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ABSTRACT
Tensor factorization has been demonstrated as an efficient approach

for computational phenotyping, where massive electronic health

records (EHRs) are converted to concise and meaningful clinical

concepts. While distributing the tensor factorization tasks to local

sites can avoid direct data sharing, it still requires the exchange

of intermediary results which could reveal sensitive patient infor-

mation. Therefore, the challenge is how to jointly decompose the

tensor under rigorous and principled privacy constraints, while still

support the model’s interpretability.

We propose DPFact, a privacy-preserving collaborative tensor

factorization method for computational phenotyping using EHR. It

embeds advanced privacy-preserving mechanisms with collabora-

tive learning. Hospitals can keep their EHR database private but also

collaboratively learn meaningful clinical concepts by sharing differ-

entially private intermediary results. Moreover, DPFact solves the

heterogeneous patient population using a structured sparsity term.

In our framework, each hospital decomposes its local tensors and

sends the updated intermediary results with output perturbation

every several iterations to a semi-trusted server which generates

the phenotypes. The evaluation on both real-world and synthetic

datasets demonstrated that under strict privacy constraints, our

method is more accurate and communication-efficient than state-

of-the-art baseline methods.

CCS CONCEPTS
• Security andprivacy→Privacy-preserving protocols; •Com-
puting methodologies → Factorization methods; • Applied
computing → Health informatics;
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1 INTRODUCTION
Electronic Health Records (EHRs) have become an important source

of comprehensive information for patients’ clinical histories. While

EHR data can help advance biomedical discovery, this requires an

efficient conversion of the data to succinct and meaningful patient

characterizations. Computational phenotyping is the process of

transforming the noisy, massive EHR data into meaningful medical

concepts that can be used to predict the risk of disease for an

individual, or the response to drug therapy. Phenotyping can be

used to assist precision medicine, speedup biomedical discovery,

and improve healthcare quality [25, 29].

Yet, extracting precise and meaningful phenotypes from EHRs

is challenging because observations in EHRs are high-dimensional

and heterogeneous, which leads to poor interpretability and re-

search quality for scientists [29]. Traditional phenotyping approaches

require the involvement of medical domain experts, which is time-

consuming and labor-intensive. Recently, unsupervised learning

methods have been demonstrated as a more efficient approach for

computational phenotyping. Although these methods do not re-

quire experts to manually label the data, they require large volumes

of EHR data. A popular unsupervised phenotyping approach is

tensor factorization [15, 20, 28]. Not only can tensors capture the

interactions between multiple sources (e.g, specific procedures that

are used to treat a disease), it can identify patient subgroups and ex-

tract concise and potentially more interpretable results by utilizing

the multi-way structure of a tensor.

However, one existing barrier for high-throughput tensor factor-

ization is that EHRs are fragmented and distributed among indepen-

dent medical institutions, where healthcare practises are different

due to heterogeneous patients populations. One of the reasons is

that different hospitals or medical sites differ in the way they man-

age patients [31]. Moreover, effective phenotyping requires a large

amount of data to guarantee its reliance and generalizability. Simply

analyzing data from single source leads to poor accuracy and bias,

which would reduce the quality and efficiency of patients’ care.

Session: Long - Privacy CIKM ’19, November 3–7, 2019, Beijing, China

1281

https://doi.org/10.1145/3357384.3357878
https://doi.org/10.1145/3357384.3357878


Recent studies have suggested that the integration of health

records can provide more benefits [12], which motivated the appli-

cation of federated tensor learning framework [20]. It can mitigate

privacy issues under the distributed data setting while achieves

high global accuracy and data harmonization via federated com-

putation. But this method has inherent limitations of federated

learning: 1) high communication cost; 2) reduced accuracy due to

local non-IID data (i.e., patient heterogeneity); and 3) no formal

privacy guarantee of the intermediary results shared between local

sites and the server, which makes patient data at risk of leakage.

In this paper, we propose DPFact, a differentially private collab-

orative tensor factorization framework based on Elastic Averaging

Stochastic Gradient Descent (EASGD) for computational pheno-

typing. DPFact assumes all sites share a common model learnt

jointly from each site through communication with a central pa-

rameter server. Each site performs its own tensor factorization task

to discover both common and distinct latent components, while

benefiting from the intermediary results generated by other sites.

The intermediary results uploaded still contain sensitive informa-

tion about the patients. Several studies have shown that machine

learning models can be used to extract sensitive information used

in the input training data through membership inference attacks

or model inversion attacks both in the centralized setting [11, 26]

and federated setting [14]. Since we assume the central server and

participants are honest-but-curious, hence a formal differential pri-

vacy guarantee is desired. DPFact tackles the privacy issue with

a well-designed data-sharing strategy, combined with the rigor-

ous zero-concentrated differential privacy (zCDP) technique [9, 34]

which is a strictly stronger definition than (ϵ,δ )-differential pri-
vacy that is considered as the dominant standard for strong privacy

protection [8–10]. We briefly summarize our contributions as:

1) Efficiency. DPFact achieves higher accuracy and faster con-

vergence rate than the state-of-the-art federated learning method.

It also beats the federated learning method in achieving lower com-

munication cost thanks to the elimination of auxiliary parameters

(e.g., in the ADMM approach) and allows each local site to perform

most of the computation.

2) Utility. DPFact supports phenotype discovery even with a

rigorous privacy guarantee. By incorporating a l2,1 regularization

term, DPFact can jointly decompose local tensors with different

distribution patterns and discover both the globally shared and the

distinct, site-specific phenotypes.

3) Privacy. DPFact is a privacy-preserving collaborative tensor

factorization framework. By applying zCDP mechanisms, it guar-

antees that there is no inadvertent patient information leakage in

the process of intermediary results exchange with high probability

which is quantified by privacy parameters.

We evaluate DPFact on two publicly-available large EHR datasets

and a synthetic dataset. The performance of DPFact is assessed

from the following three aspects including efficiency measured by

accuracy and communication cost, utility measured by phenotype

discovery ability and the evaluation on the effect of privacy.

2 PRELIMINARIES AND NOTATIONS
This section describes the preliminaries used in this paper, including

tensor factorization, (ϵ,δ )-differential privacy, and zCDP.

Symbols Descriptions

⊗ Kronecker product

⊙ Khatri-Rao product

◦ Outer Product

∗ Element-wise Product

N Number of modes

T Number of local sites

R Number of ranks

X(n) n-mode matricization of tensor O

X,X,x Tensor, matrix, vector

B̂, Ĉ Global factor matrices

A[t ],B[t ],C[t ] Local factor matrices at the t-th site

X[t ] Local tensor at the t-th site

xi :,x:r Row vector, Column vector

Table 1: Symbols and Notations

2.1 Tensor Factorization
Definition 2.1. (Khatri-Rao product). Khatri-Rao product is the

“columnwise" Kronecker product of two matrices A ∈ RI×R and

B ∈ RJ×R . The result is a matrix of size (I J × R) and defined by

A ⊙ B = [a1 ⊗ b1 · · · aR ⊗ bR ]

Here, ⊗ denotes the Kronecker product. The Kronecker product of
two vectors a ∈ RI , b ∈ RJ is

a ⊗ b =


a1b
...

aI b


Definition 2.2. (CANDECOMP-PARAFAC Decomposition). The

CANDECOMP-PARAFAC (CP) decomposition is to approximate

the original tensor O by the sum of R rank-one tensors. R is the

rank of tensor O, It can be expressed as

O ≈ X =

R∑
r=1

a(1)
:r ◦ · · · ◦ a

(N )
:r , (1)

where a(n)
:r represents the r th column of A(n) for n = 1, · · · ,N

and r = 1, · · · ,R. A(n) is the n-mode factor matrix consisting of

R columns representing R latent components which can be repre-

sented as

A(n) =
[
a(n)

:1
· · · a(n)

:R

]
,

so that A(n) is of size In × R for n = 1, · · · ,N , and the equation of

(1) can also be represented as

[[A(1), · · · ,A(N )]] =
R∑
r=1

a(1)
:r ◦ · · · ◦ a

(N )
:r . (2)

Note that in this formulation, the scalar weights for each rank-one

tensor are assumed to be absorbed into the factors.

In the way of a three-mode tensor O ∈ RI×J×K , the CP decom-

position can be represented as

O ≈ X =

R∑
r=1

a:r ◦ b:r ◦ c:r , (3)

where a:r ∈ R
I
, b:r ∈ R

J
, c:r ∈ R

K
are the r -th column vectors

within the three factor matrices A ∈ RI×R , B ∈ RJ×R , C ∈ RK×R .
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2.2 Differential Privacy
Differential privacy [8, 9] has been demonstrated as a strong stan-

dard to provide privacy guarantees for algorithms on aggregate

database analysis, which in our case is a collaborative tensor fac-

torization algorithm analyzing distributed tensors with differential

privacy.

Definition 2.3. ((ϵ-δ )-Differential Privacy) [8]. Let D and D ′ be

two neighboring datasets that differ in at most one entry. A ran-

domized algorithm A is (ϵ-δ )-differentially private if for all S ⊆

Range(A):

Pr [A(D) ∈ S] ≤ eϵPr
[
A(D ′) ∈ S

]
+ δ ,

where A(D) represents the output of A with an input of D.

The above definition suggests that with a small ϵ , an adversary

almost cannot distinguish the outputs of an algorithm with two

neighboring datasetsD andD ′ as its inputs. While δ allows a small

probability of failing to provide this guarantee. Differential privacy

is defined using a pair of neighboring databases which in our work

are two tensors and differ in only one entry.

Definition 2.4. (L2-sensitivity) [8]. For two neighboring datasets

D and D ′ differing in at most one entry, the L2-sensitivity of an

algorithm A is the maximum change in the l2-norm of the output

value of algorithm A regarding the two neighboring datasets:

∆2(A) = sup

D,D′
∥A(D) − A(D ′)∥

2
.

Theorem 2.5. ((Gaussian Mechanism)) [8]. Let ϵ ∈ (0, 1) be arbi-
trary. For c2 > 2 ln(1.25/δ ), the Gaussian Mechanism with parameter
σ ≥ c∆2(A)/ϵ , adding noise scaled to N(0,σ 2) to each component
of the output of algorithm A, is (ϵ-δ )-differentially private.

2.3 Concentrated Differential Privacy
Concentrated differential privacy (CDP) is introduced by Dwork

and Rothblum [9] as a generalization of differential privacy which

provides sharper analysis of many privacy-preserving computa-

tions. Bun and Steinke [4] propose an alternative formulation of

CDP called "zero-concentrated differential privacy" (zCDP) which

utilizes the Rényi divergence between probability distributions to

measure the requirement of the privacy loss random variable to be

sub-gaussian and provides more tighter privacy analysis.

Definition 2.6. (Zero-Concentrated Differential Privacy (zCDP) [4])
A randomized mechanism A is ρ-zero concentrated differentially

private if for any two neighboring databases D and D ′ differing

in at most one entry and all α ∈ (1,∞),

Dα
(
A(D)∥A

(
D ′

) )
≜

1

α − 1

log

(
E

[
e(α−1)L(o)

] )
≤ ρα ,

where Dα (A(D)∥A (D
′)) is called α-Rényi divergence between

the distributions of A(D) and A (D ′), and L(o) is the privacy loss

random variable which is defined as:

L
(o)
(A(D)| |A(D′))

≜ log

Pr(A(D) = o)

Pr (A (D ′) = o)
.

The following propositions of zCDP will be used in this paper.

Proposition 2.7. [4] The Gaussianmechanismwith noiseN(0,σ 2)

where σ =
√

1/(2ρ)∆2 satisfies ρ-zCDP.

Proposition 2.8. [4] If a randomized mechanism A is ρ-CDP,
then A is (ϵ ′, δ )-DP for any δ with ϵ ′ = ρ +

√
4ρ log(1/δ ); For A to

satisfy (ϵ,δ )-DP, it suffices to satisfy ρ-zCDP by setting ρ ≈ ϵ 2

4 log(1/δ ) .

Proposition 2.9. ((Serial composition [4])) Let A : Dn → Y

andA ′ : Dn →Z be randomized algorithms. SupposeA is ρ-zCDP
and A ′ is ρ ′-zCDP. Define A ′′ : Dn → Y ×Z by A ′′ = (A,A ′).
Then A ′′ is (ρ + ρ ′)-zCDP.

Proposition 2.10. ((Parallel composition [34])) Suppose that a
mechanism A consists of a sequence of T adaptive mechanisms,
A1, . . . ,AT , where each At : Πiter−1

j=1
Oj × Dt → Oiter and At

satisfies ρt -zCDP. Let D1, . . . ,DT be a randomized partition of the
input D. The mechanism A(D) = (A1 (D1) , . . . ,AT (DT )) satis-
fies 1

T
∑T
t=1

ρt -zCDP.

3 DPFACT
In this section, we first provide a general overview and then present

detailed formulation of the optimization problem.

3.1 Overview
DPFact is a distributed tensor factorization model that preserves

differential privacy. Our goal is to learn computational phenotypes

from horizontally partitioned patient data (e.g., each hospital has

its own patient data with the same medical features). Since we

assume the central server and participants are honest-but-curious

which means they will not deviate from the prescribed protocol

but they are curious about others secrets and try to find out as

much as possible about them. Therefore the patient data cannot be

collected at a centralized location to construct a global tensor O.

Instead, we assume that there are T local sites and a central server

that communicates the intermediary results between the local sites.

Each site performs tensor factorization on the local data and shares

privacy-preserving intermediary results with the centralized server

(Figure 1).

Figure 1: Algorithm Overview

The patient data at each site is used to construct a local observed

tensor, O[t ]. For simplicity and illustration purposes, we discuss

a three-mode tensor situation where the modes are patients, pro-

cedures, and diagnoses but DPFact generalizes to N modes. The T
sites jointly decompose their local tensor into three factor matrices:

a patient factor matrix A[t ] and two feature factor matrices B[t ]

and C[t ]. We assume that the factor matrices on the non-patient
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modes (i.e., B[t ],C[t ]) are the same across the T sites, thus sharing

the same computational phenotypes. To achieve consensus of the

shared factor matrices, the non-patient feature factor matrices are

shared in a privacy-preserving manner with the central server by

adding Gaussian noise to each uploaded factor matrix.

Although the collaborative tensor problem for computational

phenotyping has been previously discussed [20], DPFact provides

three important contributions:

(1) Efficiency: We adopt a communication-efficient stochastic

gradient descent (SGD) algorithm for collaborative learning which

allows each site to transmit less information to the centralized

server while still achieving an accurate decomposition.

(2) Heterogeneity: A traditional global consensus model re-

quires learning the same shared model from multiple sources. How-

ever, different data sources may have distinct patterns and proper-

ties (e.g., disease prevalence may differ between Georgia and Texas).

We propose using the l2,1-norm to achieve global consensus among

the sites while capturing site-specific factors.

(3) Differential Privacy Guarantees: We preserve the privacy

of intermediary results by adding Gaussian noise to each non-

patient factor matrix prior to sharing with the parameter server.

This masks any particular entry in the factor matrices and prevents

inadvertent privacy leakage. A rigorous privacy analysis based on

zCDP is performed to ensure strong privacy protection for the

patients.

3.2 Formulation
Under a single (centralized) model, CP decomposition of the ob-

served tensor O results in a factorized tensor X that contains the R
most prevalent computational phenotypes. We represent the cen-

tralized tensor as T separate horizontal partitions, O[1], · · · ,O[T ].

Thus, the global function can be expressed as the sum ofT separable

functions with respect to each local factorized tensor X[t ] [20]:

min

X
L =

1

2

| |O − X||2F =

T∑
t=1

1

2

O[t ] − X[t ]2

F
. (4)

Since the goal is to uncover computational phenotypes that are

shared across all sites, we restrict the sites to factorize the observed

local tensors O[t ] such that the non-patient factor matrices are the

same. Therefore, the global optimization problem is formulated as:

min

T∑
t=1

1

2

O[t ] − [[A[t ],B[t ],C[t ]]]2

F

s.t. B[1] = B[2] = · · · = B[T ]

C[1] = C[2] = · · · = C[T ].

This can be reformulated as a global consensus optimization,

which decomposes the original problem into T local subproblems

by introducing two auxiliary variables, B̂, Ĉ, to represent the global
factor matrices. A quadratic penalty is placed between the local

and global factor matrices to achieve global consensus among the

T different sites. Thus, the local optimization problem at site t is:

min

1

2

O[t ] − [[A[t ],B[t ],C[t ]]]2

F

+
γ

2

B[t ] − B̂2

F
+
γ

2

C[t ] − ˆC
2

F
.

(5)

3.3 Heterogeneous Patient Populations
The global consensus model assumes that the patient populations

are the same across different sites. However, this may be too restric-

tive as some locations can have distinctive patterns. For example,

patients from the cardiac coronary unit may have unique character-

istics that are different from the surgical care unit. DPFact utilizes

the l2,1-norm regularization, to allow flexibility for each site to

“turn off" one or more computational phenotypes. For an arbitrary

matrix W ∈ Rm×n , its l2,1-norm is defined as:

∥W∥
2,1 =

m∑
i=1

√√√ n∑
j=1

W2

i j . (6)

From the definition, we can see that the l2,1-norm controls the row

sparsity of matrixW. As a result, the l2,1-norm is commonly used

in multi-task feature learning to perform feature selection as it can

induce structural sparsity [13, 21, 24, 32].

DPFact adopts a multi-task perspective, where each local de-

composition is viewed as a separate task. Under this approach,

each site is not required to be characterized by all R computational

phenotypes. To achieve this, we introduce the l2,1-norm on the

transpose of the patient factor matrices, A[t ], to induce sparsity

on the columns. The idea is that if a specific phenotype is barely

present in any of the patients (2-norm of the column is close to

0), the regularization will encourage all the column entries to be 0.

This can be used to capture the heterogeneity in the patient popu-

lations without violating the global consensus assumption. Thus

the DPFact optimization problem is:

min

T∑
t=1

(
1

2

O[t ] − [[A[t ],B[t ],C[t ]]]2

F
+
γ

2

B[t ] − B̂2

F

+
γ

2

C[t ] − ˆC
2

F
+ µ

(A[t ])⊤
2,1
).

(7)

The quadratic penalty, γ , provides an elastic force to achieve global

consensus between the local factor matrices and the global factor

matrices whereas the l2,1-norm penalty, µ, encourages sites to share
similar sparsity patterns.

4 DPFACT OPTIMIZATION
DPFact adopts the Elastics Averaging SGD (EASGD) [35] approach

to solve the optimization problem (7). EASGD is a communication-

efficient algorithm for collaborative learning and has been shown

to be more stable than the Alternating Direction Method of Mul-

tipliers (ADMM) with regard to parameter selection. Moreover,

SGD-based approaches scale well to sparse tensors, as the compu-

tation is bounded by the number of non-zeros.

Using the EASGD approach, the global consensus optimization

problem is solved alternatively between the local sites and the

central server. Each site performs multiple rounds of local tensor

decomposition and updates their local factor matrices. The site

then only shares the most updated non-patient mode matrices with

output perturbation to prevent revealing of sensitive information.

The patient factor matrix is never shared with the central server

to avoid direct leakage of patient membership information. The

server then aggregates the updated local factor matrices to update

the global factor matrices and sends the new global factor matrices
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back to each site. This process is iteratively repeated until there are

no changes in the local factor matrices. The entire DPFact decom-

position process is summarized in Algorithm 1.

Algorithm 1: DPFact
Input: O, τ η, γ , µ, σ , ρ.

1 Randomly initialize the global feature factor matrices B, C and

local feature factor matrices B[t ], C[t ].
2 while B[t ], C[t ] not converge do
3 if Hospital then
4 for k = 1, · · · ,τ do
5 Shuffle tensor elements;

6 for observation i do
7 Update A[t ] using (13);

8 Update B[t ], C[t ] using (17);

9 end
10 Proximal update for newA[t ] using (14);

11 end
12 Calibrate Gaussian noise matrixM

[t ]
B andM

[t ]
C as N

(0,∆2

2
/(2ρ)) for each factor matrix;

13 Update factor matrices pr ivB[t ] and pr ivC[t ] using
(18);

14 Send pr ivB[t ], pr ivC[t ] to Server.

15 end
16 if Server then
17 Collect pr ivB[t ], pr ivC[t ] from each hospital;

18 Update B̂, Ĉ using (19);

19 Send B̂, Ĉ back to hospitals.

20 end
21 end

4.1 Local Factors Update
Each site updates the local factors by solving the following sub-

problem:

min

1

2

O[t ] − [[A[t ],B[t ],C[t ]]]2

F
+
γ

2

B[t ] − B̂2

F

+
γ

2

C[t ] − ˆC
2

F
+ µ

(A[t ])⊤
2,1
.

(8)

EASGD helps reduce the communication cost by allowing sites

to perform multiple iterations (each iteration is one pass of the

local data) before sending the updated factor matrices. We further

extend the local optimization updates using permutation-based

SGD (P-SGD), a practical form of SGD [30]. In P-SGD, instead of

randomly sampling one instance from the tensor at a time, the non-

zero elements are first shuffled within the tensor. The algorithm

then cycles through these elements to update the latent factors. At

each local site, the shuffling and cycling process is repeated τ times,

hereby referred to as a τ -pass P-SGD. There are two benefits of

adopting the P-SGD approach: 1) the resulting algorithm is more

computationally effective as it eliminates some of the randomness

of the basic SGD algorithm. 2) it provides a mechanism to properly

estimate the total privacy budget (see Section 4.2).

4.1.1 Patient Factor Matrix. For site t , the patient factor matrix

A[t ] is updated by minimizing the objective function using the local

factorized tensor, X[t ] and the l2,1-norm:

min

A[t ]

1

2

O[t ] − [[A[t ],B[t ],C[t ]]]2

F︸                                 ︷︷                                 ︸
F

+ µ
(A[t ])⊤

2,1︸           ︷︷           ︸
H

. (9)

While the l2,1-norm is desirable from a modeling perspective, it

also results in a non-differentiable optimization problem. The local

optimization problem (9) can be seen as a combination of a dif-

ferentiable function F and a non-differentiable functionH . Thus,

we propose using the proximal gradient descent method to solve

local optimization problem for the patient mode. Proximal gradient

method can be applied in our case since the gradient of the differen-

tiable function F is Lipschitz continuous with a Lipschitz constant
L (see Appendix in [23] for details).

Using the proximal gradient method, the factor matrix A[t ] is
iteratively updated via the proximal operator:

newA[t ] = proxηH
(
A[t ] − η∇F (A[t ])

)
, (10)

where η > 0 is the step size at each local iteration. The proximal

operator is computed by solving the following equation:

proxηH(Θ) = arg min

Θ

(
1

2η
∥Θ − Θ̂∥ +H(Θ)

)
, (11)

where Θ̂ = A[t ] − η∇F (A[t ]) is the updated matrix. It has been

shown that if ∇F is Lipschitz continuous with constant L, the
proximal gradient descent method will converge for step size η <
2/L [7]. For the l2,1-norm, the closed form solution can be computed

using the soft-thresholding operator:

proxηH(Θ̂) = Θ̂:r

(
1 −

µ

∥Θ̂:r ∥ 2

)
+

, (12)

where r ∈ (0,R] and r represents the r -th column of the factor

matrix Θ̂, and (z)+ denotes the maximum of 0 and z. Thus, if the
norm of the r -th column of the patient matrix is small, the proximal

operator will “turn off" that column.

The gradient of the smooth part can be derived with respect to

each row in the patient mode factor matrix, A[t ]. The update rule
for each row is:

a[t ]i : ← a[t ]i : − η
[(
a[t ]i : (b

[t ]
j : ∗ c

[t ]
k :
)
⊤
− O
[t ]
i jk

) (
b[t ]j : ∗ c

[t ]
k :

)]
(13)

After one pass through all entries in a local tensor to update the

patient factor matrix, the second step is to use proximal operator

(12) to update the patient factor matrix A[t ]:

newA[t ] = proxηH(A
[t ]). (14)

4.1.2 Feature Factor Matrices. The local feature factor matri-

ces, B[t ] and C[t ], are updated based on the following objective

functions:

min

B[t ]
fb =

1

2

O[t ] − [[A[t ],B[t ],C[t ]]]2

F
+
γ

2

B[t ] − B̂2

F
,

min

C[t ]
fc =

1

2

O[t ] − [[A[t ],B[t ],C[t ]]]2

F
+
γ

2

C[t ] − ˆC
2

F
.

(15)
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The partial derivatives of fb , fc with respect to b[t ]j : and c[t ]k :
, the

j-th and k-th row of the B[t ] and C[t ] factor matrices, respectively,

are computed.

∂ fb

∂b[t ]j :
=

[(
a[t ]i : (b

[t ]
j : ∗ c

[t ]
k :
)
⊤
− O
[t ]
i jk

) (
a[t ]i : ∗ c

[t ]
k :

)]
∂ fc

∂c[t ]k :

=
[(
a[t ]i : (b

[t ]
j : ∗ c

[t ]
k :
)
⊤
− O
[t ]
i jk

) (
a[t ]i : ∗ b

[t ]
j :

)]
.

(16)

B[t ] and C[t ] are then updated row by row by adding up the partial

derivative of the quadratic penalty term and the partial derivative

with respect to b[t ]j : and c[t ]k :
shown in (16).

b[t ]j : ← b[t ]j : − η

∂ fn

∂b[t ]j :
+ γ

(
b[t ]j : − b̂j :

) ;

c[t ]k :
← c[t ]k :

− η


∂ fn

∂c[t ]k :

+ γ
(
c[t ]k :
− ĉk :

) .
(17)

Each site simultaneously does several rounds (τ ) of the local

factor updates. After τ rounds are completed, the feature factor

matrices will be perturbed with Gaussian noise and sent to central

server.

4.1.3 Privacy-Preserving Output Perturbation. Although the fea-

ture factor matrices do not directly contain patient information,

it may inadvertently violate patient privacy (e.g., a rare disease

that is only present in a small number of patients). To protect the

patient information from being speculated by semi-honest server,

we perturb the feature mode factor matrices using the Gaussian

mechanism, a common building block to perturb the output and

achieve rigorous differential privacy guarantee.

The Gaussian mechanism adds zero-mean Gaussian noise with

standard deviation σ = ∆2

2
/(2ρ) to each element of the output

[4]. Thus, the noise matrix M can be calibrated for each factor

matrices B[t ] and C[t ] based on their L2-sensitivity to construct

privacy-preserving feature factor matrices:

pr ivB
[t ] ← B[t ] +M[t ]B ,

pr ivC
[t ] ← C[t ] +M[t ]C ,

(18)

As a result, each factor matrix that is shared with the central server

satisfies ρ-zCDP by Proposition 2.7. A detailed privacy analysis for

the overall privacy guarentee is provided in the next subsection.

4.2 Privacy Analysis
In this subsection we analyze the overall privacy guarantee of

Algorithm 1. The analysis is based on the following knowledge

of the optimization problem: 1) each local site performs a τ -pass
P-SGD update per epoch; 2) for the local objective function f in

(15), when fixing two of the factor matrices, the objective function

becomes a convex optimization problem for the other factor matrix.

4.2.1 L2-sensitivity. The objective function (15) satisfies L −
Lipschitz, with Lipschitz constant L the tight upper bound of the

gradient of B[t ] and C[t ]. For a τ -pass P-SGD, having constant

learning rate η = ηk ≤
2

β (k = 1, ...,τ , β is the Lipschitz constant

of the gradient of (15) regarding B[t ] or C[t ], see Appendix in [23]

for β calculation), the L2-sensitivity of this optimization problem

in (15) is calculated as ∆2(f ) = 2τLη [30].

4.2.2 Overall Privacy Guarantee. The overall privacy guarantee

of Algorithm 1 is analyzed under the zCDP definition which pro-

vides tighter privacy bound than strong composition theorem [10]

for multiple folds Gaussian mechanism [4, 34]. The total ρ-zCDP
will be transferred to (ϵ,δ )-DP in the end using Proposition 2.8.

Theorem 4.1. Algorithm 1 is (ϵ,δ )-differentially private if we
choose the input privacy budget for each factor matrix per epoch as

ρ =
ϵ2

8E log(1/δ )

where E is the number of epochs when the algorithm is converged.

Proof. Let the "base" zCDP parameter be ρb , B[t ] and C[t ] to-
gether cost 2Eρb after E epochs by Proposition 2.9. AllT user nodes

cost
1

T
∑T
t=1

2Eρb = 2Eρb by the parallel composition theorem in

Proposition 2.10. By the connection of zCDP and (ϵ,δ )-DP in Propo-

sition 2.8, we get ρb =
ϵ 2

8E log(1/δ ) , which concludes our proof. □

4.3 Global Variables Update
The server receivesT local feature matrix updates, and then updates

the global feature matrices according to the same objective function

in (5). The gradient for the global feature matrices B̂ and Ĉ are:

B̂← B̂ + η
T∑
t=1

γ
(
pr ivB

[t ] − B̂
)

Ĉ← Ĉ + η
T∑
t=1

γ
(
pr ivC

[t ] − Ĉ
)
.

(19)

The update makes the global phenotypes similar to the local phe-

notypes at the T local sites. The server then sends the global infor-

mation, B̂, Ĉ to each site for the next epoch.

5 EXPERIMENTAL EVALUATION
We evaluate DPFact on three aspects: 1) efficiency based on accuracy

and communication cost; 2) utility of the phenotype discovery; and

3) impact of privacy. The evaluation is performed on both real-world

datasets and synthetic datasets.

5.1 Dataset
We evaluated DPFact on one synthetic dataset and two real-world

datasets, MIMIC-III [17] and the CMS DE-SynPUF
1
dataset. Each of

the dataset has different sizes, sparsity (i.e., % of non-zero elements),

and skewness in distribution (i.e., some sites have more patients).

MIMIC-III. This is a publicly-available intensive care unit (ICU)
dataset collected from 2001 to 2012. We construct 6 local tensors

with different sizes representing patients from different ICUs. Each

tensor element represents the number of co-occurrence of diagnoses

and procedures from the same patient within a 30-day time window.

For better interpretability, we adopt the rule in [19] and select 202

procedures ICD-9 codes and 316 diagnoses codes that have the

1
https://www.cms.gov/Research-Statistics-Data-and-Systems/Downloadable-Public-

Use-Files/SynPUFs/DE_Syn_PUF.html
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highest frequency. The resulting tensor is 40, 662 patients × 202

procedures × 316 diagnoses with a non-zero ratio of 4.0382 × 10
−6
.

CMS. This is a publicly-available Data Entrepreneurs’ Synthetic
Public Use File (DE-SynPUF) from 2008 to 2010. We randomly

choose 5 samples out of the 20 samples of the outpatient data to

construct 5 local tensors with patients, procedures and diagnoses.

Different from MIMIC-III, we make each local tensor the same size.

There are 82,307 patients with 2,532 procedures and 10,983 diag-

noses within a 30-day time window. We apply the same rule in

selecting ICD-9 codes. By concatenating the 5 local tensors, we

obtain a big tensor with 3.1678 × 10
−7

non-zero ratio.

Synthetic Dataset. We also construct tensors from synthetic data.

In order to test different dimensions and sparsities, we construct

a tensor of size 5000 × 300 × 800 with a sparsity rate of 10
−5

and

then horizontally partition it into 5 equal parts.

5.2 Baselines
We compare our DPFact framework with two centralized baseline

methods and an existing state-of-the-art federated tensor factoriza-

tion method as described below.

CP-ALS: A widely used, centralized model that solves tensor de-

composition using an alternating least squares approach. Data from

multiple sources are combined to construct the global tensor.

SGD: A centralized method that solves the tensor decomposition

use the stochastic gradient descent-based approach. This is equiva-

lent to DPFact with a single site and no regularization (T = 1,γ =
0, µ = 0). We consider this a counterpart to the CP-ALS method.

TRIP [20]: A federated tensor factorization framework that en-

forces a shared global model and does not offer any differential

privacy guarantee. TRIP utilizes the consensus ADMM approach

to decompose the problem into local subproblems.

5.3 Implementation Details
DPFact is implemented in MatlabR2018b with the Tensor Toolbox

Version 2.6 [1] for tensor computing and the Parallel Computing

Toolbox of Matlab. The experiments were conducted on m5.4xlarge

instances of AWS EC2 with 8 workers. For prediction task, we build

the logistic regression model with Scikit-learn library of Python 2.7.

For reproducibility purpose, we made our code publicly available
2
.

5.4 Parameter Configuration
Hyper-parameter settings include quadratic penalty parameter γ ,
l2,1 regularization term µ, learning rate η, and the input per-epoch,

per-factor matrix privacy budget ρ. The rank R is set to 50 to allow

some site-specific phenotypes to be captured.

5.4.1 Quadratic penalty parameter γ . The quadratic penalty

term can be viewed as an elastic force between the local factor

matrices and the global factor matrices. Smaller γ allows more ex-

ploration of the local factors but will result in slower convergence.

To balance the trade-off between convergence and stability, we

choose γ = 5 after grid search through γ = {2, 5, 8, 10}.

5.4.2 l2,1-regularization term µ. We evaluate the performance

of DPFact with different µ for different ICU types as they differ in

the Lipschitz constants. Smaller µ has minimal effect on the column

2
https://github.com/jma78/DPFact.

# of Sites MIMIC-III CMS Synthetic

1 18.73 22.89 1.55

5 93.62 114.42 7.75

10 189.83 228.83 15.50

Table 2: Communication cost of DPFact for different num-
ber of sites (Seconds)

sparsity, as there are no columns that are set to 0, while higher µ
will "turn off" a large portion of the factors and prevent DPFact from

generating useful phenotypes. Based on figure 4 in [23], we choose

µ = {1, 1.8, 3.2, 1.8, 1.5, 0.6} for TSICU, SICU, MICU, CSRU, CCU,

NICU respectively for MIMIC-III to maintain noticeable differences

in the column magnitude and the flexibility to have at least one

unshared column (see Appendix in [23] for details). Similarly, we

choose µ = 2 equally for each site for CMS and µ = 0.5 equally for

each site for the synthetic dataset.

5.4.3 Learning rate η. The learning rate η must be the same for

local sites and the parameter server. The optimal η was found after

grid searching in the range [10
−5
, 10
−1]. We choose 10

−2, 10
−3
, and

10
−2

for MIMIC-III, CMS, and synthetic data respectively.

5.4.4 Privacy budget ρ. We choose the per-epoch privacy budget

under the zCDP definition for each factor matrix as ρ = 10
−3

for

MIMIC-III, CMS, and synthetic dataset. By Theorem 4.1, the total

privacy guarantee is (1.2, 10
−4), (1.9, 10

−4), and (1.7, 10
−4) under

the (ϵ,δ )-DP definition for MIMIC-III, CMS, and synthetic dataset

respectively when DPFact converges (we choose δ to be 10
−4
).

5.4.5 Number of sites T . To gain more knowledge on how com-

munication cost would be reduced regarding the number of sites,

we evaluate the communication cost when the number of sites

(T ) are increased. To simulate a larger number of sites, we ran-

domly partition the global observed tensor into 1, 5, and 10 sites

for the three datasets. Table 2 shows that the communication cost

of DPFact scales proportionally with the number of sites.

5.5 Efficiency
5.5.1 Accuracy. Accuracy is evaluated using the root mean

square error (RMSE) between the global observed tensor and a

horizontal concatenation of each factorized local tensor. Figure 2

illustrates the RMSE as a function of the number of epochs. We

observe that DPFact converges to a smaller RMSE than CP-ALS and

TRIP. SGD achieves the lowest RMSE as DPFact suffers some utility

loss by sharing differentially private intermediary results.

5.5.2 Communication Cost. The communication cost is mea-

sured based on the total number of communicated bytes divided

by the data transfer rate (assumed as 15 MB/second). As CP-ALS

and SGD are both centralized models, only TRIP and DPFact are

compared.

Table 3 summarizes the communication cost on all the datasets.

DPFact reduces the cost by 46.6%, 37.7%, and 20.7% on MIMIC-III,

CMS, and synthetic data, respectively. This is achieved by allowing

more local exploration at each site (multiple passes of the data)

and transmitting fewer auxiliary variables. Moreover, the reduced

communication cost does not result in higher RMSE (see Figure 2).
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(a) MIMIC-III: ICU (b) CMS (c) Synthetic

Figure 2: Average RMSE on (a) MIMIC-III, (b) CMS, (c) Synthetic datasets using 5 random initializations.

Algorithm MIMIC-III CMS Synthetic

TRIP 175.26 183.72 9.77

DPFact 93.62 114.42 7.75

Table 3: Communication Cost of DPFact and TRIP (Seconds)

Rank CP-ALS TRIP DPFact

DPFact w/o l2,1 w/o DP

10 0.7516 0.7130 0.7319 0.5189 0.7401

20 0.7573 0.7596 0.7751 0.6886 0.7763

30 0.7488 0.7644 0.7679 0.6977 0.7705

40 0.7603 0.7574 0.7737 0.7137 0.7756

50 0.7643 0.7633 0.7759 0.7212 0.7790
60 0.7648 0.7588 0.7758 0.7312 0.7763

Table 4: Predictive performance (AUC) comparison for (1)
CP-ALS, (2) TRIP, (3) DPFact, (4) DPFact without l2,1-norm
(w/o l2,1), (5) non-private DPFact (w/o DP).

5.6 Utility
The utility of DPFact is measured by the predictive power of the

discovered phenotypes. A logistic regression model is fit using the

patients’ membership values (i.e., A[t ]i : , Âi : of size 1 × R) as fea-
tures to predict in-hospital mortality. We use a 60-40 train-test split

and evaluated the model using area under the receiver operating

characteristic curve (AUC).

5.6.1 Global Patterns. Table 4 shows the AUC for DPFact, CP-

ALS (centralized), and TRIP (distributed) as a function of the rank

(R). From the results, we observe that DPFact outperforms both

baseline methods for achieving the highest AUC. This suggests that

DPFact captures similar global phenotypes as the other two meth-

ods. We note that DPFact has a slightly lower AUC than CP-ALS

for a rank of 10, as the l2,1-regularization effect is not prominent.

5.6.2 Site-Specific Patterns. Besides achieving the highest pre-
dictive performance, DPFact also can be used to discover site-

specific patterns. As an example, we focus on the neonatal ICU

(NICU) which has a drastically different population than the other

5 ICUs. The ability to capture NICU-specific phenotypes can be

seen in the AUC comparison with TRIP (Figure 3(a)). DPFact con-

sistently achieves higher AUC for NICU patients. The importance

of the l2,1-regularization term is also illustrated in Table 4. DP-

Fact with the l2,1-regularization is more stable and achieves higher

AUC compared without the regularization term (µ = 0).

Table 5 illustrates the top 5 phenotypes with respect to the mag-

nitude of the logistic regression coefficient (mortality risk related

to the phenotype) for NICU. The phenotypes are named according

to the non-zero procedures and diagnoses. A high λ and prevalence

means this phenotype is common. From the results, we observe that

heart disease, respiration failure, and pneumonia are more com-

mon but less associated with mortality risk (negative coefficient).

However, acute kidney injury (AKI) and anemia are less prevalent

and highly associated with death. In particular, AKI has the highest

risk of in-hospital death, which is consistent with other reported

results [33]. Table 6(a) shows an NICU-specific phenotype, which

differs slightly from the corresponding global phenotype showing

in table 6(b).

(a) AUC comparison (b) Factor Match Score (FMS)

Figure 3: (a) Predictive performance (AUC) comparison for
NICU between (1) TRIP, (2) DPFact. (b) Factor Match Score
(FMS) under different privacy budget (ϵ).

5.7 Privacy
We investigated the impact of differential privacy by comparing

DPFact with its non-private version. The main difference is that

non-private DPFact does not perturb the local feature factor ma-

trices that are transferred to the server. We use the factor match

score (FMS) [5] to compare the similarity between the phenotype
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Phenotypes Coef p-value λ Prevalence

25: Congenital heart de-

fect

-2.1865 0.005 198 34.32

29: Anemia 3.5047 <0.001 77 13.22

30: Acute kidney injury 5.8806 <0.001 68 23.38

34: Pneumonia -5.1050 <0.001 37 37.58

35: Respiratory failure -0.9141 <0.001 85 24.40

Table 5: Top 5 representative phenotypes from NICU based
on the factor weights, λr = ∥A:r ∥F ∥B:r ∥F ∥C:r ∥F . Prevalence
is the proportion of patients who have non-zero member-
ship to the phenotype.

(a) NICU-specific Phenotypes discovered by DPFact

Procedures Diagnoses
Cardiac catheterization Ventricular fibrillation

Insertion of non-drug-eluting coro-

nary artery stent(s)

Unspecified congenital anomaly of

heart

Prophylactic administration of vac-

cine against other disease

Benign essential hypertension

(b) Globally shared phenotype discovered by DPFact

Procedures Diagnoses
Attachment of pedicle or flap graft Rheumatic heart failure

Right heart cardiac catheterization Ventricular fibrillation

Procedure on two vessels Benign essential hypertension

Other endovascular procedures on

other vessels

Paroxysmal ventricular tachycardia

Nephritis and nephropathy

Insertion of non-drug-eluting coro-

nary artery stent(s)

(c) Globally shared phenotype discovered by non-private DPFact

Procedures Diagnoses
Right heart cardiac catheterization Hypopotassemia

Attachment of pedicle or flap graft Rheumatic heart failure

Excision or destruction of other le-

sion or tissue of heart, open ap-

proach

Benign essential hypertension

Paroxysmal ventricular tachycardia

Systolic heart failure

Table 6: Example of the representative phenotypes. (a) NICU-
specific phenotype of Congenital heart defect; (b) and (c) are
the globally shared phenotype of Heart failure, showing the
difference of DPFact and non-private DPFact.

discovered using DPFact and non-private DPFact. FMS is defined

as:

score( ¯X) =
1

R

∑
r

(
1 −

��ξr − ¯ξr
��

max
{
ξr , ¯ξr

} ) ∏
x=a,b,c

xTr x̄r
∥xr ∥∥x̄r ∥

,

ξr =
∏

x=a,b,c
∥xr ∥, ¯ξr =

∏
x=a,b,c

∥x̄r ∥

where
¯X = [[ ¯A, B̄, ¯C]] is the estimated factors and X = [[A,B,C]]

are the true factors. xr are the r th column of factor matrices.

We treat the non-private version DPFact factors as the bench-

mark for DPFact factors. Figure 3(b) shows how the FMS changes

with an increase of the privacy budget. As the privacy budget be-

comes larger, the FMS increases accordingly and will gradually

approximate 1, which means the discovered phenotypes between

the two methods are equivalent. This result indicates that when a

stricter privacy constraint is enforced, it may negatively impact the

quality of the phenotypes. Thus, there is a practical need to balance

the trade-off between privacy and phenotype quality.

Table 6 presents a comparison between the top 1 (highest factor

weight λr ) phenotype DPFact-derived phenotype and the closest

phenotype derived by its non-private version. We observe that

DPFact contains several additional noisy procedure and diagnosis

elements than the non-private version DPFact. These extra elements

are the results of adding noise to the feature factor matrices. This

is also supported in Table 4 as the non-private DPFact has better

predictive performance than DPFact. Thus, the output perturbation

process may interfere with the interpretability and meaningfulness

of the derived phenotypes. However, there is still some utility from

the DPFact-derived phenotypes as experts can still distinguish this

phenotype to be a heart failure phenotype. Therefore, DPFact still

retains the ability to perform phenotype discovery.

6 RELATEDWORK
6.1 Tensor Factorization
Tensor analysis is an active research topic and has been widely

applied to healthcare data [15, 20, 28], especially for computational

phenotyping. Moreover, several algorithms have been developed

to scale tensor factorization. GigaTensor [18] used MapReduce for

large scale CP tensor decomposition that exploits the sparseness of

the real world tensors. DFacTo [6] improves GigaTensor by explor-

ing properties related to the Khatri-Rao Product and achieves faster

computation time and better scalability. FlexiFaCT [3] is a scalable

MapReduce algorithm for coupled matrix-tensor decomposition us-

ing stochastic gradient descent (SGD). ADMM has also been proved

to be an efficient algorithm for distributed tensor factorization [20].

However, the above proposed algorithms have the same potential

limitation: the distributed data exhibits the same pattern at different

local sites. That means each local tensor can be treated as a random

sample from the global tensor. Thus, the algorithms are unable to

model the scenario where the distribution pattern may be different

at each sites. This is common in healthcare as different units (or

clinics and hospitals) will have different patient populations, and

may not exhibit all the computational phenotypes.

6.2 Differentially Private Factorization
Differential privacy is widely applied to machine learning areas,

especially matrix/tensor factorization, as well as on different dis-

tributed optimization frameworks and deep learning problems. Re-

garding tensor decomposition, there are four ways to enforce differ-

ential privacy: input perturbation, output perturbation, objective

perturbation and the gradient perturbation. [16] proposed an ob-

jective perturbation method for matrix factorization in recommen-

dation systems. [22] proposed a new idea that sampling from the

posterior distribution of a Bayesian model can sufficiently guaran-

tee differential privacy. [2] compared the four different perturbation

method on matrix factorization and drew the conclusion that input

perturbation is the most efficient method that has the least privacy

loss on recommendation systems. [27] is the first proposed differ-

entially private tensor decomposition work. It proposed a noise

calibrated tensor power method. Our goal in this paper is to develop
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a distributed framework where data is stored at different sources,

and try to preserve the privacy during knowledge transfer. Nev-

ertheless, these works are based on a centralized framework. [20]

developed a federated tensor factorization framework, but it simply

preserves privacy by avoiding direct patient information sharing,

rather than by applying rigorous differential privacy techniques.

7 CONCLUSION
DPFact is a distributed large-scale tensor decomposition method

that enforces differential privacy. It is well-suited for computational

phenotype from multiple sites as well as other collaborative health-

care analysis with multi-way data. DPFact allows data to be stored

at different sites without requiring a single centralized location to

perform the computation. Moreover, our model recognizes that the

learned global latent factors need not be present at all sites, allowing

the discovery of both shared and site-specific computational pheno-

types. Furthermore, by adopting a communication-efficient EASGD

algorithm, DPFact greatly reduces the communication overhead.

DPFact also successfully tackles the privacy issue under the dis-

tributed setting with limited privacy loss by the application of zCDP

and the parallel composition theorem. Experiments on real-world

and synthetic datasets demonstrate that our model outperforms

other state-of-the-art methods in terms of communication cost,

accuracy, and phenotype discovery ability. Future work will focus

on the asynchronization of the collaborative tensor factorization

framework to further optimize the computation efficiency.
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