity. Thus, efficiently
discovering FDs on large datasets is still a tall order.

To address this challenge, approximate discovery algorithms
[3, 16] via sampling have been proposed to significantly
improve the efficiency of FD discovery with a little sacrifice
on accuracy. For the FD-based data obfuscation deployed on
DMS, efficiency has a similar priority with accuracy as DMS
is expected to respond in real-time to user requests for the
dependent (and determined) attributes of their input attributes.
However, existing approximate algorithms yield suboptimal
runtimes and incomplete results, which is manifested in lower
precision and recall measured by F1 score (see Section V). For
example, the representative approximate discovery algorithm
AID-FD [3] avoids repeated sampling naively and neglects the
fact that sampled tuples contribute differently to the results. To
ensure both efficiency and accuracy, an appropriate sampling
strategy that can quickly suggest the sampling range contain-
ing more invalid FDs for FD induction is highly desired.

Contribution. To this end, we propose a double-cycle algo-
rithm for approximate discovery named EulerFD (Efficient
Double-Cycle Approximation of Functional Dependencies) for
large real-world datasets.

We adopt the strategy of inducing FDs from invalid ones
as invalidating an FD only requires comparing and verifying
some pairs of tuples (that violate the dependency) while
validating an FD requires examining and verifying all tuples.
To support efficient and accurate FD induction, EulerFD
consists of four modules, including preprocessing, sampling,
negative cover construction, and inversion, where the last three
are integrated into a double-cycle structure. The strength of

EulerFD is founded on the design of the sampling module
and its cooperation with other modules. Considering the large
number of tuple pairs in large datasets, we present a novel
adaptive sampling algorithm to quickly select tuple pairs that
are likely to contain more invalid FDs. In addition to the non-
repeated sampling in [3], our sampling algorithm optimizes
the sampling target selection by continuously revising the
sampling range according to previous sampling results that
reflect different contributions of tuple pairs. After sampling,
invalid FDs are stored in tree structures in the negative cover
construction module and are induced into valid FDs in the
inversion module. We evaluate the stopping criteria of the
negative cover construction module and the inversion module
to serve as feedback for further sampling, hence forming a
double-cycle structure of EulerFD. By dynamically adjusting
the sampling strategy with two empirical thresholds, the com-
bination of the sampling module and the double-cycle structure
significantly improves the efficiency of the proposed EulerFD.

We evaluate and compare the performance of EulerFD
with state-of-the-art FD discovery algorithms, and EulerFD
is proved to be of high efficiency and accuracy on real-world
and synthetic benchmark datasets. We briefly summarize our
contributions as follows.
• We propose an efficient double-cycle approximation of func-

tional dependency (EulerFD) algorithm that is capable of
obtaining FDs efficiently and accurately from large datasets.

• We present a sampling strategy that can evaluate contribu-
tions of sampled tuples based on previous sampling. The
sampling module and the double-cycle structure comple-
ment each other to achieve more effective and efficient
sampling.

• Extensive experiments on real-world and synthetics datasets
as well as DMS of Alibaba Cloud demonstrate the efficiency
and effectiveness of EulerFD.

Organization. The rest of this paper is organized as follows.
Section II presents the related work from the perspective of
both exact and approximate discovery algorithms. Section III
provides the preliminaries and then formalizes the problem of
approximate discovery. The EulerFD algorithm as well as the
detailed implementation is shown in Section IV. We report the
experimental results and findings for performance evaluation
in Section V. Finally, Section VI draws a conclusion and
discusses future work.

II. RELATED WORK

In this section, we discuss related work on both exact and
approximate discovery algorithms as well as variants of the
classical FD definition.

A. Exact Discovery Algorithms
Exact discovery algorithms can be generally categorized

into four classes based on the employed techniques: lattice
traversal algorithms, difference- and agree-set algorithms, de-
pendency induction algorithms, and hybrid algorithms.

Lattice traversal algorithms. Lattice traversal algorithms
[1, 14, 24, 37] formulate the search space as one or more



power set lattices over attributes of the given dataset, on which
the traversal is carried out. Huhtala et al. [14] proposed a
seminal method based on partitions of attributes for deter-
mining whether a dependency holds or not in their level-wise
traversal algorithm. Novelli et al. [24] defined the concept of
Free Set and introduced Fun, an easy-to-understand framework
for mining FDs. The work in [37] presented another approach
named FD Mine, which leverages discovered equivalences
from FD candidates to reduce the search space. In addition to
these level-wise algorithms, Abedjan et al. [1] implemented a
depth-first random walk traversal strategy in their algorithm
Dfd. Despite varying technologies to prune the search space,
lattice traversal algorithms generate a great number of FD
candidates when the number of attributes is large, seriously
impacting the column (attribute) scalability.

Difference- and agree-set algorithms. Lopes et al. [22]
proposed Dep-Miner algorithm which calculates the sets of
attributes with the same value in certain tuple pairs, and then
these so-called agree-sets are maximized to derive minimal
FDs. Wyss et al. [36] illustrated a depth-first algorithm named
FastFDs. Unlike Dep-Miner, it maximizes difference-sets, the
complementary set of agree-sets, to infer FDs. These algo-
rithms compare all tuples in pairs to generate difference- or
agree-sets, yielding a quadratic complexity in the number of
tuples and leading to a defect in row (tuple) scalability.

Dependency induction algorithms. Flach et al. [11] viewed
the discovery of FDs as an induction problem and proposed the
dependency induction algorithm Fdep. Instead of generating
and verifying numerous FD candidates, Fdep compares all
tuples pairwise to find all invalid FDs and then inverts them
to obtain valid FDs. This induction strategy enables Fdep
to handle datasets with more attributes than the previous
algorithms. However, the inversion operation and the pairwise
comparisons of Fdep are highly time-consuming, and Fdep
shows poor row (tuple) scalability.

Hybrid algorithms. Papenbrock et al. [26] presented a
sampling-based discovery strategy in their algorithm HyFD,
which alternately hybridizes sampling techniques with val-
idation techniques, to scale the task of exact discovery to
much larger datasets. HyFD induces FD candidates on the
sampled tuples and then validates them on the entire dataset by
lattice traversal technique, which leads to inefficiency caused
by excessive FD candidates.

In this paper, to deal with large number of attributes in real-
world datasets, we adopt the FD induction approach due to its
good column scalability. Moreover, we propose a novel sam-
pling strategy to reduce tuple pair comparisons and a double-
cycle structure with the evaluation of the stopping criterion
in the inversion module to mitigate the costly inversion of
dependency induction algorithms.

B. Approximate Discovery Algorithms

Most of the existing works focused on the exact discovery,
and even the best algorithms are only suitable for small real-
world datasets [11, 14, 26]. Approximate discovery algorithms

[3, 16] were proposed, aiming to obtain approximately correct
and complete FD results by multiple sampling strategies.
Kivinen et al. [16] used a random sampling strategy in
their approximate algorithm and controlled the quality of the
approximation through accuracy and confidence parameters,
but found it inefficient when the dataset consists of many
attributes. Bleifuß et al. [3] proposed an approximate algorithm
AID-FD, which approximately discovers FDs based on tuple
sampling and inversion. While it is orders of magnitude faster
than state-of-the-art exact discovery algorithms, the accuracy
of AID-FD is impacted by the sampling strategy which naively
avoids repeated sampling without considering the tuple pair
contributions. In addition, AID-FD stops sampling when the
termination criterion is reached and does not have the ability
to adjust or re-sample for optimal trade-off.

In this paper, to enhance the row scalability without sacri-
ficing accuracy, EulerFD employs a novel sampling strategy
that uses the contributions of sampled tuples from previous
sampling to direct the follow-up sampling for higher sampling
productivity. Furthermore, the sampling algorithm is dynam-
ically adjusted by the evaluation of the stopping criterion in
the negative cover module to further boost the efficiency and
effectiveness of EulerFD.

C. Other Functional Dependency Definitions and Problem
Settings

Many works also studied extensions or variants of the
classical functional dependency definition. Kruse et al. [18]
studied approximate FDs that are violated by a certain portion
of tuple pairs due to data exceptions, ambiguities, and data
errors, which is different from approximate discovery algo-
rithms in this paper. Conditional FDs, which capture the data
consistency by incorporating bindings of semantically related
values, were studied in [2, 4, 8, 9]. Wei et al. [34, 35] discussed
embedded FDs to address the schema design problem for
data with missing values. [30, 31] presented pattern FDs,
a class of integrity constraints that can model fine-grained
data dependencies gleaned from partial attribute values. [10]
proposed techniques for reasoning about graph FDs which
extend FDs from relations to graphs. SMFD [12] formulated
the FD discovery problem in the secure multi-party scenario
against semi-honest adversaries and applied secure multi-
party protocols over distributed partitions. FD discovery on
noisy data [38] can also be regarded as the discovery of
approximated FDs due to the violations. Denial constraints
(DCs) [6, 29], which discover the relationships among defined
predicates, are more expressive and general constraints than
FDs. Discovery of DCs is much more time-consuming than
that of FDs. In addition, discovery of DCs requires pre-defined
predicates, thereby not appropriate for FDs. In this paper, we
focus on the classical FD definition and the centralized FD
discovery problem.

III. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we first review the definition of functional
dependency and related concepts which will be used in our



algorithm design. Then we present a problem statement for
the approximate discovery of FDs.

Preliminaries. Given a relational instance r over schema R,
FD X → A expresses that values of A uniquely depend on
values of X , where attribute set X ⊆ R and attribute A ∈ R.
FD X → A holds (or is valid) if and only if all pairs of tuples
that agree on X also share their values on A. Similarly, if
there exists a pair of tuples on which FD X → A does not
hold, then X ̸→ A is a non-FD. We call X the left hand side
(LHS) and A the right hand side (RHS). Formal definitions
are given as follows.

Definition 1: (Functional Dependency (FD)). Let X ⊆ R
and A ∈ R, functional dependency (FD) X → A holds in r
iff ∀t, u ∈ r, t[X] = u[X] ⇒ t[A] = u[A], where t[X] is the
value(s) of tuple t on X and t[A] is the value of tuple t on A.

Definition 2: (Non-FD). Let X ⊆ R and A ∈ R, X ̸→ A
is a non-FD in r iff ∃t, u ∈ r, t[X] = u[X] ∧ t[A] ̸= u[A].

Example 1: We show examples for the above three defini-
tions based on the data in Table I. To facilitate the demon-
stration, we denote attributes of the data with initials and omit
the brackets and commas in LHSs. FD AB → M holds as all
tuple pairs that agree on attribute set AB, i.e., t2 and t7, also
agree on attribute M . FD N → B is valid because no tuple
pairs agree on N , and values of B uniquely depend on values
of N . G ̸→ M is a non-FD because tuples t2 and t8 agree
on G with the shared value “Male” but disagree on M with
different values “DrugC” and “DrugY”.

Definition 3: (Specialize and Generalize). Let X,Y ⊆ R
and A ∈ R, if Y ⊂ X , then X → A specializes Y → A
(X → A is a special FD of Y → A), and Y → A generalizes
X → A (Y → A is a general FD of X → A). The definition
of specialize and generalize applies to both FDs and non-FDs.

Example 2: Given the data in Table I, NG → M specializes
N → M while N → M generalizes NG → M because N ⊂
NG. Similarly, ABG → N cannot specialize or generalize
AGM → N as ABG ̸⊂ AGM and AGM ̸⊂ ABG.

Definition 4: (Non-trivial and Minimal FD). Let X ⊆ R
and A ∈ R, X → A is non-trivial if A ̸∈ X , and is minimal
if ∀Y ⊂ X, Y → A does not hold.

Example 3: AB → M is a non-trivial and minimal FD since
we have M /∈ AB and M cannot be determined by any subsets
of AB. Besides, NG → M isn’t a minimal FD because there
exists a valid FD (N → M ) whose LHS is a subset of NG.
ABM → M is a trivial FD because M ∈ ABM .

Lemma 1: Let X ⊆ R, Y ⊂ X , and A ∈ R, if Y → A
holds in r, then X → A holds in r; if X → A does not hold
in r, then Y → A also does not hold.

Lemma 1 indicates the relationships between generaliza-
tions and specializations of FDs/non-FDs and is essential for
FD induction. We will utilize Lemma 1 to remove redundant
non-FDs in Algorithm 2 and invalidate FD candidates in
Algorithm 3.

Definition 5: (Negative Cover and Positive Cover). For all
X ⊆ R and A ∈ R\X , the negative cover can be represented

as {X ̸→ A | X ̸→ A is a non-FD in r}, and the positive
cover is {X → A | X → A is an FD in r}.

Example 4: Given the data in Table I, FD set {N →
M,AB → M} is a proper subset of the positive cover, and a
proper subset of the negative cover is {M ̸→ A,BG ̸→ N}.

In other words, the collection of all non-FDs in r is called
the negative cover, abbreviated as Ncover. The collection of
all valid FDs in r is called the positive cover, abbreviated
as Pcover. For all X ⊆ R and A ∈ R\X , X → A must be
either in Ncover or Pcover. Given relational instance r, we take
the set of all non-trivial and minimal FDs (i.e., the output of
exact discovery algorithms on r) as target Pcover to unify the
output results. Although all FDs in the target Pcover together
with their specialized ones exactly make up Pcover in a broad
sense, the target Pcover suffices for FD discovery because the
generalizations of a non-trivial and minimal FD are non-FDs
and the specializations are FDs by logical inference.

Problem Statement. Given a relation r, the problem of the
approximate discovery is to efficiently find non-trivial and
minimal FDs in r with high accuracy.

It is far from trivial to discover non-trivial and minimal
FDs efficiently on large datasets. The strategy of FD induction
with an inversion operation is proved to be advantageous
for runtime reduction [25]. However, pairwise comparisons
and the costly inversion in exact FD induction algorithms
limit this advantage. Approximate discovery algorithms with
effective sampling suitable for large real-world datasets are
highly desired.

IV. ALGORITHM

In this section, we propose an approximate discovery algo-
rithm EulerFD. We describe the structure of EulerFD including
the four modules and their cooperation in the two cycles.
We first give an overview of EulerFD and then specify each
module in detail.

A. Overview

As shown in Figure 1, EulerFD consists of four modules:
preprocessing, sampling, negative cover construction, and in-
version. We briefly discuss each module as follows.
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GRNcover

GRPcover
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Fig. 1: Overview of EulerFD algorithm.

1) Preprocessing Module. To facilitate the massive tuple
comparisons, we preprocess the input raw data into numerical
labels that are organized in partitions (Definition 6), which
significantly improves the efficiency as well as reduces the
storage space. In addition, the partition groups tuples with
shared values together, making the sampling module more



efficient by guaranteeing that each sample can obtain at least
one non-FD.
2) Sampling Module. To overcome the defect that the de-
pendency induction algorithm Fdep [11] cannot handle large
datasets, EulerFD utilizes the tuple pairs sampled from the
dataset rather than all tuples to examine and verify invalid FDs.
Our sampling algorithm combines the multi-level feedback
queue (MLFQ) [7] with the sliding window. The former gives
suggestions on the sampling range while the latter operates
sampling non-repeatedly in the suggested range with variable
window sizes.
3) Negative Cover Construction Module. A set of non-FDs
is obtained by EulerFD based on the results of sampling and
converted into tree structures, Ncover, so that valid FDs can be
induced accordingly later. When constructing Ncover, EulerFD
records the growth rate of Ncover GRNcover as a criterion for
deciding whether to continue sampling or enter the inversion
module, forming the first cycle of EulerFD.
4) Inversion Module. The inversion module is responsible
for converting Ncover into a set of valid FDs, Pcover. After
inverting Ncover into Pcover, EulerFD records the growth rate
of Pcover GRPcover as a criterion for deciding whether to
continue sampling or terminate the entire discovery algorithm,
forming the second cycle of EulerFD.

In summary, EulerFD utilizes a novel sampling strategy
and a double-cycle structure complementing each other to
achieve efficient and accurate FD discovery. Some general
ideas we use have been presented in existing works, including
partitions [14] and the strategy of inducing FDs [11] (i.e., the
negative cover construction module and the inversion module).
However, how to adjust and organize these modules to improve
the performance of FD discovery algorithms is challenging.
The idea of sampling has been widely used for approximate
discovery of FDs but at the cost of accuracy. We propose
a brand-new sampling strategy by combining the multilevel
feedback queue (MLFQ) with the sliding window. In addition,
these four modules are organized in a novel double-cycle
structure in EulerFD by evaluating the growth rates of Nocver
and Pcover and re-sample accordingly to improve the accuracy.

B. Preprocessing Module

Since data values in a dataset may be of various types (e.g.,
String, Decimal, and Character), frequent value comparisons
make it challenging for FD induction algorithms to quickly
obtain non-FDs from the raw data. During the initialization of
EulerFD, various types of data are organized in a unified and
compact format, partitions, making massive efficiency gains
for non-FD acquisition in follow-up modules. We maintain a
sequence of numerical labels for each attribute, where each
label corresponds to a group of tuples with the same data
value on that attribute. We then compare tuples based on their
partition labels rather than the original attribute values after-
wards. In other words, distinct numerical labels are assigned to
different attribute value groups, because it is the equivalence
of data values that matters for tuple comparisons, rather than

the values themselves. The preprocessing module is based on
partitions [14] and the definition is given as follows.
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Fig. 2: Preprocessing of attribute Age and Gender.

Definition 6: (Partition). Let A ∈ R and t, u ∈ r, we denote
the equivalence class of t on A as [t]A = {u ∈ r | t[A] =
u[A]} and the partition of r on A as ΠA (r) = {[t]A | t ∈ r}.

Example 5: Given the data in Table I, the partition on
attribute Age is ΠAge(r) = {{t1}, {t2, t5, t7}, {t3}, {t4, t6},
{t8}, {t9}} and on attribute Gender is ΠGender(r) = {{t1, t3,
t4, t5, t6, t7}, {t2, t8}, {t9}}. For brevity, elements of the parti-
tion, i.e., equivalent classes, are also referred to as clusters. In
Figure 2(a), EulerFD assigns label “1” to value “Female” for
attribute Gender (the first cluster {t1, t3, t4, t5, t6, t7}), label
“2” to value “Male” (the second cluster {t2, t8}), and label
“3” to value “Gender-queer” (the third cluster {t9}), and then
replaces original values with these labels as shown in Table
II. We note that the numerical labels of different attributes are
independent and can be reused since the attribute values are
compared independently given any two tuples.

TABLE II: Patient data after preprocessing.
Name Age Blood pressure Gender Medicine

t1 1 1 1 1 1
t2 2 2 2 2 2
t3 3 3 3 1 3
t4 4 4 2 1 4
t5 5 2 3 1 3
t6 6 4 3 1 3
t7 7 2 2 1 2
t8 8 5 3 2 4
t9 9 6 2 3 2

The partition is a fundamental data structure of EulerFD
that shrinks the storage space and reduces the cost of com-
parisons between tuples, significantly improving the overall
performance. Furthermore, the sampling on partitions avoids
meaningless tuple comparisons that have no potential to gen-
erate non-FDs, because tuples from the same cluster always
agree on at least one attribute which is contained in LHS of the
generated non-FD. It can be observed that equivalent classes
with only one tuple is inconsequential for FD discovery as it
can neither validate an FD which requires checking the entire
dataset, nor generate a non-FD which requires comparing two
or more tuples. Taking this into consideration, the definition
of stripped partition [14] is proposed as follows.



Definition 7: (Stripped Partition). Let A ∈ R, t, u ∈ r,
and [t]A be the equivalence class of t on A, then the stripped
partition of r on A is Π̂A(r) = {[t]A | t ∈ r ∧ |[t]A| > 1}.

Example 6: As shown in Figure 2(b), the stripped partition
on attribute Age is Π̂Age(r) = {{t2, t5, t7}, {t4, t6}} and
on attribute Gender is Π̂Gender(r) = {{t1, t3, t4, t5, t6, t7},
{t2, t8}} because other clusters have only a single tuple.

The stripped partition compresses the partition by dismiss-
ing equivalent classes with only one tuple which do not to
contribute to FD discovery. It further simplifies and unifies
data to provide favorable support for EulerFD, especially for
the following sampling module.

C. Sampling Module

Instead of obtaining non-FDs by comparing all tuples pair-
wise, which ensures that the discovered FDs are completely
correct but with time complexity of O(n2), we employ a
sampling strategy for considerable efficiency improvement
with a little sacrifice on accuracy. Simple random sampling
in all clusters takes no account of the data characteristics,
causing clusters that potentially contain more non-FDs to
lose their deserved attention. Our sampling module captures
the tuple pair contributions and adjusts the sampling strategy
appropriately in line with their evaluation.

Intuition. To design a sufficient and efficient sampling al-
gorithm on stripped partitions for approximate discovery, we
should address the following two factors. (1) Coverage. The
non-FDs derived from sampled tuple pairs are supposed to
occupy the vast majority of the total non-FD set. Therefore, we
perform multiple samples in all clusters until almost no more
new non-FDs are generated to ensure the final FD results are
as correct and complete as possible. (2) Regularity. A regular
sampling method is necessary to guarantee that the tuple pairs
from multiple samples of a cluster are not duplicated. EulerFD
regards two tuples at regular intervals of a cluster as a pair
and applies different intervals for multiple samples to avoid
repeated sampling as much as possible.

Moreover, attributed to the regularity of our sampling
method, the sampling range can be continuously revised to
optimize the target selection in multiple samples and accelerate
the acquisition of new non-FDs, which in turn improves the
coverage. Specifically, the sampling results of a cluster reflect
the contributions of tuple pairs sampled in it, based on which
EulerFD revises the sampling range dynamically by giving
priority to clusters that potentially contain more non-FDs. We
use sampling capacity capa to measure the contribution of
the latest sampled tuple pairs in a cluster and define capa as
follows.

capa (of a cluster) =
number of new non-FDs

number of latest sampled tuple pairs

The capa values of clusters always change after each sample,
thus EulerFD is capable of performing sampling in clusters
with high capa accordingly and terminating sampling appro-
priately for the Ncover construction module. However, some
rare non-FDs that are only contained in clusters with low capa

cannot be left out. Our novel adoption of multilevel feedback
queue (MLFQ) [7] tackles the problem by prioritizing clusters
with high capa while still giving deserved consideration to
clusters with low capa.

Algorithm. For a sufficient and efficient sampling algorithm,
we utilize the multilevel feedback queue (MLFQ) [7] among
clusters to suggest the sampling range and the sliding window
within a cluster to sample tuple pairs for non-FDs.

MLFQ is a CPU processor scheduling algorithm composed
of multiple queues with different priorities and scheduling
methods. Without any prior knowledge, the MLFQ scheduler
learns about processes as they run, and moves processes
between queues based on their observed behavior to compro-
mise the turnaround time and response time [30, 32]. In our
algorithm, clusters are approached as processes and capa as
their behavior. In view of the philosophy that MLFQ learns
from history to predict the future, we observe the capa values
of clusters as they are sampled, and move clusters between
queues accordingly to suggest the sampling range.

After the first sampling in all clusters, EulerFD initializes
capa for each cluster and assigns clusters to corresponding
queues in MLFQ by their capa. Clusters with high capa
are assigned to high priority queues, which means that they
are suggested as the sampling range earlier than those with
low capa. Clusters with similar capa may be assigned to
the same queue and thus have the same priority. Therefore,
the parameter settings, including the number of queues and
the capa range of each queue, are crucial for MLFQ, which
will be detailedly discussed in our experiments. By sampling
the cluster from the head of the highest priority queue that
is not empty, EulerFD updates its capa and reassigns it to
the tail of a new queue, which enables continuous revision
of the sampling range. The lowest priority queue runs in
a round-robin fashion where EulerFD keeps sampling until
no new non-FDs are generated in recent samples to ensure
the coverage. Consequently, the adoption of MLFQ makes it
possible to pay proper attention to both clusters with high capa
and low capa.

The sliding window is an auxiliary that slides in a cluster to
sample tuple pairs at regular intervals, substantially reducing
duplicate tuple pairs in multiple samples. EulerFD regards the
two tuples at both ends of the window, i.e., the first and the
last tuples in the window, as a pair and then compares their
values of all attributes to obtain non-FDs. Then, we take the
attributes where the tuple pair has same values as LHS and the
attributes where the tuple pair has different values as RHSs to
form non-FDs. Note that our sliding window is different from
the traditional one, we only focus on the two tuples at the
ends and leave the other tuples untouched. The window slides
from the beginning to the end of a cluster to obtain all tuples
pairs where the two tuples are at a regular interval. EulerFD
maintains a window size for each cluster and changes it to
distinct values in multiple samples to avoid repeated sampling.

Following with the above two conceptions, we show our
complete sampling algorithm in Algorithm 1. Line 1 initializes
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Fig. 3: Samples on cluster c1.

an MLFQ Q and records the number of clusters in it as
currentClusterNum. The first sampling on stripped parti-
tions is implemented in Lines 2-4. For each cluster in pars,
EulerFD samples it with an initial window size of 2 to obtain
non-FDs and then assigns the cluster to the corresponding
queue in Q by its capa. In Lines 5-10, we employ MLFQ to
suggest the sampling range and continue sampling until there
are no clusters in Q. Function sample(cluster) is described
in Lines 13-21. After comparing tuple pairs sampled by the
sliding window, EulerFD reassigns clusters that potentially
generate more non-FDs to Q by their capa in the last sampling,
and changes the cluster window size for further sampling.

Algorithm 1: Sampling.
Input : stripped partitions pars
Output: non-FD set nonFds

1 let the multilevel feedback queue Q = {q1, ..., qz} and the number
of clusters in MLFQ currentClusterNum = 0 ;

2 for each cluster in pars do
3 cluster.window = 2 ;
4 nonFds = nonFds ∪ sample(cluster) ;

5 while currentClusterNum ̸= 0 do
6 for i = 1 to z do
7 if qi is not empty then
8 cluster ← qi.peek() ;
9 currentClusterNum −= 1 ;

10 nonFds = nonFds ∪ sample(cluster) ;

11 return nonFds ;
12
13 Function sample(cluster):
14 window ← cluster.window ;
15 for i = 1 to cluster.length− window + 1 do
16 newNonFds = compare(cluster, i, i+ window − 1) ;

17 if average capa > 0 in recent samples then
18 assign the cluster to the corresponding queue by capa ;
19 currentClusterNum += 1 ;

20 cluster.window += 1 ;
21 return newNonFds ;

We show a running example of Algorithm 1 in Figure 3.
There are z queues in MLFQ, and the capa range of q2 is
[1, 10) and of q3 is [0.1, 1). In the first sampling of cluster c1
{t1, t3, t4, t5, t6, t7}, t1 and t3, t3 and t4, t4 and t5, t5 and t6,
and t6 and t7 are selected as tuple pairs. Taking tuple pair t1
and t3 as example, we compare all their attribute values and
get four non-FDs G ̸→ N , G ̸→ A, G ̸→ B, and G ̸→ M .
Given that four new non-FDs are obtained by comparing these

tuple pairs (other non-FDs have been sampled previously), the
capa of c1 is 4/5 = 0.8 and we assign c1 to q3 in MLFQ. As
the sampling algorithm runs, if q1 and q2 are empty, c1 at the
head of q3 is suggested as the sampling range, and then tuple
pairs t1 and t4, t3 and t5, t4 and t6, and t5 and t7 are compared
with a window size of 3. Supposing this sampling generates
five new non-FDs, the capa value of c1 is 5/4 = 1.25 and then
we reassign c1 to q2. When it comes to the third sampling on
c1, the tuple pairs are t1 and t5, t3 and t6, and t4 and t7. If
no new non-FD is generated in this sampling, c1 is assigned
to qz by capa 0 and waits for continuous sampling until its
average capa of recent samples equals to 0.

D. Negative Cover Construction Module
Given the set of non-FDs obtained in the sampling module,

EulerFD constructs Ncover that optimally stores non-FDs in
a tree structure and serves as an effective pruning tool in
the inversion module. The Ncover tree, on the one hand,
minimizes the number of non-FDs to be stored since a non-
FD is contained in its specialization (Lemma 1), and on the
other hand, enables to find the specialization of a non-FD
conveniently. Once Ncover is constructed, EulerFD monitors
the growth rate of Ncover GRNcover and estimates whether
to return to the sampling module or advance to the inversion
module, forming the first cycle of EulerFD.

Algorithm 2: Negative cover construction.
Input : non-FD set nonFds
Output: negative cover Ncover

1 sort nonFds and their LHSs ;
2 for each nonFd in nonFds do
3 if Ncover.findSpecialization(nonFd) then
4 continue ;

5 add nonFd to Ncover ;

6 compute the growth rate of Ncover GRNcover ;
7 if GRNcover > ThNcover then
8 return to the sampling module ;

9 else
10 go to the inversion module ;

The detailed algorithm is shown in Algorithm 2. In Line 1,
we sort non-FDs in decreasing order of LHS length and sort
their LHSs in ascending order of attribute frequency to support
specialization checks, which is explained later in the building
of extended binary trees. In Lines 2-5, we construct Ncover
with sorted non-FDs and minimize Ncover by discarding



general non-FDs. We compute the growth rate of Ncover
as GRNcover in Line 6 and compare it with the empirical
threshold ThNcover (discussed in Section V-F) in Lines 7-10.
If GRNcover is greater than ThNcover, we recognize that the
expansion of Ncover is promising and return to the sampling
module for further sampling, otherwise, we proceed to the
inversion module.

Our algorithm is based on an extended binary tree (proposed
in [3]) to expedite the specialization and generalization checks
that are frequent and expensive in the Ncover construction
module and the inversion module. Compared with the typical
FD-tree [11], the binary tree consumes less memory while
quickly searching for specialization and generalizations of
FDs/non-FDs. For each attribute as RHS, a binary tree is build.
The binary tree stores LHSs in leaf nodes and distinguishes
their paths based on whether attributes of internal nodes are
included in them. Specifically, LHSs including the attribute
of a internal node are stored in the right subtree of the
internal node while LHSs excluding the attribute are stored in
the left subtree. To optimize specialization and generalization
checks of FDs/non-FDs with long LHSs, internal nodes record
intersections of all their descendants, so that we can finish
the unnecessary search in advance if an intersection is not
included in the LHS being checked. Thus, sorting non-FDs
in decreasing order of LHS length contributes to reducing
modifications in binary tree building, while sorting LHSs in
ascending order of attribute frequency contributes to locating
FDs/non-FDs rapidly.
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Fig. 4: Ncover construction for RHS N with ABM ̸→ N ,
BG ̸→ N , BGM ̸→ N , and AG ̸→ N .

We show a running example in Figure 4. Taking attribute
Name as RHS, the sampling module obtains four non-FDs
ABM ̸→ N , BG ̸→ N , BGM ̸→ N , and AG ̸→ N , which
are derived from tuple pairs t2 and t7, t4 and t7, t5 and t6, and
t5 and t7, respectively. After sorting, we have AMB ̸→ N ,
MBG ̸→ N , BG ̸→ N , and AG ̸→ N . Non-FD AMB ̸→ N
is added to the right child of internal node A (selected in
the order of LHS attributes) in Figure 4(a), and MBG ̸→
N is added to the left child of internal node A in Figure
4(b) with intersection {MB}. We discard non-FD BG ̸→ N
because it is specialized by MBG ̸→ N . In Figure 4(c), we
add non-FD AG ̸→ N , which is not specialized by others, to
Ncover and modify the binary tree by inserting a new internal
node M with leaf nodes AG and AMB and intersection {A}.
The intersection {MB} recorded by internal node A is then
changed to {∅} because LHSs in the descendants of A have
no intersection.

The growth rate GRNcover indicates the probability of
Ncover expansion in subsequent sampling. That is, the higher
GRNcover is, the more potential sampling module has to
continue obtaining new non-FDs. Due to the fact that the
inversion module is time-consuming in EulerFD, we prefer
to keep sampling and constructing Ncover until GRNcover

is not greater than empirical threshold ThNcover, i.e., the
current samples are sufficient to construct a relatively complete
Ncover. Consequently, GRNcover is a critical evaluation of
the stopping criterion that constitutes the first cycle in our
approximate discovery algorithm.

E. Inversion Module

The constructed Ncover is then inverted to Pcover that
consists of non-trivial and minimal FDs in the inversion
module. Specifically, EulerFD employs Ncover as a pruning
tool and removes the invalid FDs, which are derived from
the generalizations of non-FDs in Ncover (Lemma 1), from
FD candidates in Pcover to yield the final FD results. Based
on the binary tree as well, Pcover supports the extensive
generalization checks and creates minimal FD candidates from
invalid FDs. Similarly, the growth rate of Pcover GRPcover

is monitored by EulerFD to estimate whether to return to the
sampling module or terminate the entire algorithm, forming
the second cycle of EulerFD to improve the result integrity.

Algorithm 3: Inversion.
Input : negative cover Ncover and attribute set R
Output: positive cover Pcover

1 for each rhs in R do
2 add {∅} → rhs to Pcover ;

3 for each nonFd in Ncover do
4 invert(nonFd) ;

5 compute the growth rate of Pcover GRPcover ;
6 if GRPcover > ThPcover then
7 return to the sampling module ;

8 else
9 return Pcover ;

10
11 Function invert(nonFd):
12 while Pcover.findGeneralization(nonFd) do
13 remove the generalization general from Pcover ;
14 for each attr in R do
15 if attr ∈ general.lhs ∪ general.rhs then
16 continue ;

17 create candidate as
{general.lhs ∪ attr} → general.rhs ;

18 if Pcover.findGeneralization(candidate) then
19 continue ;

20 add candidate to Pcover ;

The detailed algorithm for inversion is shown in Algorithm
3. In Lines 1-2, we initialize Pcover and add the most general
FD candidate ∅ → A of each attribute A (as RHS) to it.
In Lines 3-4, we invert Ncover to Pcover by pruning and
creating FD candidates with each nonFd. Lines 5-9 compute
the growth rate of Pcover as GRPcover and compare it
with the empirical threshold ThPcover (discussed in Section
V-F). If GRPcover is greater than ThPcover, we return to



the sampling module and extract more non-FDs to search
for the undiscovered FDs, otherwise, we terminate the FD
discovery algorithm and present Pcover as the final result.
Function invert(nonFd) is described in Lines 11-20. For
each generalization general of the given nonFd, we remove it
from Pcover in Line 13, create new FD candidates by adding
another attribute to its LHS in Lines 15-17, and then check
their generalizations to keep the FD candidates minimal in
Lines 18-20.
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Fig. 5: Inversion for RHS N with MBG ̸→ N , AG ̸→ N ,
and AMB ̸→ N .

Figure 5 shows the process of inversion on the running
example with attribute Name as RHS. Given Ncover in
Section IV-D which consists of MBG ̸→ N , AG ̸→ N , and
AMB ̸→ N , we traverse the binary tree in depth-first order
for inversion. By Lemma 1, the most general FD candidate
∅ → N is invalid because it generalizes non-FD MBG ̸→ N .
In Figure 5(a), We remove the invalid FD ∅ → N from Pcover
and create FD candidate A → N by adding A to LHS. In
Figure 5(b), A → N generalizes non-FD AG ̸→ N and we
replace it with FD candidates AB → N and AM → N .
Non-FD AMB ̸→ N is then processed in Figure 5(c). Since
AMB ̸→ N has two generalizations AB → N and AM → N
in Pcover, the two invalid FDs are removed and changed to
ABG → N and AMG → N , respectively.

The growth rate GRPcover indicates the result integrity and
we continue sampling and constructing Ncover to search for
the undiscovered FDs if GRPcover exceeds our expectations.
However, the heavy generalization checks make the inversion
module the most time-consuming in EulerFD. Thus, an appro-
priate ThPcover that we discuss in Section V-F is significant
for the second cycle to compromise the efficiency and result
integrity of our algorithm.

V. EXPERIMENTS

In this section, we present experimental studies validating
the efficiency and effectiveness of our proposed algorithms.

A. Experiment Setup

We compare the proposed EulerFD with state-of-the-art
exact discovery algorithms and approximate discovery algo-
rithms. As described in Section II-A, lattice traversal algo-
rithms scale well with the number of tuples while dependency
induction algorithms scale well with the number of attributes,
and difference- and agree-set algorithms scale moderately with
both the number of tuples and the number of attributes [25].
Because Tane outperforms other lattice traversal algorithms
on large datasets [25], we take Tane, Fdep, and HyFD as the

representative exact discovery algorithms. For the approximate
algorithms, we choose AID-FD as the representative because
the approximate discovery algorithm proposed by Kivinen et
al. [16] becomes inefficient when the number of attributes is
large. We implemented the following algorithms in Java and
ran experiments on a machine with an Intel Core i7 3.0GHz
CPU and 32GB memory.

• Tane [14]: lattice traversal algorithm.
• Fdep [11]: dependency induction algorithm
• HyFD [26]: hybrid algorithm.
• AID-FD [3]: approximate discovery algorithm.
• EulerFD: approximate discovery algorithm proposed in

this paper.
We used both real-world and synthetic datasets in our exper-

iments. In addition to the 17 datasets used in the seminal work
on FD discovery [25, 26], we added two datasets weather and
lineitem with more than 260000 and 6000000 tuples, respec-
tively, to evaluate algorithms on large datasets. An overview of
these 19 datasets with their numbers of tuples, attributes, and
non-trivial minimal FDs is shown in Table III. Furthermore,
we deployed EulerFD on Data Management Service (DMS)
of Alibaba Cloud, processing more than 500000 real-world
datasets per week with the number of columns varying from
2 to 312. Experiments on DMS were conducted on a server
with an Intel XEON E7 3.0GHz CPU with 512GB memory.

B. Overall Performance

We experimentally study the efficiency and accuracy of the
proposed EulerFD. Table III shows the time costs and F1

scores of Tane, Fdep, HyFD, AID-FD, and EulerFD on 19
datasets with the fastest runtimes in bold. Each experiment
was repeated 100 times for the average performance and we
set a time limit (TL) of 4 hours and a memory limit (ML) of
32GB. The empirical thresholds ThNcover and ThPcover of
EulerFD are set to 0.01 and 0.01, and MLFQ parameters are
the same as the 6 queues in Section V-E. AID-FD adopts the
same threshold 0.01 in its Ncover creation [3]. The parameter
settings are followed by all subsequent experiments.

Efficiency. As shown in Table III, EulerFD is able to process
all 19 datasets and performs best in terms of time cost on most
datasets, especially on large datasets that are difficult for exact
discovery algorithms to deal with.

Specifically, EulerFD shows advantages of efficiency on 14
out of 19 datasets (accounting for a percentage of 74%) while
maintaining high accuracy. EulerFD shows no advantage only
on those datasets with a small number of tuples, attributes,
or FDs for which exact algorithms perform well. On large
datasets, especially on linitem, weather, fd-reduced-30, and
uniprot, the advantage of EulerFD is prominent, which is
attributed to the sampling strategy that adjust the sampling
range according to previous sampling results and the double-
cycle structure that coordinates all modules properly.

Accuracy. We measure the accuracy of approximate discov-
ery algorithms with F1 score [33]. As shown in Table III,
EulerFD achieves F1 scores of 1.000 on 12 datasets with



TABLE III: Experimental results on real-world and synthetic fd-reduced-30 datasets.

Dataset
Dataset Information Time[s] AID-FD Details EulerFD Details

Rows[#] Cols[#] Size[KB] FDs[#] Tane[14] Fdep[11] HyFD[26] AID-FD[3] EulerFD FDs[#] F1 Score FDs[#] F1 Score
iris 150 5 5 4 0.061 0.028 0.084 0.070 0.065 4 1.000 4 1.000
balance-scale 625 5 7 1 0.078 0.062 0.081 0.078 0.061 1 1.000 1 1.000
chess 28056 7 547 1 0.550 41.683 0.206 0.252 0.203 1 1.000 1 1.000
abalone 4177 9 192 137 0.191 1.397 0.164 0.129 0.123 138 0.989 137 1.000
nursery 12960 9 1048 1 0.780 14.062 0.208 0.236 0.199 1 1.000 1 1.000
breast-cancer 699 11 21 46 0.209 0.110 0.107 0.108 0.091 48 0.957 46 1.000
bridges 108 13 7 142 0.131 0.028 0.095 0.080 0.078 142 1.000 142 1.000
echocardiogram 132 13 7 527 0.096 0.029 0.097 0.081 0.078 526 0.997 526 0.997
adult 32561 15 3560 78 36.401 255.013 0.546 2.603 0.828 78 1.000 78 1.000
lineitem 6001215 16 946395 3879 ML ML 318.513 1019.001 216.063 4050 0.953 3861 0.996
letter 20000 17 716 61 1149.095 94.137 1.232 4.665 3.391 63 0.935 60 0.975
weather 262920 18 17350 918 ML ML 25.095 95.258 9.564 1289 0.772 916 0.991
ncvoter 1000 19 152 758 0.834 0.391 0.167 0.172 0.126 757 0.995 757 0.995
hepatitis 155 20 8 8250 3.699 0.138 0.231 0.170 0.133 8250 1.000 8250 1.000
horse 300 28 22 139725 10020.026 3.467 1.491 0.718 0.629 139721 1.000 139725 1.000
fd-reduced-30 250000 30 69581 89571 21.658 TL 27.568 13.775 6.677 89571 1.000 89571 1.000
plista 1001 63 576 178152 ML 13.373 3.767 1.694 1.548 170651 0.919 178129 0.999
flight 1000 109 569 982631 ML 114.687 7.218 2.299 1.918 982558 0.999 982592 1.000
uniprot 1000 223 2440 unknown ML ML TL ML 4529.932 - - 146319 -

The fastest runtimes are shown in bold. TL: time limit of 4 hours exceeded ML: memory limit of 32 GB exceeded

deviations of less than 0.025, while AID-FD achieves 1.000
on 9 datasets with more erratic deviations. By analysing the
FD results on the datasets with F1 scores < 0.999, we find
an overlap between the incorrect FDs discovered by AID-
FD and EulerFD. That is, some rare non-FDs can only be
found on a few tuples and thus are easily missed in sampling,
resulting in the same error. However, due to the double-
cycle structure which obtains more non-FDs by optimizing the
sampling target selection, EulerFD outperforms AID-FD on all
18 datasets (excluding uniprot which lacks benchmarks) with
higher accuracy or the same accuracy and higher efficiency.

C. Row Scalability Analysis

In this subsection, we vary the number of rows (tuples)
on datasets fd-reduced-30 and lineitem to study the row
scalability of EulerFD. Figures 6 and 7 show the runtimes of
Tane, HyFD, AID-FD, and EulerFD as well as the numbers
of FDs on fd-reduecd-30 and lineitem with rows varying
from 50000 to 250000 and 8000 to 4096000, respectively. The
results of Fdep is not presented because it runs into the time
limit and memory limit on the two datasets. Since the accuracy
of EulerFD and AID-FD is high, we focus on the efficiency.

The runtimes of EulerFD scale with the number of FDs and
increase almost linearly with row expansion. EulerFD shows
the best row scalability and is more than twice as fast as AID-
FD on fd-reduced-30 (more than 6 times on lineitem), be-
cause our sampling strategy uses the contributions of sampling
tuples from previous sampling and dynamically revises the
sampling range to serve the row scalability.

D. Column Scalability Analysis

We evaluate the column scalability by varying the number
of columns (attributes) on datasets plista and uniprot. Figure
8 and Figure 9 show the runtimes of Fdep, HyFD, AID-FD,
and EulerFD as well as the numbers of FDs on plista and
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uniprot with columns varying from 0 to 60. Similarly, we do
not present the experimental results of Tane because it runs
into the memory limit on the two datasets, and focus on the
runtimes due to the high F1 scores of EulerFD and AID-FD.

As shown in Figure 8 and Figure 9, EulerFD performs better
than other algorithms with the shortest runtimes. The reason is
that EulerFD adopts the approach of FD induction and inherits
the good column scalability. Furthermore, EulerFD employs
the proposed sampling strategy to mitigate the costly inversion
of dependency induction algorithms, which strikingly con-
tributes to its efficiency. It can be observed that a large number
of FDs seriously impacts the performance of algorithms, and
EulerFD outperforms other algorithms in column scalability
even when there are numerous FDs.
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E. MLFQ Parameter Evaluation

In this subsection, we analyze the parameters in MLFQ
and investigate how the parameters affect the efficiency and
accuracy of EulerFD. We alter the number of queues from
1 to 7, and set the capa ranges for different # of queues
as in Table IV. Considering that the capa value of a cluster
decreases rapidly (exponentially) during the multiple samples
and the values of most clusters are not greater than 10 after
the second sampling, the range of the highest priority queue
is set to [10,+∞) and others are exponentially divided.

TABLE IV: Different MLFQ parameters.

# of queues The capa ranges of queues (qz to q1)
1 [0,+∞)

2 [0, 10), [10,+∞)

3 [0, 1), [1, 10), [10,+∞)

4 [0, 0.1), [0.1, 1), [1, 10), [10,+∞)

5 [0, 0.01), [0.01, 0.1), [0.1, 1), [1, 10), [10,+∞)

6 [0, 0.001), [0.001, 0.01), [0.01, 0.1), [0.1, 1), [1, 10),
[10,+∞)

7 [0, 0.0001), [0.0001, 0.001), [0.001, 0.01),
[0.01, 0.1), [0.1, 1), [1, 10), [10,+∞)

Figure 10 presents the effects of different MLFQ parameters
on datasets adult, letter, plista, and flight. F1 scores
increase with the increasing number of queues, while the
runtimes first decrease and then slightly increase. The results
indicate that the adoption of MLFQ improves the accuracy
and efficiency of EulerFD, but too many queues lead to over-
sampling and long runtimes. EulerFD mostly achieves the
shortest runtimes with 6 queues and the highest F1 scores with
6-7 queues. While we fix the capa ranges in this work, the
dynamic adjustment of the capa ranges at runtime to achieve
optimal performance is worth investigating for future work.

F. Threshold Evaluation

In this subsection, we experimentally study the influence of
the two thresholds ThNcover and ThPcover on the efficiency
and accuracy of approximate discovery algorithms. Given the
growth rate defined as the percentage of additions in the
original Ncover/Pcover, Figure 11 shows the experimental
results of different thresholds 0.1, 0.01, 0.001, and 0 on
four representative datasets: flight (with large number of
attributes), fd-reduced-30 (with large number of tuples),
horse (with large number of FDs), and ncvoter (moderate
characteristics), respectively.

As shown in Figure 11, ThNcover of 0.01 is an elbow point
for AID-FD to achieve a good trade-off between efficiency
and accuracy. The threshold values beyond that (0.001 and
0) yields negligible accuracy improvement at the significant
expense of the runtime on most datasets. For EulerFD, we set
ThNcover to 0.01 when experimenting on ThPcover and vice
versa. EulerFD achieves the best performance with ThNcover

of 0.01 and ThPcover of 0.01 on all datasets. What’s more,
EulerFD outperforms AID-FD with all thresholds in terms
of accuracy and efficiency. The results show that the smaller
GRNcover is, the more samples EulerFD obtains, indicating
higher sampling rate and accuracy. Thus, when GRNcover

is smaller than 0.01, Ncover is relatively complete with
almost all samples that contain non-FDs. The results verify
that the number of attributes and the number of tuples have
very little impact on the choice of thresholds. Intuitively, the
number of FDs may have an impact on the choice of the
threshold. However, since the number and distribution of FDs
are unknown in advance, we choose ThNcover = 0.01 for
AID-FD and ThNcover = ThPcover = 0.01 for EulerFD as
universal thresholds on all datasets.

G. Performance on DMS of Alibaba Cloud

In this subsection, we report the performance of EulerFD,
which has been already been deployed on DMS (https://www.
aliyun.com/product/dms) of Alibaba Cloud. Since the exact
discovery algorithms cannot deal with datasets with more than
223 columns (as shown in Table III), the accuracy evaluated
based on benchmarks using exact discovery algorithms is not
reported on large datasets.

During a go-live week from 09/12/2022 to 09/18/2022,
EulerFD processed 500578 real-world datasets on DMS with
columns varying from 2 to 312, and the total number of rows
(columns) reaches 17386915 (433797). The execution time
adds up to 1081.626 seconds and the average time cost is only
33.955 milliseconds. We compare the efficiency of EulerFD
with AID-FD by τe as

τe =

∑n
i=1 ei(EulerFD)

√
Ri · Ci∑n

i=1 ei(AID-FD)
√
Ri · Ci

,

and compare the accuracy by τa as

τa =

∑n
i=1 ai(EulerFD)

√
Ri · Ci∑n

i=1 ai(AID-FD)
√
Ri · Ci

,

https://www.aliyun.com/product/dms
https://www.aliyun.com/product/dms
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Fig. 10: Runtimes and F1 scores with different MLFQ parameters on adult, letter, plista, and flight.
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Fig. 11: Runtimes and F1 scores with different ThNcover and ThPcover on flight, fd-reduced-30, ncvoter, and horse.

where n is the number of datasets, ei/ai(EulerFD) is the
runtime/F1 score of EulerFD on the ith dataset that indicates
the efficiency and accuracy, and so is ei/ai(AID-FD). Ri

and Ci represent the number of rows and columns of the ith

dataset, respectively. Considering the influence of dataset sizes,
τe and τa reflect the algorithm performance well. Table V
shows that the accuracy and efficiency of EulerFD are higher
than that of AID-FD on all datasets. We also observe that the
accuracy of EulerFD and AID-FD slightly decrease with the
increasing number of tuples and attributes, which is caused by
the sampling in the approximate discovery of FDs as expected.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed EulerFD, an efficient double-
cycle approximation of the functional dependency discovery
algorithm, to tackle the FD discovery problem on large
datasets. Instead of validating each FD candidate by examining
and verifying all tuples, we induced FDs from non-FDs which
can be quickly obtained by comparing and verifying some
pairs of tuples. To overcome the challenge of ambitious pair-
wise comparisons, we proposed a novel sampling strategy that
constantly revises the sampling range according to previous
sampling results. EulerFD evaluated the stopping criteria in

TABLE V: Performance on DMS with various sizes (τe/τa).

rows
columns 1∼10 11∼50 51∼100 100+

1∼10 0.875 / 1.000 0.701 / 1.000 0.512 / 1.000 0.404 / 1.001

11∼100 0.775 / 1.000 0.633 / 1.005 0.534 / 1.019 0.496 / 1.031

101∼1000 0.625 / 1.000 0.643 / 1.029 0.420 / 1.030 0.322 / 1.037

1001∼10000 0.423 / 1.000 0.501 / 1.051 0.314 / − 0.259 / −
10001∼100000 0.343 / 1.001 0.405 / − 0.387 / − 0.304 / −

100000+ 0.389 / − 0.232 / − 0.189 / − 0.123 / −

the double-cycle structure and adjusted the sampling strategy
dynamically, which significantly improved the efficiency. Ex-
perimental results on real-world and synthetic datasets demon-
strated that the proposed EulerFD is efficient and effective.
Dynamic revision of sampling ranges is challenging and worth
investigating for future work as a good dynamic revision
strategy may significantly improve performance.
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[3] T. Bleifuß, S. Bülow, J. Frohnhofen, J. Risch, G. Wiese,
S. Kruse, T. Papenbrock, and F. Naumann. Approximate
discovery of functional dependencies for large datasets.
In Proceedings of the 25th ACM International Confer-
ence on Information and Knowledge Management, CIKM
2016, Indianapolis, IN, USA, October 24-28, 2016, pages
1803–1812. ACM, 2016.

[4] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Ke-
mentsietsidis. Conditional functional dependencies for
data cleaning. In Proceedings of the 23rd International
Conference on Data Engineering, ICDE 2007, The Mar-
mara Hotel, Istanbul, Turkey, April 15-20, 2007, pages
746–755. IEEE Computer Society, 2007.

[5] P. Brown and P. J. Haas. BHUNT: automatic discovery
of fuzzy algebraic constraints in relational data. In Pro-
ceedings of 29th International Conference on Very Large
Data Bases, VLDB 2003, Berlin, Germany, September 9-
12, 2003, pages 668–679. Morgan Kaufmann, 2003.

[6] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial con-
straints. Proc. VLDB Endow., 6(13):1498–1509, 2013.
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