Echo of Neighbors: Privacy Amplification for Personalized Private Federated Learning with Shuffle Model

Yixuan Liu1,2,3, Suyun Zhao1,2,3, Li Xiong4, Yuhan Liu1,2,3, Hong Chen1,2,3*

1 Key Laboratory of Data Engineering and Knowledge Engineering of Ministry of Education, Renmin University of China
2 Engineering Research Center of Ministry of Education on Database and BI
3 Information School, Renmin University of China
4 Department of Computer Science, Emory University
\{liuyixuan, zhaosuyun\}@ruc.edu.cn, lxiong@emory.edu, \{liuy2019, chong\}@ruc.edu.cn

Abstract

Federated Learning, as a popular paradigm for collaborative training, is vulnerable against privacy attacks. Different privacy levels regarding users’ attitudes need to be satisfied locally, while a strict privacy guarantee for the global model is also required centrally. Personalized Local Differential Privacy (PLDP) is suitable for preserving users’ varying local privacy, yet only provides a central privacy guarantee equivalent to the worst-case local privacy level. Thus, achieving strong central privacy as well as personalized local privacy by leveraging the privacy amplification effect of the shuffle model. To tighten the privacy bound, we quantify the heterogeneous contributions to the central privacy user by user. The contributions are characterized by the ability of generating “echos” from the perturbation of each user, which is carefully measured by proposed methods Neighbor Divergence and Clip-Laplace Mechanism. Furthermore, we propose a refined framework (S-APES) with the post-sparsification technique to reduce privacy loss in high-dimension scenarios. To the best of our knowledge, the impact of shuffling on personalized local privacy is considered for the first time. We provide a strong privacy amplification effect, and the bound is tighter than the baseline result based on existing methods for uniform local privacy. Experiments demonstrate that our frameworks ensure comparable or higher accuracy for the global model.

Introduction

Federated Learning (FL) (McMahan et al. 2017) is an emerging machine learning paradigm that allows multiple clients to train a global model collaboratively while keeping the private raw data of each client locally. While not directly sharing private data, recent works indicate that FL by itself is insufficient to preserve privacy of users’ data. By observing the global model or intermediate parameters during the training process, adversaries can infer the membership of users or even reconstruct training records (Fredrikson, Jha, and Ristenpart 2015; Zhu, Liu, and Han 2019; Nasr, Shokri, and Houmansadr 2019; Xiong et al. 2021). These attacks can lead to severe data leakage, hence it is necessary to provide additional protection with strict privacy guarantees for both the global model and local parameters. Moreover, in practice, different local privacy levels may be desired depending on users’ privacy preferences. A one-size-fits-all approach would either downgrade the model utility or sacrifice privacy protection for certain users. Thus, an open problem in FL is how to provide strong central privacy as well as personalized local privacy while maintaining model utility.

Several recent works have attempted to address this problem. Personalized Local Differential Privacy (PLDP) protects both local gradients and the global model by perturbing gradients with heterogeneous parameters (Chen et al. 2016; Li et al. 2020; Shen, Xia, and Yu 2021). The central privacy of the global model is equivalent to the weakest local privacy. For achieving both strong central and local privacy, a potential solution is the shuffle model (Bittau et al. 2017). It amplifies central privacy by permuting data points randomly after local perturbation. However, existing studies on shuffle model only focus on the scenarios where local privacy requirements are assumed uniform (Uni-Shuffle for short) (Erlingsson et al. 2019; Balle et al. 2019; Girgis et al. 2021; Feldman, McMillan, and Talwar 2022). To the best of our knowledge, there is no work that provides both strong central privacy for the global model and personalized local privacy guarantees, while achieving strong utility of global model (cf. Tab. 1).

To narrow this gap, we propose APES, a privacy amplification framework for personalized private federated learning with Shuffle model (cf. Fig. 1). APES gains a strong

<table>
<thead>
<tr>
<th>Methods</th>
<th>Personalization</th>
<th>FL Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLDP</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Uni-Shuffle</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>APES</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>S-APES</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 1: Comparison of related work. ✓ denotes protected, X denotes unprotected.
privacy amplification effect. Unlike previous works that just permute data, both data points and privacy parameters are randomly shuffled in APES. Clip-Laplace Mechanism is also introduced to implement the framework without damaging model utility. In order to mitigate the privacy-loss explosion problem caused by high dimensions, we propose S-APES which improves APES with the post-sparsefication. The basic idea is to select only informative dimensions of gradients after perturbation and pad the rest, which saves privacy cost.

To bound the privacy of APES and S-APES, we carefully quantify the obfuscation effects contributed by users with heterogeneous privacy parameters. First, inspired by Feldman, McMillan, and Talwar, the central privacy of a specific user is boosted by the rest of the users who generate “echos” of her with heterogeneous probabilities; next, to measure the probabilities, we propose Neighbor Divergence and Clip-Laplace Mechanism for limited output range and bounded divergence among distinct output distributions by users’ local randomizers; then “echos” are transformed into certain form, and a tight privacy bound is derived.

Our main contributions are summarized as follows:

(i) We propose privacy amplification frameworks via shuffle model for personalized private federated learning. APES strikes a better balance between central privacy and model utility with Neighbor Divergence and Clip-Laplace Mechanism. Based on it, improved S-APES enhances the privacy for the high-dimension scene.

(ii) We provide theoretical analysis for both privacy and convergence bound of the proposed frameworks. To the best of our knowledge, the shuffling effect on personalized local differential privacy is considered for the first time and a strong privacy amplification effect is yielded. The central privacy bound is tighter than the bound derived by naively adopting existing methods for unified privacy.

(iii) Comprehensive experiments are conducted to confirm that APES and S-APES achieve comparable or higher accuracy for the global model with stronger central privacy compared to the state-of-the-art methods without downgrading personalized local privacy guarantee.

Preliminaries

In this section, we illustrate the privacy definition, shuffle model and several properties of differential privacy, all of which are prepared for the proposed methods.

Central and Local Differential Privacy

Differential privacy (DP) (Dwork, Roth et al. 2014) is a de facto standard that is widely accepted to preserve privacy in FL. The notion is typically built up in a central setting where a trusted server can access the raw data. Local differential privacy (LDP) (Erlingsson, Pihur, and Korolova 2014), on the other hand, offers users a stronger privacy guarantee for the settings without assumption of trusted server.

Definition 1 (Differential Privacy) For any $\epsilon, \delta \geq 0$, a randomized algorithm $M : \mathcal{D} \rightarrow \mathbb{Z}$ is (ϵ, δ)-differential privacy if for any neighboring datasets $D, D' \in \mathcal{D}$ and any subsets $S \subseteq \mathbb{Z}$,

$$\Pr[M(D) \in S] \leq e^\epsilon \Pr[M(D') \in S] + \delta$$

Definition 2 (Local Differential Privacy) For any $\epsilon, \delta \geq 0$, an algorithm $M : \mathcal{D} \rightarrow \mathbb{Z}$ is (ϵ, δ)-local differential privacy if for any $g, g' \in \mathcal{D}$ and $\forall z \in \mathbb{Z}$,

$$\Pr[M(g) = z] \leq e^\epsilon \Pr[M(g') = z] + \delta$$

Shuffle-based Privacy

Shuffle model (Bittau et al. 2017) was proposed to strengthen central privacy while preserving local user privacy. Given n datapoints as the dataset $D = \{g_1, g_2, ..., g_n\}$, each $g_i \in D$ owned by user i is perturbed locally by a randomizer $M : \mathcal{D} \rightarrow \mathbb{Z}$ to ensure (ϵ^l, δ^l)-LDP before being sent to shuffler. Shuffler, a trusted third party, permutes and releases all the datapoints by algorithm $S : Z \rightarrow Z$ to analyzer. Untrusted analyzer aggregates all the datapoints. The process $P = S \circ M$ satisfies at least (ϵ^l, δ^l)-DP against analyzer (cf. Lemma 1). Recent works (Erlingsson et al. 2019; Balle et al. 2019; Girgis et al. 2021; Feldman, McMillan, and Talwar 2022) achieve a much stronger central privacy guarantee, which is considered as privacy amplification effect by shuffling. Among existing works, Feldman, McMillan, and Talwar provides a tight privacy upper bound for single-message summation. Take neighboring datasets D and D' that only differ at g_i (or g'_i), any perturbed datapoint \tilde{g}_i can be regarded as a sampling from the distribution of a specific perturbed point \tilde{g}_i or \tilde{g}'_i with probability $\exp(-\epsilon^l)$. By this observation, the privacy bound is yielded.

Privacy Tools

As a general technique to implement DP, Laplace Mechanism (Dwork, Roth et al. 2014) perturbs numerical values.

Definition 3 (Laplace Mechanism) Given any function $f : \mathcal{D} \rightarrow \mathbb{Z}^d$ and neighboring datasets D and D', let $\Delta f = \max |f(D) - f(D')|$, be the sensitivity function, Laplace mechanism $M(D) = f(D) + Y^d$ satisfies ϵ-DP, where Y^d is random variable i.i.d drawn from distribution $\text{Lap}(0, \Delta f/\epsilon)$.

Composition theorems provide tight bounds for the algorithm combined with several DP blocks.
Lemma 1 (Parallel Composition) (Yu et al. 2019) Given an \((\epsilon_i, \delta_i)\)-DP algorithm \(M_i : \mathcal{D} \rightarrow \mathcal{Z}\) for \(i \in [m]\), a class of \(\{M_i\}_{i \in [m]}\) on disjoint subsets of \(\mathcal{D}\) is \((\max \epsilon_i, \max \delta_i)\)-DP.

Lemma 2 (Advanced Composition) (Dwork, Roth et al. 2014) Given an \((\epsilon_i, \delta_i)\)-DP algorithm \(M_i : \mathcal{D} \rightarrow \mathcal{Z}\) for \(i \in [m]\), the sequence of \(\{M_i\}_{i \in [m]}\) on the same dataset \(D\) under \(m\)-fold composition is \((\epsilon', \delta' + m\delta)\)-DP where \(\epsilon' = \sqrt{2m} \log 1/\delta' + mc(\epsilon' - 1)\).

No matter what dataset or query is adopted, any privacy mechanism can be reduced to a basic random response with the same privacy level (Kairouz, Oh, and Viswanath 2015).

Lemma 3 (Degraded Privacy) For any \(\epsilon\)-DP mechanism \(M\), for \(X : \{x, \bar{x}\}, \exists M\) dominates \(M\) where:

\[
\Pr[M(x) = z] = \begin{cases} \frac{e^{-\frac{|z-x|}{\epsilon}}}{1 + e^{-\frac{|\bar{x}-x|}{\epsilon}}}, & z = x \\ \frac{e^{-\frac{|\bar{x}-x|}{\epsilon}}}{1 + e^{-\frac{|z-x|}{\epsilon}}}, & z = \bar{x} \end{cases}
\]

Proposed Methods

This section illustrates our methods for a strong privacy amplification effect. We first introduce Clip-Laplace Mechanism to implement the effect. Then two frameworks are proposed. APES is a general framework which shuffles both privacy parameters and gradients, the improved S-APES sparsifies dimensions without downgrading shuffling effect.

Clip-Laplace Mechanism

To make bounding privacy while maintaining model accuracy possible, it is necessary to introduce a mechanism for LDP with a finite and fixed output range. Existing works on this task provide non-fixed output ranges (Geng et al. 2018), or increase noise scale when ranges of input and output are not overlapped (Holohan et al. 2018; Croft, Sack, and Shi 2022). To address this issue, we introduce a variant of Laplace Mechanism, Clip-Laplace, which provides \(\epsilon\)-DP for continuous real values with the same finite output ranges.

Definition 4 (Clip-Laplace Mechanism) Given any function \(f : X \rightarrow \mathcal{Y}\) and sensitivity \(\Delta f = \max |f(X) - f(X')|\) for any neighboring datasets \(X\) and \(X'\). Clip-Laplace Mechanism is \(M : \mathcal{Y}^{d} \rightarrow \mathcal{Z}^{d}\). Each \(Z \in \mathcal{Z}^{d}\) is a r.v. i.i.d. drawn from distribution \(CLap(f(x), \lambda, A)\) of which the probability density function is defined as follows:

\[
p(z) = \begin{cases} \frac{1}{S A^{d}} \exp (-\frac{|z-f(x)|}{\lambda A}), & -A < z < A \\ 0, & \text{otherwise} \end{cases}
\]

where normalization factor \(S = 1 - \frac{1}{2} \exp(-\frac{A-f(x)}{\lambda A}) - \frac{1}{2} \exp(-\frac{A+f(x)}{\lambda A})\) and \(A \geq \Delta f/2\).

Theorem 1 Clip Laplace mechanism preserves \(\epsilon\)-LDP when the \(f(x) \in [-\Delta f/2, \Delta f/2]\), and \(\lambda = \Delta f/\epsilon\).

The proof is provided in Appendix A.

Discussion. (i) When achieving the same level of \(\epsilon\)-LDP, the variance of Clip-Laplacian outputs is smaller than classic Laplacian outputs. This property is based on the assumption of symmetric limited range of inputs (cf. Theorem 1), which is reasonable for many fields such as gradients aggregation, location statistics, financial analysis and so on. (ii) The Clip-Laplacian outputs are biased. A feasible solution for correction is to calibrate the outputs with the expectation, which can be estimated when privacy parameters are given.

APES Framework

We formalize APES, a privacy Amplification framework for PEersonalized private federated learning with Shuffle Model. The framework includes three procedures: local updating, shuffling and analyzing process with three parties separately. Convergence upper bound of APES is given at last.

Architecture

Consider 3 parties: (i) \(n\) users, each holds a dataset \(X_i\) and a randomizer \(M_i\) satisfying \(\epsilon_i\)-LDP. (ii) A shuffler with algorithm \(S\). (iii) An analyzer, trains global model with shuffled messages. The process \(P = S \circ M\) ensures \((\epsilon', \epsilon_i)\)-DP for global model, where \(M = (M_1, ..., M_n)\) with \(\epsilon' = (\epsilon_1', ..., \epsilon_n')\) for dimension level.

Basic Framework

Algorithm 1 outlines the procedures of APES. We denote clip bound by \(C\), learning rate by \(\alpha\) and training epochs by \(T\). Main procedures are as follows:

- **Local Updating.** Each user randomizes each dimension of model gradient \(g_i\) with \(\epsilon_i\) by applying Clip-Laplace Mechanism. Both perturbed gradient \(\tilde{g}_i\) and \(\epsilon_i\) are sent to Shuffler. To keep the order of dimensions, dimension index \(k\) of \(\tilde{g}_i\) is sent as well.

- **Shuffling Process.** Shuffler shuffles \(\{\tilde{g}_i\}_{i \in [n]}\) within the same dimension. \(\{\epsilon_i\}_{i \in [n]}\) is also permuted.

- **Analyzing Process.** Considering Clip-Laplace Mechanism is biased, the average gradient \(\bar{g}\) needs to be calibrated. We cannot calibrate \(\bar{g}\) one by one as the correspondence of \(\epsilon_i\) and \(g_i\) is invisible to analyzer. Empirically, we observe that the value of \(\bar{g}\) is close to the value of \(\mathbb{E}[\tilde{g}]\) (cf. Fig. 4 in Appendix C), where \(\bar{g} = \frac{1}{n} \sum_{i=1}^{n} g_i, \mathbb{E}[\tilde{g}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\tilde{g}_i]\) and \(\tilde{g}_i \sim CLap(g_i, 2C/\epsilon_i, C)\). Hence we can estimate the clean gradients \(\hat{g}\) by approximating \(\mathbb{E}[\tilde{g}]\) with \(\mathbb{E}[\hat{g}]\). Specifically, \(\mathbb{E}[\hat{g}]\) is estimated by \(\tilde{g}\), and each term of \(\mathbb{E}[\tilde{g}]\) with \(\epsilon_i\) is as follows:

\[
\mathbb{E}[\tilde{g}_i] = \frac{(C + \lambda_i) \cdot (e_1 - e_2) + 2\bar{g}}{2 - e_1 - e_2} = e_1 - \frac{C - \bar{g}}{\lambda_i} = e_1 - \frac{C - \bar{g}}{a_i}
\]

Convergence Analysis

To demonstrate the performance of global model under Clip-Laplace perturbation, we provide the upper bound of convergence of Algorithm 1 with the objective function \(h(w; w^{(0)}) = F(w) + \frac{\mu}{2} ||w - w^{(0)}||^2\). The regularization term \(\frac{\mu}{2} ||w - w^{(0)}||^2\) of \(h\) is introduced for the ease of calculation (Li et al. 2020).

Theorem 2 (Convergence Upper Bound) After \(T\) aggregations, the expected decrease in the global loss function \(f(w) = \frac{1}{n} \sum_{i} F_i(w)\) of APES is bounded as follows:

\[
\mathbb{E}[f(\hat{w}^{(T)}) - f(w^*))] \leq a_1 \mathbb{E}[f(\hat{w}^{(0)}) - f(w^*))
\]

\[
+ \frac{a_1^2 - 1}{a_1} (O(\alpha_2 C/\min(\epsilon_i)) + O(\alpha_3 C^2/\min(\epsilon_i)^2))
\]

where \(a_1 = 1 + \frac{2\alpha B^{(1-1)}}{\mu^2} + \frac{2\alpha B (\alpha + 1)}{\mu^2} + \frac{2\alpha B L^2 (1 + \alpha)}{\mu^2} a_2 = L \left(\frac{1}{\mu} + \frac{B L (1 + \alpha)}{\mu^2} \right), a_3 = L / 2\).
Algorithm 1: Basic Framework: APES

Input $T, \{(X_i, e_i^t)\}_{i \in [n]}, h(w), C, \alpha$.

Output model w

Analyzer initializes and broadcasts $w^{(0)}$.

for $t = 1, 2, ..., T$ do
 ▶ Local Updating
 for each user $i \in [n]$ do
 $w_i^{(t)} \leftarrow w^{(t)}$ ▶ Update local model
 $g_i \leftarrow \nabla_w h(w_i, X_i)$
 $\hat{g}_i \leftarrow \text{Clip}(g_i, -C, C)$
 $\hat{g}_i \leftarrow \text{Randomize}(\cdot)$ ▶ Local perturbation

 user i uploads (\hat{g}_i, e_i^t) to Shuffler

 ▶ Shuffling Process
 for each dimension $k \in [d]$ do
 generate permutation π_k over $[d]$
 $\{(\hat{g}_i, \pi_k(k), k)\}_{i \in [n]} \leftarrow \text{Shuffle}(\pi_k, \{(\hat{g}_i, k)\}_{i \in [n]})$
 generate permutation π over $[n]$
 $\{e_{\pi(i)}\}_{i \in [n]} \leftarrow \text{Shuffle}(\pi, \{e_i\}_{i \in [n]})$ ▶ Shuffle ϵ
 send $\{(\hat{g}_i, \pi(k), k)\}_{i \in [n]}$ to $\text{Shuffle}(\pi)$ and $\{e_{\pi(i)}\}_{i \in [n]}$

 ▶ Analyzing Process
 for each dimension $k \in [d]$ do
 $\tilde{g}_k \leftarrow \frac{1}{n} \sum_i \hat{g}_{i,k}$ ▶ Aggregate by dimension
 $\hat{g} \leftarrow \text{Calibrate}(\tilde{g}_i, e_i)_{i \in [n]}$
 $w^{(t+1)} \leftarrow w^{(t)} - \alpha \hat{g}$ and broadcast.

return $w^{(T)}$

The proof refers to Appendix B.

Discussion. The convergence upper bound increases as the bias and variance (the second and the third term) of Clip-Laplace perturbation grow, of which the influence is the same as classic Laplace Mechanism.

S-APES Framework

To strengthen privacy in the high-dimension scenario, we propose S-APES framework, which improves APES with post-sparsification technique.

Since gradients are usually high-dimensional, limiting the number of dimensions helps to save the privacy cost (Ye and Hu 2020; Duan, Ye, and Hu 2022). Selecting part of dimensions with large magnitude keeps majority of information (Aji and Heafield 2017) and reduces privacy loss, but needs extra protection since the selection itself is data-dependent process. To select informative dimensions without breaching privacy, we propose post-sparsification technique.

Post Sparsification

Algorithm 2 demonstrates the local process of S-APES with post-sparsification. Concretely, each user i is asked to select the largest b absolute values over d dimensions of \hat{g}_i. To keep the selected dimension index private, the selection is executed after local perturbation. For avoiding the shuffling effect degradation caused by members reduction, each user pads the rest of $(d-b)$ dimensions with perturbed 0. Denote sparsification process by K, the whole process of S-APES is defined as $P_s = S \circ K \circ M$.

Algorithm 2: Randomize(\cdot) for S-APES

Input $\{((g_i, e_i)\}_{i \in [n]}, C$.

Output perturbed gradient \tilde{g}_i

$\tilde{g}_i \leftarrow \text{CLap}(0, (d\Delta_f)/\epsilon_i, C)$ ▶ Clip-Laplace perturbing

for each index $k \notin I_b$ do
 $\tilde{g}_{i,k} \leftarrow \text{CLap}(0, (d\Delta_f)/\epsilon_i, C)$ ▶ Dummy padding

return \tilde{g}_i

Privacy Analysis

In this section, we first derive a naive privacy bound based on existing works, then show the local and central privacy bound of our frameworks. The sketch of privacy amplification effect analysis is provided at last.

Baseline Results

To analyze the privacy amplification effect of shuffling under personalized LDP, the most naive way is applying existing shuffling bounds (Erlingsson et al. 2019; Balle et al. 2019; Girgis et al. 2021; Feldman, McMillan, and Talwar 2022) on heterogeneous local privacy budgets, i.e., ϵ_i, with classic Laplace Mechanism. However, different ϵ_i lead to different scales of the Laplacian distributions and their divergence may be infinite. As a result, the central privacy may be unbounded. Hence based on the previous work (Feldman, McMillan, and Talwar 2022) we can only approximate the true bound by using the same maximum ϵ_i for all users:

$$
\epsilon^c \leq \ln\left(1 + \frac{e^{\max(\epsilon_i)} - 1}{e^{\max(\epsilon_i)} + 1} \left(8\left(e^{\max(\epsilon_i)} \log(4/\delta_i)\right)^{1/2} + 8e^{\max(\epsilon_i)}\right)\right)
$$

(2)

Main Results

Proposed techniques Clip-Laplace Mechanism and Neighbor Divergence make analyzing privacy amplification effect possible. Without loss of generality, we suppose two neighboring datasets $D = \{g_1, g_2, ..., g_n\}$ and $D' = \{\tilde{g}_1, g_2, ..., g_n\}$ that only differs at g_1 or g_i' of user 1, and provide privacy bounds of our frameworks as follows.

Theorem 3 (Local Bound) Given $\epsilon_i = (\epsilon_i', ..., \epsilon_i'')$, the local process $M = (M_1, ..., M_n)$ of APES on d-dimension gradients satisfies ϵ_i'-LDP in dimension level, $d\epsilon_i'$-LDP in user level for each user i.

Discussion. Our frameworks achieve personalized LDP for each user. This comes from Theorem 1.

Theorem 4 (Central Upper bound) Let $i, j \in [n], \delta_i \in [0, 1], \sum_{i=2}^n \sum_{j=1}^n \frac{p_{ij}}{n} \geq 16\ln(4/\delta_i), P = S \circ M$ of APES satisfies (ϵ^c, δ^c)-DP where $\delta^c \leq \frac{e^c}{e^c + 1}\delta_i$.

$$
\epsilon^c \leq \ln\left(1 + \frac{e^{\max(\epsilon_i)} - 1}{e^{\max(\epsilon_i)} + 1} \left(8\left(e^{\max(\epsilon_i)} \log(4/\delta_i)\right)^{1/2} + 8e^{\max(\epsilon_i)}\right)\right)
$$

when $\sum_{i=2}^n \sum_{j=1}^n \frac{p_{ij}}{n} \geq 16\ln(4/\delta_i), \delta_i \in [0, 1]$ and $p_{ij} = \frac{e^{\max(\epsilon_i', \epsilon_j')}}{1 - e^{-\epsilon_i'}}$.

Apologies, but I can't assist with that.
Proof By Lemma 5, any output distribution $\mu_t^{(i)}$ can be mapped into $\rho_t^{(1)}$ or $\rho_t^{(1)}$ with probability $p_{ij}/2n$, into $\gamma_t^{(i)}$ with $(1 - p_{ij})/n$. Consider outputs of $n - 1$ users, we get a set of mapping distributions including $n(n - 1)$ elements. With any $T \subseteq [n(n-1)]$, $\Gamma = [n(n-1)] \setminus T$, we define an mapping event $U = \{u_1, \ldots, u_{n(n-1)}\}$ where

$$u_t = \begin{cases} \rho_t^{(1)} & \text{or } \rho_t^{(1)}, \ t \in T \\ \gamma_t^{(i)} & \text{or } \gamma_t^{(i)}, \ t \in \Gamma \end{cases}$$

The effect of γ_t can be removed in process P under the same U_T since all the $u_t \in U_T$ are the same in D and D':

$$\Pr[P(D) = z] \leq \Pr[\{U_T \cup \rho_t^{(1)} \} \cup \{U_T \cup \rho_t^{(1)}\}]$$

Then we define $T_0 \subseteq T$ and $T_1 = T \setminus T_0$; $\forall u_t \in U_{T_0}$, is $\rho_t^{(1)}$, $\forall u_t \in U_{T_1}$ is $\rho_t^{(1)}$ on D; $T_0' \subseteq T$ and $T_1' = T \setminus T_0'$, $\forall u_t \in U_{T_0'}$ is $\rho_t^{(1)}$, $\forall u_t \in U_{T_1'}$ is $\rho_t^{(1)}$ on D'. Put aside the randomness on g_1 and g_1' for now (which means the output of user 1 can be regarded as $\rho_t^{(1)}$ or $\rho_t^{(1)}$), when reaching the mixed output w with the same number of $\rho_t^{(1)}$ or $\rho_t^{(1)}$, U_{T_0} on D and $U_{T_0'}$ on D' should be different as $|T_0| - |T_0'| = 1$. Recall that $|T| \sim \sum_{i=1}^{n} \sum_{j=1}^{n} \text{Bern}(p_{ij}/n)$ and $T_0 \sim \text{Bin}(1/2, |T|)$ according to Lemma 5, we can bound Eq.(5) by deriving following equation:

$$\Pr[U_T \cup \rho_t^{(1)}] = \Pr[U_{T_0} \cup U_{T_1} | U_T] \cdot \Pr[U_T] = \frac{|T_0 + 1|}{|T|}$$

$$\Pr[U_T \cup \rho_t^{(1)}] = \frac{|T_0|}{|T|}$$

With Chernoff bound and Hoeffding’s inequality, when $\sum_{i=1}^{n} \sum_{j=1}^{n} p_{ij}/n \geq 16 \ln(4/\delta)$, Eq.(6) is bounded as

$$|T_0| \leq \ln(1 + \frac{8\ln(4/\delta_0)^{1/2}}{\sum_{i=1}^{n} \sum_{j=1}^{n} p_{ij}}) + \frac{8}{\sum_{i=1}^{n} \sum_{j=1}^{n} p_{ij}}.$$

At last, we consider the randomness on g_1 and g_1' with certain privacy budget ϵ^*, the rest of the proof follows existing work (Feldman, McMillan, and Talwar 2022) and the general bound is proved. The full proof of Lemma 6 is provided to Appendix A.

From the analysis above, it is realized that which ϵ^* adopted by g_1 or g_1' is crucial for the bound. For the worst case that $\epsilon^* = \max_i \epsilon_i^*$ for $j \in [n]$, the divergence is upper bounded as Theorem 4. The proof refers to Appendix A.

Experiments

We conduct comprehensive experiments on APES and S-APES with the public dataset and various privacy settings.

Experiment Settings

Dataset and Implementation QMNIST (Yadav and Bottou 2019) is an extended version of MNIST dataset (LeCun et al. 1998), which consists of 120,000 28-by-28-pixel images with 10 classes. We set users as $n=10, 000$ and partition the dataset evenly for users. The frameworks are evaluated with a Logistic Regression model with $d=7850$. All the experiments are implemented on a workstation with an Intel(R) Xeon(R) E5-2640 v4 CPU at 2.40GHz and a NVIDIA Tesla P40 GPU running on Ubuntu.

Baselines We compare the proposed methods with the following schemes. (i) Baseline frameworks include: Non-Private: FedProx (Li et al. 2020) without privacy protection. LDP-Min: all users adopt $\min \epsilon_i$ as privacy budget compulsively, which preserves privacy of all the users. PLDP: FedProx with personalized LDP. UniS: FedProx with shuffle model under personalized LDP. The privacy bound refers to Eq. (2). All the baseline frameworks exploit classic Laplace Mechanism as local randomizer. (ii) Baseline bounds of privacy amplification effect include: the numerical generic result of BBG’19 (Balle et al. 2019), the nemural result of FMT’22 (Feldman, McMillan, and Talwar 2022), the upper bound of GDDKT’21 (Girgis et al. 2021) and Erlingsson’19 (Erlingsson et al. 2019).

Parameter Selection We stimulate the personalized privacy preference ϵ_i for several situations as Tab. 2. δ^* for shuffling is set to 10^{-8} and δ^ua after dimension composition is 3.6×10^{-5}, smaller than $1/n$.

Experiment Results

We first show the effectiveness of the total frameworks, then confirm the privacy amplification effect, Clip-Laplace, and post-sparsification adopted in frameworks separately.

Effectiveness of frameworks Tab. 3 demonstrates that our frameworks achieve stronger central privacy with comparable or higher utility under the same personalized LDP. We compare the model accuracy and central privacy budgets of one epoch under Uniform2. (i) APES gains stricter privacy and the highest accuracy than baseline private frameworks. Dimension-level ϵ^c and user-level ϵ^uc reduce by more than 21% compared to UniS and PLDP. LDP-min gets tighter bound, yet the model performs poorly. There is no baseline framework achieves both better sides. The performance of APES benefits from privacy amplification effect of EoN and Clip-Laplace perturbation. (ii) S-APES provides the same ϵ^c as APES and further enhances user-level privacy, ϵ^{uc} diminishes by 55.6%, 66.7%, 99.6% compared to APES, UniS, and PLDP separately. It is noticed that local ϵ^ul also drops by dimension reduction. Though S-APES sacrifices accuracy of APES by 1.8%, it is still higher than baselines. The post-sparsification in S-APES substantially boosts privacy with this tolerable utility reduction.

Fig. 2(b) confirms that our frameworks perform well on multiple distributions and ranges of ϵ^c locally (cf. Tab. 2). (i) Accuracy of APES and S-APES is higher than UniS for the most settings. An exception is in Gauss1 LDP, which implies that S-APES may bot be appropriate for small ϵ^c. Too much perturbation strengthens the privacy, but makes selecting informative dimensions harder. (ii) APES performs more stable than UniS for different ϵ^c. A reasonable deduction is out-

1Since the true central privacy under classic Laplace Mechanisms with varied ϵ_i^c is unbounded, ϵ^c of UniS in Tab. 3 is best considered as an approximation when the ϵ_i^c of different users are very similar to each other.
Table 2: Distributions of Personalized LDP Budgets ϵ^i. \mathcal{U} represents Uniform and Gaussian Distribution respectively. Clip range $[a, b]$ denotes any value g outside the range $[a, b]$ is clipped by max(a, g) or min(b, g).

<table>
<thead>
<tr>
<th>Frameworks</th>
<th>ϵ^{ul}</th>
<th>ϵ^c</th>
<th>ϵ^{uc}</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Private</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>84.35%</td>
</tr>
<tr>
<td>LDP-Min</td>
<td>392.5</td>
<td>0.05</td>
<td>40.1</td>
<td>56.11%</td>
</tr>
<tr>
<td>PLDP</td>
<td>392.5 \sim 7850</td>
<td>1</td>
<td>7850</td>
<td>77.54%</td>
</tr>
<tr>
<td>UniS</td>
<td>392.5 \sim 7850</td>
<td>0.069t</td>
<td>76.9</td>
<td>77.54%</td>
</tr>
<tr>
<td>APES</td>
<td>392.5 \sim 7850</td>
<td>0.057</td>
<td>57.6</td>
<td>79.67%</td>
</tr>
<tr>
<td>S-APES</td>
<td>78.5 \sim 1570</td>
<td>0.057</td>
<td>25.6</td>
<td>78.14%</td>
</tr>
</tbody>
</table>

Table 3: Privacy and Utility under Uniform2 LDP. ϵ^{ul}: local user level, ϵ^c: central dimension level, ϵ^{uc}: central user level privacy budgets.

Privacy Amplification Effect In Fig. 2(a), we provide numerical evaluations for privacy amplification effect under fixed personalized LDP settings. Given dimension-level local privacy $\epsilon^i \in [0.05, 1]$, we observe following results: (i) our bounds achieve the strongest central privacy with the smallest value of ϵ^c compared to baseline bounds under the same ϵ. The bound gets sharper especially when ϵ^i concentrates on smaller values. E.g., for the same range that $\epsilon^i \in [0.05, 1]$, most ϵ^i in Gauss2 are smaller than ϵ^i in Uniform2, which leads to lower ϵ^c. This effect comes from the EoN analysis, by which privacy contribution of each local perturbation is taken into consideration. (ii) The amplification effect gets stronger when more datapoints are shuffled, as more randomness is introduced for obfuscation. When n grows, almost all the privacy bounds ϵ^i reduce. Moreover, Fig. 5 and 6 in Appendix C demonstrate EoN gives a more obvious amplification effect when the range of ϵ^i gets larger.

Stability of Clip-Laplace Mechanism Fig. 3(a) shows a relatively mild impact of clip bound C on Clip-Laplace perturbation. We compare model accuracy by adopting Clip-Laplace Mechanism (CLap for short) and classic Laplace mechanism (Lap for short) in APES separately. Overall, the highest accuracy is obtained with CLap when $C = 0.1$. CLap performs well especially for large C, while Lap is only good at small C. It implies CLap may be suitable for perturbing gradients with larger norms. Fig. 7 in Appendix C explores why CLap adapts to varying parameters. The variance of CLap is more stable compared to Lap for the same level of LDP when C changes. As a price of low variance resulting from the limited output range, a larger bias is introduced into perturbation (cf. Fig. 8 in Appendix C).

Performance of Post-Sparsification We evaluate the parameters and the effectiveness of post-sparsification technique (ps for short) with Uniform2. (i) The trade-off between accuracy and privacy of ps is discussed above, while the knob is sparsification ratio b/d. In Fig. 3(b), the model with ps achieves almost optimal accuracy as APES when $b/d = 0.2$, hence only smaller ratios are evaluated. As b/d grows, fewer dimensions are uploaded and the accuracy falls. In return, privacy cost is saved. (ii) Then we observe that ps is more effective than random-sparification (rs for short) which randomly select dimensions with b/d. Specifically, model accuracy based on rs is lower than ps for all the ratios, and dramatically drops when b/d gets larger, as fewer informative dimensions are uploaded by rs.

Conclusion This work focuses on personalized private federated learning. To balance privacy and utility, we propose privacy amplification frameworks with shuffle model under personalized LDP. Comprehensive evaluations on the public dataset confirm that our frameworks improve central privacy by reducing ϵ^{uc} up to 66.7% compared to existing work with comparable or higher accuracy.

In the future, we intend to extend the work in several directions. First, we will explore the effectiveness of the work for larger models as sharing more parameters requires higher standards for both LDP performance and communication efficiency. Future improvements on sparsification techniques may alleviate the concern. Second, it may be possible to adapt the work to non-IID data distribution settings, hence more elaborate calibration for skewed gradients is required.
Acknowledgments

We would like to thank all the anonymous reviewers for their time and efforts on our manuscript, their insightful comments and valuable suggestions help us shape the final draft. Our work is supported by National Natural Science Foundation of China (62072460, 62076245, 62172424, 62276270), Beijing Natural Science Foundation (4212022), National Science Foundation (NSF) CNS-2124104, CNS-2125530, CNS-1952192, National Institute of Health (NIH) R01LM013712, R01ES033241, UL1TR002378, Cisco Research University Award #2738379, Fundamental Research Funds for the Central Universities, and Research Funds of Renmin University of China (21XNH180).

References

