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Abstract

In various application domains like transportation, urban

planning, and public health, analyzing human mobility, rep-

resented as a sequence of consecutive visits (aka trajectories),

is crucial for uncovering essential mobility patterns. Current

practices often discretize space and time to model trajectory

data with sequence-analysis techniques like Transformers and

LSTM, but this discretization tends to obscure the intrinsic

spatial and temporal characteristics inherent in trajectories.

Recent work shows the effectiveness of modeling trajectories

directly in continuous space and time using the spatiotempo-

ral point process (STPP). However, these approaches often

assume that all observed trajectories originate from a single

underlying dynamic. In reality, real-world trajectories ex-

hibit varying dynamics or moving patterns. We hypothesize

that grouping trajectories governed by similar dynamics into

clusters before trajectory modeling could enhance modeling

effectiveness. Thus, we present a novel approach that simul-

taneously models trajectories in continuous space and time

using STPP while clustering them. Our method leverages a

variational Expectation-Maximization (EM) framework to

iteratively improve the learning of trajectory dynamics and

refine cluster assignments within a single training phase. Ex-

tensive tests on synthetic and real-world data demonstrate

its effectiveness in clustering and modeling trajectories.

1 Introduction

Recent advances in the Global Positioning System (GPS)
and wireless technologies have led to the accumulation
of a vast amount of trajectories, such as human mobility
and vessel positioning data [10]. These real-world tra-
jectories often exhibit diverse dynamics due to different
moving behaviors or patterns (see Fig. 1). Understand-
ing and modeling the underlying spatiotemporal dynam-
ics of objects is important to many practical applications,
such as predicting next locations, analyzing traffic flow,
and detecting spatial outliers [21, 11].

Modeling trajectory is challenging due to the in-

Figure 1: Example of trajectories with two different moving
patterns.

herently irregular and asynchronous characteristics of
moving dynamics, with each data point existing in con-
tinuous time and space. Prior research on trajectory
mining applications often projects GPS coordinates onto
discrete geographical grids and time intervals, utilizing
recurrent neural networks (RNN) or Transformers to
capture the sequential information of the trajectories for
various analysis tasks such as trajectory simulation [21]
and next location prediction [22]. However, modeling hu-
man movements requires algorithms that can effectively
capture inherently complex spatial and temporal depen-
dencies and transforming trajectories into regular grids
and time intervals cannot accurately model real-world
trajectories with irregular moving patterns.[24].

To address the above issues, we build a trajectory
learning model based on spatiotemporal point processes
(STPPs), a robust and structured framework for mod-
eling trajectory data in continuous space-time. [16] A
recent study demonstrates the effectiveness of STPPs in
modeling Point-of-Interest trajectories, emphasizing the
importance of spatiotemporal dynamics. [24] However,
they implicitly assume that all observed trajectories are
generated by a single moving dynamic to which they
try to fit. Instead, real-world trajectories exhibit vary-
ing dynamics. We hypothesize that if we can group
trajectories governed by similar dynamics into a single
cluster, STPP will exhibit greater efficacy in modeling
trajectories within each cluster. For instance, research
shows that modeling the inherent modality or moving be-
haviors of trajectories can help understand how humans
move in space and time, which improves other down-
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stream tasks such as urban mobility simulation [27, 12].
Unfortunately, this gives rise to a classic ‘chicken-and-
egg’ predicament: we must first employ STPP to model
the trajectories and capture their underlying dynamics
before we can cluster similar ones; on the other hand,
we must cluster them based on the dynamics first before
we can effectively learn the STPP model.

There are several potential approaches to go around
the problem. First, we can employ a two-stage approach
(clustering-then-modeling) where we first cluster trajec-
tories based on the raw features in the trajectory space,
such as their spatiotemporal similarity (e.g., using Eu-
clidean distance between the raw trajectories) and then
model each cluster with an STPP. Clearly, these clusters
may not capture the underlying moving dynamics and
may not be optimally aligned with subsequent trajec-
tory learning. Second, we can employ an alternative
two-stage approach (modeling-then-clustering), where
we first employ models to learn representations from the
trajectories, enabling the modeling of continuous-time
spatiotemporal dynamics and feature extraction from
the trajectories. Subsequently, we can utilize these fea-
tures to discern the cluster structure. However, previous
research has indicated that such a two-phase training
paradigm leads to unstable clustering outcomes, often
sensitive to the quality of the learned features [25]. De-
spite some recent efforts to jointly learn representations
and clustering information in a single training phase
for discrete domain sequences [26], we are unaware of
any previous work that directly applies this approach to
trajectories embedded within continuous time and space,
aiming to capture the underlying moving dynamics.

In this paper, we propose a novel framework, named
Mobility-aware Deep Trajectory Modeling and Clus-
tering (DTMC), which unifies modeling the trajectory
dynamics and clustering them based on their dynam-
ics simultaneously via spatiotemporal point processes.
Specifically, we decompose the hidden embedding for the
trajectories into two representations: the individual rep-
resentation acquired through a neural STPP model, and
another cluster representation that encapsulates the clus-
tered moving patterns. To obtain cluster assignments, we
introduce variational inference where each trajectory can
learn a conditional probability based on cluster assign-
ment in an Expectation-Maximization (EM) framework
that iteratively refine the trajectory embeddings and
cluster assignment and resolve the chicken and egg prob-
lem. To show the effectiveness of DTMC, we first com-
pare its clustering results with three types of clustering
methods: clustering-only, modeling-then-clustering, and
concurrent-modeling-clustering methods. Subsequently,
we compare the predictive performance of the DTMC
model with three types of modeling approaches: single

STPP model, clustering-then-modeling, and concurrent-
clustering-modeling methods. The findings underscore
DTMC’s superiority not only in enhancing trajectory
modeling but also in achieving remarkable results in
trajectory clustering.

In summary, our contributions are:

• We propose a novel unified framework to simulta-
neously model and cluster trajectories based on
inherent moving patterns. Based on the inferred
clustering results for each trajectory, our method
improves the performance of trajectory representa-
tions learning by capturing the underlying clustered
moving patterns.

• We model the trajectories with STPPs, which can
learn continuous spatiotemporal moving dynamics
via neural differential equations.

• Extensive experiments on both synthetic and real
datasets show the expressiveness of our proposed
framework on both trajectory clustering and predic-
tive tasks.

2 Preliminaries

2.1 Problem Definition

Definition 1. Mobility Trajectory A mobility trajec-
tory is a sequence of spatiotemporal points generated by
an individual in daily life and recorded through GPS. It
is represented by a sequence of chronologically ordered
points S = {(ti,xi)}Li=1, where ti is the timestamp, xi

is the location, and L is the total length of the mobility
trajectory.

2.2 Background and Related Works
Spatiotemporal Point Processes [6] are concerned
with modeling sequences of random events in continuous
space and time. We denote an event sequence as S =
{(ti,xi)}Li=1, where ti ∈ R is the timestamp, xi ∈ Rd is
the associated spatial location at each timestamp, and
L is the total number of events. An STPP first defines
the conditional intensity function:

(2.1)

λ(t,x|St) = lim
∆t→0,∆x→0

p(ti∈[t,t+∆t],xi∈B(x,∆x)|St)
|B(x,∆x)|∆t ,

where St = {(ti,xi)|ti < t, (ti,xi) ∈ S} denotes the
history of events prior to time t, and B(x,∆x) denotes
a ball centered at x ∈ Rd and with radius ∆x. The
non-negative conditional intensity function λ(t,x|St),
often denoted as λ∗(t,x), describes the instantaneous
probability of the i-th event occurring at t and location
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Figure 2: The workflow of our proposed modeling and clustering framework.

x given i− 1 previous events. The joint log-likelihood of
observing the trajectory history S within a time interval
of [0, T ] is then given by

(2.2)

log p(S) =

L∑
i=1

log λ∗(ti,xi)−
∫ T

0

∫
Rd

λ∗(τ,u) dudτ.

Trajectory Clustering Methods aim to gain space
time insights inside trajectory data. Most clustering tech-
niques working on raw trajectories adopt predefined dis-
tance or similarity metrics such as the classic Euclidean,
Hausdorff and dynamic time warping (DTW) suited
to specific applications [2]. However, these methods
are ineffective due to the strong parametric assumption,
which fails to account for the complex spatiotemporal
associations underlying trajectories. Recent advances
have shifted towards deep learning approaches for tra-
jectory clustering [25, 8]. These techniques commonly
utilize autoencoder-based strategies, converting trajec-
tories into fixed-length vectors for clustering within a
bifurcated training process [13]. However, such clus-
tering methods are sensitive to small changes in the
learned features. A recent work provides an end-to-end
clustering algorithm considering temporal dynamics [28].
However, it only focuses on temporal data such as stocks
and clinic visits, without considering spatial modeling.
Another end-to-end trajectory clustering algorithm is
[26], but it transforms the trajectories with a description
of the POIs (as opposed to using raw GPS points in
our method) to cluster based on mobility purposes (e.g.,
shopping, eating).

In our work, we propose to learn trajectories based
on grouped moving dynamics where we operate on
GPS points localized in continuous time and space.
Therefore, our proposed framework tries to learn a better
trajectory representation by considering the continuous
characteristics of states in time and space and at the
same time, taking into consideration different moving
dynamics by clustering the trajectories based on the
dynamics.

3 Mobility-aware Deep Trajectory Modeling
and Clustering (DTMC)s

In this section, we present our DTMC approach, which
integrates trajectory representation learning and cluster-
ing. The workflow of our proposed framework is shown
in Fig. 2. More specifically, we present the variational
EM framework and explain how the probabilistic model
infers the cluster assignment (Section 3.1). We then
elaborate on how we learn spatiotemporal dynamics by
incorporating cluster embedding (Section 3.2) and fi-
nally summarize the training procedure that iteratively
updates the cluster embedding and spatiotemporal mod-
els for each cluster based on the cluster membership
(Section 3.2.2).

3.1 Trajectory Cluster Inference Given a set of
trajectories S = {Sn}Nn=1, where Sn = {(ti,xi)}Li=1 is a
sequence defined in Def 1, our goal is to divide these N
sequences into K groups such that the trajectories gen-
erated by similar spatiotemporal dynamics are grouped.
We assume for each Sn, there is a corresponding latent
variable zn ∈ {0, 1}K ,

∑K
k=1 znk = 1 denoting the clus-

ter membership i.e. znk = 1 if and only if Sn belongs to
group k. Each zn is drawn from a categorical distribu-
tion defined on π = [π1, ..., πK ] ∈ RK where π can be
a static prior on cluster types or drawn from a Dirich-
let distribution. Denoting the variable to represent the
distribution of cluster assignment as Z = {z1, · · · , zN},
and our goal is to both maximize the likelihood of the
data while also infer the latent variables Z.

Given the prior π, the conditional distribution of Z
is formed as: p(Z|π) =

∏N
n=1

∏K
k=1 π

znk

k where πk is the
k-th dimension of π. Given Z, we model the conditional
probability of S as:

(3.3) pθ(S|Z) =

N∏
n=1

K∏
k=1

pθ(Sn|k)znk ,

where θ denotes all the learnable parameters of the
model. For a trajectory Sn, we input it together
with cluster label k into the model, where we adopt a
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Figure 3: Illustration of the spatiotemporal modeling with
cluster embedding.

parametric latent embedding for each cluster and obtain
the conditional probability pθ(Sn|k). Thus, we can
factorize the joint distribution of all variables pθ(S,Z,π)
by

pθ(S,Z,π) = p(π)p(Z|π)pθ(S|Z)

= p(π)

N∏
n=1

K∏
k=1

[πk exp(

L∑
i=1

log λ∗
θ(ti,xi|k)

−
∫ T

0

∫
Rd

λ∗
θ(τ,u|k) dudτ)]znk .

(3.4)

3.2 Learning spatiotemporal Dynamics of Clus-
ter In this section, we elaborate on how to model the
trajectory and learn the conditional intensity function
λ∗(t,x|k) for cluster k so that pθ(S|Z) in Eqn. 3.3 can
be computed. Specifically, we decompose the conditional
intensity based on [5] as

(3.5) λ∗(t,x|k) = λ∗
t (t|k)︸ ︷︷ ︸

Temporal

λ∗
s(x|t, k)︸ ︷︷ ︸
Spatial

.

where λ∗
t (t|k) is the intensity function for temporal

process and λ∗
s(x|t, k) is the conditional intensity of

spatial location x at t given the past trajectory history.
Consequently, derived from Eqn. 2.2, we can compute
pθ(Sn|k) accordingly:

log pθ(Sn|k) =
L∑

i=1

log λ∗
t (ti|k)−

∫ T

0

λ∗
t (τ |k) dτ︸ ︷︷ ︸

Temporal log-likelihood

+

L∑
i=1

log λ∗
s(xi|ti, k)︸ ︷︷ ︸

Spatial log-likelihood

.

(3.6)

In the following, we will first introduce how we incorpo-
rate cluster latent embedding to get the hidden states

of a trajectory. These hidden states not only encapsu-
late the latent characteristics of a cluster but are also
informed by the trajectory data at each time point. We
show how to construct the model to learn the temporal
and spatial dynamics which will be jointly conditioned
on the hidden states. Fig. 3 shows the overall learning
process which we will explain in detail below.

3.2.1 Decomposing Hidden Variables To model
the conditional intensity function λ∗(t,x|k) for K
clusters respectively, we introduce cluster hidden states

h
(k)
1:L where we try to combine cluster latent information

with the representations learned from the temporal
dynamics and spatial dynamics together. Similar to
a recurrent neural network, where at every time point,

we acquire a hidden state h
(t)
1:L that acts as a summary

of the history trajectory and would be used to predict
future temporal and spatial variables ti and xi. We then
augment these representations for each step by adding
cluster embedding:

(3.7) h1:L = h
(k)
1:L + h

(t)
1:L.

3.2.2 Temporal Modeling After augmenting the
cluster embedding, we model hidden state dynamics
with jumps to parameterize the intensity function λ∗

t (t|k)
which has been proved effective in [9]. Specifically, we
apply the Neural ODE to ensure a continuous-time
hidden state and then trigger instantaneous updates
in response to the introduction of a new point. This
mechanism is essential because it not only captures the
continuous temporal pattern between each point, but
also allows historical points to influence future movement.
In summary, the continuous flow and instantaneous
update can be formulated as:

(3.8)
dhi

dt
= fh(ti,hi), lim

ε→0+
h
(t)
i+ε = gh (ti,xi,hi) ,

where fh is a multi-layer perceptron (MLP) modeling
the continuous evolution between event times, gh is a
gated recurrent unit (GRU) modeling the instantaneous

updates of the hidden states at event time, and h
(t)
i+ε

denotes the hidden state at time ti + ε. As a decoder of
the hidden representations, we use a standard multi-layer
fully connected neural network with a softplus activation

to ensure the intensity is positive. Thus, given h
(t)
1:L, the

conditional temporal intensity is computed as:

(3.9) λ∗
t (t1:L|k) = Softplus(MLP(h

(t)
1:L)).

3.2.3 Spatial Modeling Similar to temporal mod-
eling, a core component for modeling locations in the
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spatial domain is an interpolated continuous spatial in-
tensity function. We determine the spatial dynamic
based on Continuous Normalizing Flow (CNF) to model
the conditional spatial density p(x|t). In several recent
studies, CNFs have been prove effective to model distri-
butions on a real-valued axis such as spatial locations and
point clouds [15]. In the same way to temporal domain,
we want the spatial intensity function to be continuous
everywhere except for the observed point. Consequently,
the spatial pattern is updated by a continuous-time nor-
malizing flow that evolves the distribution continuously,
and a standard flow model that changes the distribu-
tion instantaneously after conditioning on new events.
Additionally, the update of the normalizing flow is condi-
tioned on h1:L (with cluster information included), with
the assumption that the trajectory history augmented
with cluster information has an impact on the future
spatial distribution. Such dynamics can be formulated
as follows:

(3.10)
dxi

dt
= fx(ti,xi,hi), lim

ε→0+
xi+ε = gx (ti,xi,hi) ,

where fx is modeled by a continuous normalizing flow,
gx is realized by a standard linear flow, and xi+ε denotes
the location at time ti + ε.

Since the spatial variables are real-valued features,
we parameterize the conditional spatial intensity x with
a Gaussian mixture model as:

(3.11) λ∗
s(x1:L|t1:L, k) = Nµk,Σk

(x1:L),

where µk and Σk are respectively the learnable mean
vector and the learnable covariance matrix of the
Gaussian distribution for the k-th cluster. The spatial
log-likelihood in Eqn. 3.6 can then be evaluated
accordingly.

3.3 Training Algorithm In this section, we explain
how we optimize and train the framework. We leverage
a variational EM framework, where the spatiotemporal
modeling learns the spatial and temporal intensity
function of each cluster to predict the joint log-likelihood
of the trajectory data, whereas we can infer cluster
assignment and get the posterior pθ∗(Z|S) based on
the spatiotemporal log-likelihood from each cluster. To
be more specific, the framework tries to maximize the
log-likelihood function pθ(S). As directly optimizing
the function is often hard, we resort to variational
methods and introduce a varational distribution q(Z,π)
to approximate the posterior pθ(Z,π|S), and thus the
framework instead optimizes the evidence lower bound
(ELBO) as below :

(3.12) L(q,θ) = log pθ(S)−KL(q(Z,π)||pθ(Z,π|S)).

Using mean field approximation [19], we have q(Z,π) =
q(Z)p(π). Therefore, we derive :

(3.13) L(q,θ) =
∫

q(Z)Ep(π)

[
log

pθ(S,Z|π)
q(Z)

]
dZ.

The ELBO can be optimized by alternating between
optimizing the variational distribution q(Z) (i.e., E-
step) to approximate the posterior and optimizing the
model parameters θ (i.e., M-step) such that log pθ(S) is
maximized to better characterize the trajectories.

3.3.1 E-step: Update Cluster Assignment In the
E-step, we fix the model parameters θ and aim to update
q(Z) to maximize the ELBO. The log of the optimized
q(Z) is given by:

log q∗(Z) =Ep(π) log pθ(S,Z|π)

=

N∑
n=1

K∑
k=1

znk{Ep(π)[log πk] + log pθ(Sn|k)}.

(3.14)

Normalizing the above formulation, we obtain:

(3.15) q∗(Z) =

N∏
n=1

K∏
k=1

rznk

nk ,

where rnk =
exp(Ep(π)[log πk]+log pθ(Sn|k))∑K

κ=1 exp(Ep(π)[log πκ]+log pθ(Sn|κ))
is the

pseudo-label.
As q(Z) is an approximation of pθ(Z|S), when the

model is well-trained, pθ∗(znk = 1|Sn) = rnk, i.e. the
posterior probability that Sn in group k is rnk.

3.3.2 M-step: Update Model Parameters In M-
step, we fix q(Z), and optimize L(q,θ) with respect to
θ. Since θ are learnable parameters of the model, we
optimize θ via gradient descent with the loss function
given by :

(3.16)

L(θ) = Eq(Z)[log pθ(S|Z)] =

N∑
n=1

K∑
k=1

rnk log pθ(Sn|k).

4 Experiments

To understand different moving patterns in trajectories
and validate our hypothesis that capturing the underly-
ing moving dynamics can help with trajectory modeling,
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we conduct experiments on both the task of trajectory
clustering (Section 4.4 and 4.5) and trajectory modeling
(Section 4.6) to evaluate the performance of DTMC.

4.1 Dataset Synthetic Datasets We use two types
of traditional STPPs (with different parameters) to sim-
ulate three different moving patterns (moving differently
in both temporal and spatial domain)1: Spatiotemporal
homogeneous Poisson process (STHP), and Spatiotem-
poral Hawkes process with gaussian diffusion kernel
(STHG) with two different parameter settings (labeled
as STHG1 and STHG2 to represent different moving
patterns with similar behavior in temporal axis but dif-
fer significantly in spatial distributions). Additionally,
we generate a moving pattern based on the “uniform
walk assumption”, where an agent consistently moves
at a uniform speed (UNI). All trajectory simulations
are defined within S × T = [0, 2]2 × [0, 10]. Each mov-
ing dynamics has 1000 event sequences, each containing
L = 25 points. We merge the above trajectories to
generate three datasets with different number of clus-
ters (K) as ground truth: K = 2: STHP + STHG1;
K = 3: STHP + STHG1 + STHG2; K = 4: STHP +
STHG1 + STHG2 + UNI. In this way, we generate the
synthetic datasets to mimic the situations in real-world
where different moving patterns of trajectories are mixed
together.
Real-world datasets We evaluate the performance of
DTMC on real-world datasets where the trajectories are
specified as a list of tuples of: user identifier, latitude
and longitude, and timestamp. We collect mobility
trajectories in Houston from Veraset2, which provides
movement data collected through GPS signals from cell
phones in March 2020. We sample 1,000 trajectories due
to the large data size. Another real-world dataset [23]
was collected from Foursquare, Tokyo, which includes
1000 user check-ins within a duration of one month.

4.2 Compared Methods To evaluate the clustering
ability of DTMC, we compare our model with three types
of baselines: clustering-only, modeling-then-clustering,
and concurrent-modeling-clustering. Later, for evalu-
ating the modeling accuracy, we combine some of the
baseline approaches to create clustering-then-modeling
approaches for comparison.

The clustering-only methods extract features from
trajectories and then apply clustering on them. KM-
RAW uses raw trajectory as input and applies K-means3

clustering with Euclidean distance. KM-DTW [14]

1https://github.com/meowoodie/spatiotemporal-Point-

Process-Simulator
2https://www.veraset.com/about-veraset
3https://scikit-learn.org/stable/

calculates distance matrix using Dynamic Time Warping
(DTW) distance4 and subsequently apply K-means
clustering on sequential data. DBSCAN employs a
density-based clustering approach [17] to cluster the raw
trajectories. GMVAE [7] applies a Gaussian Mixture
Variational Autoencoder for unsupervised clustering. We
develop the encoder and decoder with GRU [4] layers to
work with sequences (without modeling the continuous
spatiotemporal dynamics in the network). GMVAE+
a variant of GMVAE, where we introduce a supervised
loss into GMVAE to align its cluster results with those
produced by K-means aligning with our algorithm which
is pre-trained with K-means cluster results.

Modeling-then-clustering baselines model trajecto-
ries using traditional STPP model and apply clustering
on the model parameters. HPGM +BGM [28] learns
a specific Hawkes process for the temporal domain and
applies a history-dependent Gaussian mixture model
for the spatial domain and applies Bayesian Gaussian
Mixture model to the learned parameters for clustering.

Concurrent-modeling-clustering baseline models tra-
jectories using neural network and perform clustering
simultaneously. THP-EM [29]. THP leverages the
Transformer encoder for temporal point process rep-
resentation learning. In the original work, THP was
limited to learning the representation for sequences with
continuous time only (without proper spatial modeling).
We discretize our spatial points into 10×10 grids and use
grid IDs as markers. For the K clusters, we initialize K
different THP models and then apply the EM algorithm
to learn the cluster assignment [28].

4.3 Evaluation Metrics To evaluate the clustering
ability, we use three clustering metrics that are widely
used: Clustering Purity (CP) [3]: The ratio between
the number of correctly matched class samples and the
number of total data points. Adjusted Rand Index
(ARI): The similarity of predicted and ground truth
assignments. [20] Normalized Mutual Information
(NMI): The reduction in entropy of class labels when
the cluster labels are given. Note that CP, ARI, and NMI
only work when the ground-truth cluster assignments are
known, which is only available for synthetic datasets. For
real-world datasets, since the ground truth clustering
assignment is unknown, we report silhouette score
[18] based on the clustering results and calculate the
Euclidean distance on the raw trajectories.
Learning Performance To evaluate the learning
ability, we report Log-likelihood as the metric for
trajectory sequences fitting (the higher, the better) [28].
We randomly split the data set into training (80%) and

4https://github.com/maikol-solis/trajectory distance

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited



Dataset K = 2 K = 3 K = 4

CP ↑ ARI ↑ NMI ↑ CP ↑ ARI ↑ NMI ↑ CP ↑ ARI ↑ NMI ↑
KM-RAW 0.91 0.71 0.60 0.65 0.41 0.42 0.71 0.54 0.57
KM-DTW 0.83 0.65 0.61 0.66 0.42 0.43 0.62 0.38 0.47
DBSCAN 0.84 0.47 0.50 0.63 0.45 0.50 0.54 0.30 0.40

HPGM+BGM 0.62 0.05 0.11 0.41 0.07 0.03 0.35 0.05 0.04
GMVAE 0.75 0.41 0.36 0.60 0.28 0.27 0.50 0.23 0.29
GMVAE+ 0.76 0.43 0.38 0.66 0.32 0.41 0.67 0.41 0.43
THP-EM 0.92 0.72 0.70 0.65 0.40 0.42 0.72 0.55 0.58

DTMC 0.97 0.88 0.83 0.73 0.48 0.51 0.77 0.61 0.63

Table 1: Cluster performance comparison of our model and baselines on the synthetic datasets, where the lower value
indicates a better performance. Bold denotes the best(highest) results and the underline denotes the second-best results.

DBSCANKM-RAW OursGMVAE+ THP-EM

Figure 4: Confusion matrix on synthetic dataset when K = 4.

testing sets (20%), where we train the model on the
training set and report log-likelihood on spatial and
temporal domains separately on held-out test data.

4.4 Clustering Performance on Synthetic
Dataset We assume that the ground truth K and clus-
ter size distribution π is given in the synthetic dataset
evaluation. As we can observe in Table 1, the modeling-
then-clustering baseline HPGM+BGM performs worst
among all metrics. This is because it assumes all the
trajectories strictly follow parametric Hawkes processes,
which does not match reality. Additionally, it employs
a two-step process for feature extraction and clustering,
where each step is relatively independent. GMVAE and
GMVAE+ outperforms HPGM+BGM significantly. It
is reasonable as these two methods fit trajectories with
the neural network and provide an end-to-end clustering
framework. However, the backbones of both versions of
GMVAE are simple RNNs that lack proficiency in model-
ing trajectories with GPS points in continuous time and
space. THP-EM achieves the second-best performance,
possibly reflecting its ability to discern diverse movement
patterns presented in temporal space. Overall, DTMC
achieves significant improvement across various datasets,
which demonstrates the expressiveness of our clustering
framework. We further verify our assumption by visual-
izing the confusion matrix of selected models on K = 4
in Fig. 4. Note that although most methods (including
ours) effectively distinguish STHP and UNI due to their
significantly distinct temporal and spatial movement pat-
terns, our method excels in differentiating STHG1 and

Houston Foursquare

Figure 5: Silhouette score on real-world dataset. The higher
value represents a better cluster quality.

STHG2, where these two moving patterns are simulated
under same parameters in temporal domain but with
different parameters for spatial distributions. It proves
the importance and necessity of modeling trajectories as
STPP to accurately learn the inherent moving patterns.

4.5 Clustering Performance on Real-World
Dataset For real-world datasets, we calculate the silhou-
ette score on the clusters generated from each method.
Fig. 5 shows the comparison results of two real-world
datasets. Overall, DTMC exhibits superior performance,
indicating that its generated clusters are distinctly sep-
arated from one another. K-means ranks second. This
is not surprising as we directly calculate the silhouette
score based on Euclidean distance on raw trajectories,
consistent with how K-means perform the clustering.
However, note that the purpose of the clustering is not
necessarily to group the trajectories that are similar in
Euclidean distance but on how well each group can be
modeled later. Towards this end, in the next section, we
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STHP STHG1 STHG2 UNI

Model Temporal Spatial Temporal Spatial Temporal Spatial Temporal Spatial

Single STTP-model 0.603 -2.925 0.179 -2.064 0.136 -2.345 -0.181 -0.334

Clustering-then-modeling (K-Means) 0.613 -2.72 0.213 -1.944 0.148 -2.323 0.601 -0.177

Clustering-then-modeling (GMVAE+) 0.608 -2.715 0.203 -1.945 0.154 -2.329 0.604 -0.174

THP-EM 0.615 – 0.210 – 0.151 – 0.619 –

DTMC 0.649 -2.530 0.243 -1.733 0.218 -2.051 0.637 -0.135

Table 2: Log-likelihood per event on synthetic dataset (higher is better).

compare the modeling quality of the clusters.

4.6 Representation Learning Performance via
Log-likelihood Our main thesis in this paper is that
segregating trajectories into groups based on shared
spatiotemporal dynamics would enhance the accuracy
of trajectory modeling. In this section, we report
log-likelihood to verify this claim and evaluate the
effectiveness of our approach. In order to show the
benefits of utilizing the clusters for the trajectory
modeling, we compare DTMC with three types of
learning methods: 1) Modeling-only: Single STPP-
model where we do not cluster the trajectories and
only apply a single STPP model on all trajectory
data; 2) Clustering-then-modeling: here we first cluster
trajectories with either K-means or GMVAE+5 and then
trainK different STPP models on each cluster separately.
The GMVAE+ variation represents a clustering approach
that specifically clusters for better modeling while K-
Means represents methods that clusters for similarity.
3) Concurrent-clustering-modeling: THP-EM where
we apply the same EM algorithm to learn the cluster
assignment and report learning in the temporal domain.

Table 2 reports log-likelihood evaluation on the syn-
thetic datasets. As we can observe, Single STPP-model
performs the worst since it does not group trajectories
and thus must capture different moving dynamics us-
ing a single set of model parameters. THP-EM ranks
second in the temporal learning performance as it also
efficiently capture the underlying group patterns in tem-
poral domains. However, it does not outperform our
model in the temporal domain, suggesting that model-
ing temporal distribution without conditioning on the
space attributes hampers comprehensive temporal do-
main learning. Our DTMC approach achieves the best
performance in all cases, which demonstrates the power
of clustering trajectories for the purpose of better learn-
ing. The results also show that the relative performance

5Since the original GMVAE+ network cannot be directly used

for prediction and log-likelihood valuation, we utilize the clustering
result of GMVAE+ and then train STPP for each cluster

Houston Foursquare

Model Temporal Spatial Temporal Spatial

Single ST-model 0.627 1.336 2.013 -2.115

Clustering-then-modeling (K-Means) 0.823 1.349 2.075 -1.939

Clustering-then-modeling (GMVAE+) 0.813 1.356 2.063 -1.936

THP-EM 0.836 – 2.076 –

DTMC 0.881 1.423 2.082 -1.912

Table 3: Log-likelihood per event on real-world data.

gain of our method is more obvious with datasets with
more complex spatiotemporal dynamics patterns such
as STHG1 and STHG2, which would be more useful in
practical applications.

For real-world datasets, where the ground truth
number of clusters (K) is unavailable, we employ K-
means clustering on the trajectories and apply elbow
method [1] to determine the best choice of K (6 for
Houston and 4 for Foursquare, respectively). Table
3 reports the corresponding log-likelihood. Similar
to synthetic datasets, we observe that the explicit
clustering of moving patterns can significantly boost the
performance of modeling the spatiotemporal dynamics
of trajectories.

5 Conclusion

Real-world trajectories are governed by different under-
lying moving dynamics. Capturing groups of similar
trajectories during the learning process enhances the
quality of trajectory representation for predictive anal-
ysis. In this paper, we proposed a novel deep learning
framework, DTMC, that can concurrently clusters and
models trajectories based on their inherent moving pat-
terns. Extensive experiments demonstrate the superior
performance of DTMC in differentiating trajectory mov-
ing patterns and representation learning as compared
to various baseline methods that follow a sequential
clustering-then-modeling or modeling-then-clustering ap-
proach. Moreover, it surpasses approaches that project
trajectories into discrete space, resulting in the loss of
detailed spatial and temporal characteristics. In future
research, we aim to expand the application of our model
across diverse datasets and and utilize the model to gen-
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erate synthetic datasets with different moving patterns.
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