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Abstract. The emergence of complex deep neural networks made it
crucial to employ interpretation methods for gaining insight into the ra-
tionale behind model predictions. However, recent studies have revealed
attacks on these interpretations, which aim to deceive users and sub-
vert the trustworthiness of the models. It is especially critical in medi-
cal systems, where interpretations are essential in explaining outcomes.
This paper presents the first interpretation attack on predictive mod-
els using sequential electronic health records (EHRs). Prior attempts
in image interpretation mainly utilized gradient-based methods, yet our
research shows that our attack can attain significant success on EHR in-
terpretations that do not rely on model gradients. We introduce metrics
compatible with EHR data to evaluate the attack’s success. Moreover,
our findings demonstrate that detection methods that have successfully
identified conventional adversarial examples are ineffective against our
attack. We then propose a defense method utilizing auto-encoders to de-
noise the data and improve the interpretations’ robustness. Our results
indicate that this de-noising method outperforms the widely used defense
method, SmoothGrad, which is based on adding noise to the data.

Keywords: Interpretation Models · Electornic Health Records (EHR)
· Adversarial Attack · Robustness · Autoencoder

1 Introduction

Machine learning algorithms, particularly deep neural networks, are widely used
in various real-world tasks. However, their inner workings are often seen as a
black box. Thus, interpretation methods are essential for explaining an algo-
rithm’s output, allowing users to understand how and why an algorithm arrived
at a particular decision. Especially in sensitive applications such as medicine,
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interpretations improve the system’s reliability and enable the discovery of new
biomarkers and important features for future decision-making processes. For
instance, Quellec et al. [15] use heatmaps to identify local patterns and demon-
strate which pixels in retinal fundus photographs are involved in the early signs
of retinal disease.

Adversarial examples [23] have been extensively studied in recent years as
a potential vulnerability of deep neural networks. Traditionally, they aim to
add a small perturbation to the input at inference time, causing the model
to classify it differently. With the increasing use of interpretation methods, a
new type of attack has emerged. These attacks focus on generating misleading
interpretations that deviate significantly from the true classifier interpretations,
leading to inaccurate conclusions about the importance of certain features or
rendering the interpretations unreliable [8].

Sequential electronic health records (EHR) are crucial data sources in the
medical field, containing discrete data of patients’ vital values and lab values
collected over time and across hospital visits. Due to the importance of these
data and their use in many classification based predictive models, recent efforts
have been made to enhance the interpretability of models trained on EHR data.
Despite the prevalence of interpretation attacks in image classification, to the
best of our knowledge, no interpretation attacks have been studied targeting
EHR-based models.

Conducting interpretation attacks on EHR data presents significant chal-
lenges due to the unique characteristics of the data. Firstly, for building in-
terpretable models using EHR data, models are designed to produce predic-
tions and interpretations simultaneously. In contrast, image interpretations are
mostly gradient-based and created via post-hoc approaches. Thus, manipulating
the EHR interpretations can easily alter the patient phenotype, consequently
affecting the predicted class.

Secondly, the structure of EHR data is vastly different from images. As a
result, the widely used L∞ norm based attacks in image domain are less mean-
ingful in the EHR domain since L∞ does not capture the distance between
the sequential data well (e.g., the temporal trends). Also, unlike images, EHR
data consist of multiple attributes, such as heart rate or temperature, whose
values are sequential and time-dependent. Therefore, moving across time and
attributes significantly influences the interpretations. Consequently, the crite-
ria used for assessing the image interpretation’s robustness on previous works
cannot be directly applied in the EHR domain.

This work proposes an interpretation attack on EHR data, utilizing specific
metrics suitable for this data type. We evaluate our attack against a powerful
existing detection technique designed for conventional adversarial examples on
EHR data and demonstrate that the attack is not detectable. Furthermore, we
aim to make the EHR interpretations robust against the proposed attack. We
show that using an auto-encoder to de-noise the input is significantly more ef-
fective than using noisy input, as in the state-of-the-art method SmoothGrad.
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The source code of our implementation is publicly available on GitHub4. We
summarize our contributions as follows:

– We propose an interpretation attack on EHR data. This attack is created
on top of an interpretable model, so the interpretations are closely tied to
the model’s predictions. It differs from previous attacks in the image domain,
which rely on gradient-based and post-hoc interpretation methods.

– We propose three metrics to assess the EHR interpretation attack. In the
previous works, top-K salient explanations between the clean and adversarial
images were used for evaluation. However, it is not suitable for EHR data.
Two of our evaluation metrics are alternatives to the top-K criteria, and the
third metric is based on the Wasserstein distance which better captures the
similarity between temporal data.

– We conduct experiments showing that the state-of-the-art detector RADAR,
which was designed to detect conventional EHR adversarial examples, are not
successful in detecting the proposed attack. We then explore the factors that
contribute to this attack evasion.

– Finally, we present a method to enhance the interpretations’ robustness and
reduce the attack strength. We employ an auto-encoder to boost the robust-
ness of our interpretations through a de-noising process. We show that out ap-
proach outperforms SmoothGrad, which is commonly used in gradient-based
methods by averaging noisy data.

2 Related Work and Preliminaries

2.1 Attacks on Image Model’s Gradients

Post-hoc interpretability are a set of interpretation methods that seek to explain
the predictions of models without relying on their underlying mechanisms [11].
Gradient-based approaches are commonly used in image classification to extract
these explanations [17,19,20]. They result in a saliency map that explains the
output of the model (usually a convolutional neural network (CNN)) by visu-
alizing the areas of the input image that contribute the most to the network’s
output. However, saliency maps are less common in Recurrent Neural Networks
(RNN) since RNNs are typically used for sequential data such as time-series.

Recent research has shown that these methods are vulnerable to interpreta-
tion attacks, where small perturbations are deliberately crafted and added to
input images to distort the explanations [8]. These attacks primarily focus on
images as they rely on gradient-based techniques and face significant challenges
in other domains. Several techniques have been proposed to address this issue,
including adding randomness to the input called SmoothGrad [21,26], modifica-
tion of the model architecture [6], or altering the training process using regu-
larization or integrated gradients [3,7]. These approaches are highly dependent
on the architecture of image models and their gradients. Interpretation attacks

4 https://github.com/Emory-AIMS/EHR-Interpretation-Attack
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in other domains including EHR have been relatively overlooked due to the dif-
ficulty in attacking against complex saliency maps and the lack of a definitive
interpretation benchmark.

2.2 Medical Attention-based Models

Recent research in the medical field has focused on using the attention mecha-
nism to improve the interpretability and accuracy of predictions made using EHR
data [4,5]. The attention mechanism is an approach used in machine learning
models that assigns a weight to each input feature, indicating its relative impor-
tance to the model’s final decision. They generally use BERT models [10,16,18]
or multi-layer RNNs [9,12,13,25] as the baseline to obtain the attentions. BERT
models are mostly focused on binary medical codes and their pre-trained mod-
els are often not publicly available due to the sensitive nature of the medical
data used for their training. In this work, we use RETAIN [5] as a well-known
EHR attention-based RNN model. RETAIN can give interpretation on both
visit (temporal point) and attribute levels, and in contrast to other works, it
does not need access to extra meta data [9]. We then propose interpretation
attacks considering the structure of EHR data and also the intrinsic nature of
their non-post-hoc interpretable models.

3 Our Approach

In this section, we first describe the problem setting, then present our approach
to the interpretation attack on EHR models and elaborate the rationale behind
each objective loss term. We then improve the attack by incorporating dynamic
weighing to penalize the attack optimization process and reduce the detectability
by modifying the penalty term. We propose new metrics as the current evaluation
metrics are unsuitable for EHR data. Finally, we explore methods for defending
against the attack and demonstrate that de-noising is more effective than the
state-of-the-art method for improving the robustness of interpretations.

3.1 Problem Setting

EHR dataset is a set of clinical trajectories for patients where each trajectory
is a sequence of hospital or clinic visits, each visit corresponding to a set of at-
tributes/measurements [1]. For a given dataset with longitudinal EHR data from
N patients, we represent the clinical trajectory of patient n as X(n). This tra-
jectory is characterized by a sequence of tn hospital visits and can be expressed
as:

X(n) = [X1, X2, ..., Xtn ], (1)

where Xi ∈ Rd denotes the variables from d vital sign measurements and lab
events of the i-th visit made by patient n. Each xi,j shows j-th attribute in
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the i-th visit. We will exclude the superscript (n) in the subsequent sections to
simplify the presentation.

Given a neural network model f : R(t,d) → Rc where c is the number of possi-
ble classes, we denote the interpretation that is associated with the parameters of
function f as Φf : R(t,d) → R(t,d) in which every attribute in a specific visit gets
a score that shows its importance on the predicted outcome. Given a test input
X, the class and explanations of this input is determined by c∗ = argmaxc f(X)
and ω = Φf (X), respectively. In RETAIN [5], the impact of each input xi,k on
the final classification result is calculated using the two-level attention weights:

ωi,k = αiW (β ⊙Wemb[:, k]) xi,k, (2)

where αi is the attention weight assigned to the i-th visit, βi is an attention
weight vector for all attributes and measurements xi,k of the i-th visit, W is the
output weight matrix, Wemb is the weight matrix at the embedding layer, and
the symbol ⊙ represents element-wise multiplication. ωi,k is the corresponding
contribution to the input xi,k. Therefore, we can obtain the contribution matrix
ω using all ωi,k.

3.2 Interpretation Attack Formulation

Given a patient record X, the goal is to find a new perturbed record X̃ that is
similar to the original record X both in input space and class predictions but
with distorted interpretations. The attack can either be targeted, where we try

to make the interpretations of X̃ closer to a new explanation ω†, or untargeted,
where we attempt to change the interpretations to be far from those of X. Here
we aim for a targeted one and formulate the interpretation adversarial attack by

min
X̃

α∥Φf (X̃)− ω†∥+ γ∥X̃ −X∥1 + β(max{Logit(X̃)i : i ̸= c∗} − Logit(X̃)c∗)
+

(3)

where (r)+ represents max(r, 0), c∗ is the predicted class of X, Logit is the out-

come of the neural network before the Softmax layer and X̃ is the adversarial
example resulting in misleading interpretations. α, β and γ are the coefficients
to balance the impact of the loss function terms. We will discuss each term one
by one:
1. Interpretation Loss: The first term ensures that the interpretations of X̃
resemble the targeted interpretation ω†. This attack can be reformulated as an
untargeted attack by replacing the current term with −∥Φf (X̃)−Φf (X)∥. In the
case of the targeted attack, ω† can come from another set of interpretations with
different but still realistic phenotypes, such as the interpretations of a randomly-
selected patient, or patients’ average interpretations of a different class than the
X’s class c∗. Since this leads to a more realistic scenario we proceed with tar-
geted attacks.
2. Perturbation Loss: The second term aims to keep the adversarial pertur-
bations small. We optimize the perturbations using L1 norm rather than widely
used L2-norm or L∞-norm for images. L1 norm for adversarial attacks on EHR
data are more meaningful for several reasons. First, EHR data are sparse, where
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Algorithm 1: Interpretation Attack on EHR

Function : MINIMIZE-ATTACK-LOSS(.) : returns X and the
corresponding Y by minimizing Eq. 3

Input : initial clean sample (Xclean, Yclean), initial coefficients (αinit, βinit)
in Eq. 3, number of iterations T, the maximum possible β value
βtreshold and the number of extra steps for penalizing stepsextra

Initialize : α, β = αinit, βinit; X0, Y0 = Xclean, Yclean

1 for t ∈ {1, ..., T} do
2 Xt, Yt = MINIMIZE-ATTACK-LOSS(Xt−1,α,β)
3 if Yt ̸= Yclean then // Dynamically penalize the optimization

4 while Yt ̸= Yclean do
5 α, β = α/2, β × 2
6 Xt, Yt = MINIMIZE-ATTACK-LOSS(Xt,α,β)
7 if β > βthreshold then return Attack-failure;

8 end
9 for se ∈ {1, ..., stepsextra} do

10 Xt, Yt = MINIMIZE-ATTACK-LOSS(Xt,α,β)
11 end
12 α, β = αinit, βinit

13 end

14 end
15 Return Xi from {X1, ..., XT } with Yi = Yclean and its interpretations have the

least distance to the target interpretations (i.e. min ∥Φf (Xi)− ω†∥)

many of the values are either zero or imputed and hence do not carry much
information. Second, unlike images, different medical attributes carry different
influences and weights on the output. Consequently, L1 norm is suitable to meet
both sparsity and heterogeneity of the EHR data [1,22].
3. Classification Loss: The third term aims to keep the class prediction un-
changed. Our interpretation method is non-post-hoc, so the predictions are
highly tied to the interpretations. Thus we need a more powerful function to
keep the class of X̃ unchanged. We employ the logits based function for this
purpose since it can be well optimized for manipulating the class predictions,
especially for non-linear objective f(x̃) = c∗ [2]. We will show in Sec. 3.4 that

it can be improved so that the output space Logit(X̃) resembles Logit(X) and
hence helps the adversarial example remain undetectable.

3.3 Optimization with Dynamic Penalty

Equation 2 denotes how the parameters of the model, including weights and
attributions, are directly involved in the explanations of the input. We observed
that in some cases, the objective to change in interpretations might lead to a
different class label. Given that the interpretation attack is conducted using a
gradient descent algorithm, we use dynamic penalty for the interpretation and
classification loss terms for preventing the prediction change.
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Concretely, it involves adjusting the coefficient in Equation 3 to prioritize the
objective of keeping the prediction label unchanged, i.e., incur a higher penalty
whenever encountering a label change in any iteration. We can achieve this by
decreasing α and increasing β by a factor (e.g., the factor is set to 2 in our
implementation) until the original class label is attained. We can then continue
using these coefficients for a few more steps to move away from the classification
boundaries. If this penalization process continues without successfully restoring
the original class, the algorithm is considered to have failed. Algorithm 1 outlines
the different components of the attack.

3.4 Minimizing Detectability

To carry out a stealthy attack, two aspects must be considered. The first is
to keep the perturbations in the input space minimum, while the second is to
maintain the integrity of the output space which includes the final class predic-
tions and their associated logits. The reason is that many state-of-the-art defense
methods for adversarial examples check changes both in the input feature space
and the output logits space [14,24]. So in order to minimize the detectability, it
is necessary to ensure that the logits do not change drastically during the attack.
We observed that as we repeatedly apply and remove the penalty according to
algorithm 1, it causes the output space of the adversarial example to oscillate
near the classification boundaries. Consequently, while the final label is the same
as the original class, the logits do not resemble the original logits, nor does the
confidence level of the adversarial prediction. This difference in logits, which we
will refer to as output space, can be used to detect the attack.

To address this issue, we propose enhancing (3) by replacing the classifi-
cation loss with two different alternatives. First we use the Kullback-Leibler
divergence to directly compare the distribution of the original sample and ad-
versarial example logits in order to keep them similar. We denote this diver-
gence by KL ( Logit(X) || Logit(X̃) ) (KL attack). Second, similar to the idea
of C&W conventional adversarial attacks [2], we use max ( max{Logit(X̃)i : i ̸=
c∗} − Logit(X̃)c∗ ,−κ ) where κ is a positive adjustable value and maintains a
margin between the predicted logit and the second largest logit value to ensure
high confidence in the predicted class (Confident attack parameterized by
κ). Since the classifier is trained based on the clean examples’ manifold, it can
classify them with high confidence. So by ensuring high confidence predictions
for the adversarial examples, we can keep their logits similar to their original
counterparts.

3.5 Metrics for Evaluation

For conventional adversarial examples, attack success rate (ASR) is measured as
percentage of examples with flipped class labels. However, interpretation attacks
aim to alter the multi-dimensional interpretation vector, making it difficult to
establish a clear binary metric for measuring the success of the attack. In the
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Fig. 1. Interpretations of a patient’s EHR data for six attributes (RR, HR, K, SBP,
DBP, Temp) with heart failure at the final time-stamp. Interpretations of different
attributes can be compared with each other in each specific time stamp. Also each
attribute separately can be explored for its changes across time. The interpretations
for EHR data generally gain more importance as the time of disease onset approaches.

subsequent discussion, we will outline two particular aspects of EHR data that
must be taken into account when defining evaluation metrics.

In many application of EHR data, the interpretations may carry either pos-
itive or negative connotations, each with its unique significance. For example,
when predicting the likelihood of a specific disease, the use of a particular medica-
tion may negatively affect the prognosis and decrease the chance of disease onset.
For a clinician, the classifier’s explanation of such a drug is no less important
than the factors that indicate positive interpretations towards the prediction.

Another characteristic of EHR data is the heterogeneity and time sensitivity.
Unlike pixels in images, the diverse attributes in EHR data hold distinct mean-
ings, and clinician’s interpretation may differ for each attribute. Additionally,
the value of interpretations for clinicians is affected by the timing of attribute
collection. Clinicians attach more significance to the data points that are closer
to the disease onset. Fig. 1 displays interpretations of some attributes calculated
by RETAIN for predicting heart failure in a patient. Given these factors, we
propose three metrics to evaluate the sucess of the interpretation attack, which
consider the connotations of the interpretations, the attribute-level heterogene-
ity, and the visit-level time awareness.

Signed top-K intersection size: According to Ghorbani et al. [8], in many
cases, when interpreting a model, the explanations of the most important fea-
tures are often of interest. In a gradient-based saliency map, the top-K features
are determined by their magnitudes. Here we involve the connotation of the
interpretations and assess the success of the attack by comparing the propor-
tion of top-K features with consistent signs before and after the attack. So if
A = {a1, ..., ak} and B = {b1, ..., bk} are the sets of the K largest absolute-value

dimensions of Φ(X̃) and Φ(X) respectively, and C = A ∩B, then we have

topK(C) = | {ci ∈ C : Φ(X̃)ci ∗ Φ(X)ci > 0} |. (4)

Asymmetrical signed top-K intersection size: Since the EHR is sequential
and time-sensitive, the importance of different attributes are comparable in each
timestamp that they are collected. To reflect that, we suggest a new metric that
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measures the top-K salient features in corresponding multivariate time series at
each time point and then aggregate them.

Also, we assign weight ϕi to each time to better attain the perspectives of
clinicians who may place greater emphasis on certain times. These weights can
be achieved by background knowledge (e.g., higher weight on certain time points
before the disease onset) or approximated by how the interpretable model weight
different times, e.g., by taking 100 random samples from the clean data and
summing up their interpretation values of all attributes at any given time. The
resulting values are averaged over all samples to derive the weight that should be
assigned to that specific time. For time ti ∈ {1, . . . , t}, we denote Ati = {atij }kj=1

and Bti = {btij }kj=1 as the sets of the K largest absolute-value dimensions of

Φ(X̃ti) and Φ(Xti), respectively, and their intersectino as Cti = Ati ∩Bti .

topK asym =
t∑

i=1

ϕi ∗ topK(Ci). (5)

Wasserstein distance: The Wasserstein distance measures the cost of moving a
variable mass and is well-suited for comparing changes in time series. Its ability
to capture perturbations has made it increasingly popular in the context of
adversarial examples. We use the Wasserstein distance to measure the changes
of contribution by each attribute as time series - since the modality of data is
different across different attributes as discussed before. The resulting distances
are then summed to obtain the final Wasserstein distance. Given attribute index
dj ∈ [d], we denote X

dj

[t] as the sequential values of a specific attribute, and Wass

as the Wasserstein distance. Then, we calculate the final distance as:

Wass dist =

d∑
j=1

W1(Φ(X̃
j
[t]), Φ(X

j
[t])). (6)

where W1 denotes 1-Wasserstein distance for one dimensional data.
To make equations 4, 5 and 6 consistent with our targeted attack, we calculate

these relative metrics:

topKtargeted = topK(Φ(X̃i), ω
†
i )/topK(Φ(X̃i), Φ(Xi)); (7)

topK asymtargeted = topK asym(Φ(X̃i), ω
†
i )/topK asym(Φ(X̃i), Φ(Xi)); (8)

Wass disttargeted = Wass dist(Φ(X̃i), ω
†
i )/Wass dist(Φ(X̃i), Φ(Xi)). (9)

These three new metrics not only measure how the adversarial interpretations
are distant from the original ones, but also reflect how they resemble the target
interpretations ω†. The attacks with larger topKtargeted and topK asymtargeted,
and with smaller Wass disttargeted are more powerful. From now on, when we
mention these metrics, we are specifically referring to their targeted version.

3.6 Robustness

To provide robustness, we propose using a sequential auto-encoder to de-noise
the input data at inference time and recover the original information. A typical
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auto-encoder comprises an encoder that compresses the data into a smaller in-
termediate representation and a decoder that attempts to reconstruct the input
data from those embeddings. As the encoder and decoder process the data, the
output becomes de-noised. We train the auto-encoder on clean data so it learns
the normal manifold. As a result, at inference time, it can remove the noise that
caused the input data to become far from this manifold. We then utilize the
interpretations of the decoder’s output instead of those of the input. Our results
show that this approach leads to robust interpretations.

There are two reasons for this. Firstly, the EHR attack perturbations are
sparse and have a greater magnitude wherever the features have notable in-
terpretations. Therefore, the de-noiser can restore the original interpretations
by reducing the large sparse perturbations on the salient features. Secondly,
interpretation attacks differ from traditional adversarial examples in that they
aim to modify smoothly distributed, high-dimensional interpretations, especially
in EHR data. Once the de-noiser eliminates sudden, sparse perturbations, the
interpretations can be regained by relying on the information present in the
surrounding neighborhood.

We compare our method with SmoothGrad, a known and strong defense
against interpretation attacks [21]. Although the attack in our case is gradient-
free, the idea of SmoothGrad is still applicable. It involves adding noise to the
data multiple times (usually 10 to 50) and averaging their contributions. How-
ever, this method is neither computationally efficient nor effectively provides
robustness against EHR attacks as we will show empirically.

4 Experiments

In this section, we will address these questions: 1) What is the effectiveness of
the attack in altering the interpretations while maintaining the classification
outcomes? 2) Can existing defense methods against adversarial examples detect
the interpretation attack? 3) How does the proposed de-noiser approach help
with the robustness?
Dataset. The MIMIC-III dataset is a collection of electronic health records from
thousands of patients in intensive care units. We use a dataset that was processed
by [22] for the binary task of mortality prediction, resulting in 3177 positive sam-
ples and 30344 negative samples, each comprising 19 attributes across 48 times-
tamps including vital signs and lab events. Missing features were filled using
the average value across all timestamps, and outliers were removed and imputed
according to interquartile range criteria. Finally, each sequence was truncated
or padded to 48 hours, and each feature was normalized using min-max normal-
ization. We use 80% of the data for training and the rest for testing.
Model Architecture and Parameters. Adversarial examples were generated
against RETAIN [5] as our target model, which includes an embedding layer of
size 128 and two GRU layers with 128 hidden units. The evaluation results of
the test data on the final trained model are AUROC = 0.92, AUPRC = 0.73,
F1Score = 0.57 and Accuracy = 0.86. We evaluate the detectability of the
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Fig. 2. The comparison of three interpretation attacks, which differ in their penalty
term, shown using three metrics. The desirable results are located in the hatched area.
A lower perturbation achieved by a smaller γ leads to better attack success, but may
also result in a higher detection rate.

interpretation attack using RADAR [24]. It is a robust detection method, specif-
ically developed for traditional EHR adversarial examples where the objective is
to change the class. This detector identifies adversarial examples through both
changes in input space and also output space relative to the normal manifold,
making it well-suited for our purposes. Finally to enhance the data robustness, we
de-noised data by the same auto-encoder architecture as that used in RADAR.

4.1 Attack Performance

Comparison of Attacks. We evaluate the attack performance based on three
different metrics introduced in Sec. 3.5. We compare the original attack (equation
3) with two alternatives, the KL attack and the Confident attack, proposed in
Sec. 3.4. In our experiments with the Confident attack, we set κ = 0.8, as it
provides a high level of undetectability. Our comparison is based on different
values of the coefficient γ in equation 3, which constrains the perturbation size.
The higher the value of γ, the more restricted the attack is in terms of its distance
from the original sample. Since the parameters α and β are dynamically adjusted
by algorithm 1, we simply select their initial values as 1. Also based on a grid-
search we set T = 1000 and stepsextra = 10.

Fig. 2 illustrates the results based on the three metrics (equation 7, 8, 9)
from left to right, respectively. The hatched area in each figure demonstrates
the most desirable results. For Fig. 2.a and b, a ratio of over 1 implies that the
interpretations are more similar to the targeted interpretations than the original
ones, and the larger the ratio, the better. Conversely, in Fig. 2.c, the opposite is
true, as this measurement employs a distance metric rather than the intersection
of salient features. Although the attacks are very similar, in the next section, we
will show the main difference lies in the stealthiness of each of these attacks.

Selection of K. Fig. 3 demonstrates that how the selection of K in top-K
metrics (7 and 8) impacts our evaluation of the attack’s success when γ = 0. In
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Fig. 3. The comparison of different values of K in two metrics, top-K (a) and asym-
metrical top-K (b). The concentration of perturbations on the latest time-stamps (c)
confirms that small values of K are sufficient for evaluation.

metric 4 since K is calculated in each time and over a lower dimension than the
entire EHR data, we set the value of K to a lower number than in metric 8. As
expected, the value of K affects the degree of overlap between interpretations
before and after attack. Fig. 3.c shows the average perturbations of all the ad-
versarial examples when γ is zero and there is no constraint on the input space.
The perturbations are concentrated on the latest time-stamps which hold the
most significant interpretations in the model and clinical environments. There-
fore, selecting a large K does not yield significant interpretations, particularly
since many interpretations that are distant from these timestamps have close
to zero. Consequently, considering large K results in overlapping interpretations
that do not offer meaningful insights into the attack’s success.

4.2 Attack Detectability

Fig. 4 illustrates an example before and after the attack and their difference for
the confident attack with γ = 0.5. The attack causes sparse but strong pertur-
bations, which lead the interpretations to shift from the original to the target
interpretations. As previously discussed, the low number of perturbations and
their sparsity make them undetectable in EHR data. By decreasing γ, the mag-
nitude and density of the perturbations become more flexible. Fig. 5 illustrates
the interpretations of the original sample and its adversarial counterpart from
Fig. 4 as well as the target interpretations across the latest timestamps. Due to
space limitations, only three attributes are included in the figure. It reveals that
the sparse perturbation attack caused the adversarial interpretations to deviate
from their original values and align more closely with the target interpretations.

We evaluated RADAR to demonstrate whether our proposed interpretation
attacks can be detected by existing defense methods against conventional adver-
sarial examples. RADAR exhibits a 100% detection rate for conventional adver-
sarial examples on RETAIN. Fig. 6 presents the detection percentage of different
interpretation attacks by RADAR which are significantly lower. As γ increases,
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Fig. 4. An input space of a patient’s EHRs before (a), and after attack with γ=5 (b),
and its additive perturbation (c). The perturbation is minimal and sparse.

Fig. 5. Comparison of Adversarial, original and target contributions (interpretations)
of three attributes of a patient’s EHR over time.

the perturbations become smaller, resulting in a decrease in the detection rate in
input space. Additionally, considering the detection in output space,, when γ is
small, the adversarial example has more flexibility during optimization, allowing
it to approach the classification decision boundary more closely and activate the
penalty process in algorithm 1 more frequently. In Sec. 3.4, we discussed how
KL and confident attacks better maintain similarity between the original and
output space in such cases. However, for larger values of γ, the original attack is
less likely to trigger the penalty process and remains more stealthy than the KL
attack. Generally, the confident attack keeps the output space less detectable
and maintains a greater distance from the class boundary.

4.3 Robustness

In this part, we evaluate the effectiveness of the proposed auto-encoder (AE)
denoiser based defense method. We report the attack success rate of the attack
under the proposed defense method, and compare it with the attack without
defense, and the attack with the SmoothGrad defense. We select the confident
attack with κ = 0.8 and γ = 0.5 as the representative of successful attacks with
reasonably high success rate and low detection rate. For SmoothGrad, the best
results are reported based on selecting a noise level of 0.1 and calculating the
average over 50 samples, which is consistent with the result in paper [21]. Fig.
7 displays a comparison of the median and quartile charts of the attack versus
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Fig. 6. Detection ratio of interpretation attacks using RADAR.

Fig. 7. Robustness of de-noising method vs. SmoothGrad based on three metrics. All
figures show the de-noising method outperforms SmoothGrad.

the robustness achieved through the de-noising method and SmoothGrad for 100
samples. Smaller values for top-K and asymmetric top-K indicate better robust-
ness, whereas higher values for Wasserstein distance indicate better robustness.
As depicted, the de-noising method outperforms SmoothGrad in all metrics.

5 Conclusion

This paper is the first study to develop and adapt interpretation attacks for EHR
models. We investigated various aspects of EHR data as well as interpretable
models designed specifically for EHR data. We presented interpretation attacks
on EHR models optimizing both attack success and detectability and evaluated
the attack using customized metrics that address EHR specifications. Our results
show that the attack not only can successfully alter the interpretations of the
model, but also can evade the detector RADAR, which is capable of detecting
100% of conventional adversarial examples. To counteract the attack, we pro-
posed a de-noiser defense and demonstrated that it improved the robustness and
outperformed existing method SmoothGrad. Future research can focus on modi-
fying EHR interpretable models to make them more robust, as well as exploring
data preprocessing, data augmentation, and adversarial training to enhance the
robustness of EHR models.
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