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Abstract—As crowdsourcing is becoming more widely used
for annotating data from a large group of users, attackers
have strong incentives to manipulate the system. Deriving the
true answer of tasks in crowdsourcing systems based on user-
provided data is susceptible to data poisoning attacks, whereby
malicious users may intentionally or strategically report incorrect
information to mislead the system into inferring the wrong truth
for a set of tasks. Recent work has proposed several attacks
on the crowdsourcing systems and showed that existing truth
inference methods may be vulnerable to such attacks. In this
paper, we propose solutions to enhance the robustness of existing
truth inference methods. Our solutions base on 1) detecting and
augmenting the answers for the boundary tasks in which users
could not reach a strong consensus and hence are subjective to
potential manipulation, and 2) enhancing inference method with a
stronger prior. We empirically evaluate these defense mechanisms
by designing attack scenarios that aim to decrease the accuracy
of the system. Experiments show that our method is effective and
significantly improves the robustness of the system under attack.

Index Terms—Robustness, Data poisoning attack, Truth Infer-
ence, Crowdsourcing

I. INTRODUCTION

Crowdsourcing is a paradigm that provides a cost-effective
solution for obtaining services or data from a large group
of users, or crowd. Amazon’s Mechanical Turk (MTurk) and
Waze are well-known examples of crowdsourcing systems that
are aggregating human wisdom to estimate the true answer
for their corresponding tasks. Many businesses use MTurk
to complete simple tasks, for example, tagging images or
completing a survey [20]. Another example is Waze [35],
a crowd-driven navigation application. Users can report the
traffic status at various locations which is then aggregated to
update the traffic condition shown on the map.

Although crowdsourcing is a cost-effective solution, attack-
ers could easily take advantage of it and exploit a large number
of workers to artificially elevate or reduce support for products
or opinions. For example, the rating system of restaurants in
the Yelp application could be manipulated by creating fake
reviews. Studies have shown [3], [25] that the revenue of
restaurants in Yelp application is increased up to 9% when the
rating score of that restaurant is increased just by one score.

Since in the crowdsourcing system the answers are collected
from non-expert workers, the collected answers often contain
inherent noise. One important component of crowdsourcing

systems is truth inference, which infers the true labels from
the answers provided by workers. Majority voting (MV) is a
straightforward method to aggregate answers which naively
assumes that all workers have the same reliability. Besides
MV, advenced methods such as probabilistic graphical model
(PGM) based, and neural network based [6], [7], [15], [17],
[29], [39] methods have been proposed to improve the perfor-
mance of truth inference by considering various parameters
such as the reliabilities of workers or the difficulties of tasks.

Most truth inference methods were designed without con-
sideration for malicious intents. However, crowdsourcing ap-
plications may be subject to data poisoning attacks [16], [32],
[36] where malicious users may intentionally and strategically
report incorrect information to mislead the system to infer
the wrong truth for all or a targeted set of tasks. In the
Waze example, the competitors may intend to tarnish Waze’s
reputation by providing wrong answers to decrease the overall
accuracy of the system. This can be often achieved via Sybil
attacks [5], [9], [38], [40] where an attacker creates a large
number of Sybil workers to strategically report wrong answers.

Concretely, malicious workers may disguise themselves as
normal workers by providing reliable answers for certain
tasks such that they escape the worker reliability model while
providing wrong answers for other tasks. With sufficient
adversarial knowledge, they may even optimize their answers
in a way that maximizes the error of the truth inference system,
as outlined in [26], [27].

The two experimental studies [33], [42] evaluated the truth
inference methods. Zheng et al. [42] evaluation is focused
on “normal” settings where workers may have varying re-
liability but do not intentionally or strategically manipulate
the answers. However, Tahmasebian et al. [33] evaluation is
focused on “adversarial” settings. In the “normal” setting, the
study [42] concluded that truth inference methods that utilize
a probabilistic graphical model (PGM) have the best perfor-
mances in most settings. Besides the study in the “adversarial”
settings [33] showed that neural networks and PGM based
methods are generally more robust than other methods. Also,
it is shown that existing truth inference methods fail to infer the
labels accurately under various attack setting, hence motivate
the need for more robust truth inference algorithms.

In this paper, we propose a data augmentation method
focused on boundary tasks that can be used to enhance the



robustness of existing truth inference methods against potential
data poisoning attacks. Our key insight is that the boundary
tasks for which workers fail to reach a strong consensus
are particularly vulnerable to manipulations and may lead to
wrong inferences. We can mitigate the risks by augmenting
answers for these boundary tasks before applying inference
algorithms. We further propose an improved inference algo-
rithm with a stronger prior obtained from the answers. We
summarize our contributions below.
• We present a data augmentation method (EdgeInfer)

focused on boundary tasks that can be used to enhance
the robustness of existing truth inference methods against
potential data poisoning attacks. The intuition behind this
is that boundary tasks are more likely to be targeted by
the malicious workers to achieve a successful attack due
to the weak agreement among contributing workers. This
method can be used as a preprocessing step to enhance
existing truth inference algorithms.

• As shown in the experimental survey [33] the state-
of-the-art methods based on neural networks and PGM
perform better and generally more robust. Therefore,
we propose Edge-NN and Edge-PGM that are based on
neural networks and PGM models and utilizing prior
information to enhance these methods. In Edge-NN,
we propose an enhanced neural network based infer-
ence method by replacing raw data distribution based
prior with a stronger prior inferred from a probabilistic
graphical model (PGM). By incorporating the prior, the
method takes advantage of two sources of knowledge
from two distinctive and complementary models, which
promises a boosted performance in terms of accuracy and
robustness. In Edge-PGM, we propose an enhanced truth
inference method based on PGM by taking advantage of
boundary tasks and curating a better prior for it. This
PGM inference method incorporates the difficulty level of
tasks into their model, however, the estimated difficulty
level of tasks is not quite certain. Therefore, utilizing a
stronger prior of the difficulty level of tasks can enhance
the truth inference method.

• We conduct experiments using three real datasets under
different data poisoning attacks in crowdsourcing. The
results verify that the proposed approach outperforms
state-of-the-art truth inference methods under a variety
of attack scenarios.

The remainder of the paper is organized as follows. Section II
covers the background of truth inference methods and attack
models in crowdsourcing systems. Section III formally de-
fines robustness in truth inference and describe the attack
methodology. Section IV describes the design of our robust
mechanism. Section V presents the experimental result of the
proposed method. Open problems and conclusion of the paper
is discussed in Section VI.

II. RELATED WORK

In this section, we briefly review various truth inference
methods and data poisoning attacks in crowdsourcing systems.

Truth Inference Methods. A key component of the crowd-
sourcing system is the truth inference method. There exist
various approaches to infer the truth of tasks [6], [7], [11],
[15], [17], [18], [23], [24], [34], [37], [37], [39], [42]–[45].
These approaches can be categorized into direct comput-
ing [15], optimization [15], [23], [24], [43], [45], probabilistic
graphical model (PGM) [6], [7], [17], [18], [34], [37], and
neural network based [11], [39]. A recent experimental study
compared different truth inference methods [42]. There are
also other approaches using matrix factorization for truth
inference, [44] but they’ve failed to outperform the state-of-
he-art inference methods.

Data Poisoning Attacks in Crowdsourcing. Data poisoning
attacks [10], [12], [15], [26], [27], [37] have been recently
studied against representative truth inference methods that
can majorly be categorized as heuristic based methods and
optimization based method.

The heuristic based attack scenarios [12], [15], [37] ran-
domly or uniformly provide an answer for each task which
is a rather naive strategy. This simple attack strategy can
be applied without malicious workers having access to any
further knowledge, such as the inference method or answer
provided by other workers. Also, the study [33] proposes a
smarter design for a heuristic based attack in which attacker
are obfuscating their behavior by providing the true answer by
probability p and the wrong answer by probability 1− p.

The optimization based attack [27] scenarios are studied on
DS [6] and PM [24] inference method. These studies assume
attackers have full knowledge of other workers’ answers
and the inference method being used. They formulate an
optimization problem and assume the adversary does not know
the ground truth of the tasks, hence the optimization goal is
to maximize the number of flipped labels after the attack as
compared to inferred labels before the attack. The attack also
attempts to maximize the attackers’ collective confusion ma-
trix parameters (reliability) inferred by the system. Intuitively,
this will help them to obfuscate their malicious nature and
hence be more successful in misleading the system.

The comparative study [33] evaluated truth inference meth-
ods under “adversarial” settings where workers intentionally or
strategically manipulate the answers. They concluded that op-
timization based attack is more effective compared to heuristic
based attack, especially for untargeted attacks. However, for
targeted attacks, in a lower percentage of adversaries, heuristic
based attack can be more successful compared to optimization
based attack.

Related Attacks. Data poisoning attacks on machine learning
(ML) algorithms have drawn increasing interest recently [4],
[16], [30], [32], [36]. However, data poisoning attack in
ML and crowdsourcing differ from each other in four ways:
(1) the attacks in ML mostly deal with supervised models
and the goal is to degrade the performance of the model
on a validation dataset, but crowdsourcing is formed as an
unsupervised problem, (2) to carry out the attacks in ML, a
certain number or percentage of records are poisoned by an



attacker, and also all the features associated with the poisoned
record (e.g. an image) can be altered, but in crowdsourcing,
only a certain number or percentage of workers answers can
become malicious, and (3) ML problems typically have a rich
set of features for each record while in crowdsourcing for each
task only a set of ratings from workers is available.

Other related attacks include spammer [8], [28], [37] and
sybil [13], [22], [35], [41] attacks. In a spammer attack,
workers (bots) randomly submit answers to tasks. In sybil
attacks, infiltrators create fake identities to affect the per-
formance of the system. Sybil and spammer attacks mainly
focus on the system infiltration as part of the attack and can
be considered as means to achieve a data poisoning attack.
The data poisoning attacks we consider in this paper assume
adversaries have successfully created or compromised multiple
workers and injected strategic answers.

III. PROBLEM DEFINITION AND ATTACK SETUP

In this section, we define robustness on the truth inference
method in the crowdsourcing system and provide a high-
level overview of attack settings in a crowdsourcing system.
Problem Definition. Given a set of tasks T and a pool of
workers W, each task t ∈ T is assigned to a subset of
workers w ∈ W. Each worker wi provides an answer to
each of their assigned tasks. The goal of truth inference is to
determine the true answer Ẑ based on all the answers provided
by the workers for each task. The tasks in a crowdsourcing
system can be classified into 1) decision-making tasks where
workers select a binary answer such as yes or no, 2) multi
label tasks where workers select one label among multiple
candidate labels, and 3) numeric tasks where workers provide
answers with numeric values. The truth inference methods
may consider different factors such as type of tasks, level of
difficulty of tasks, and task assignment methods [42]. In this
paper, we focus on the decision-making tasks, i.e. the binary
truth inference problem, and do not consider other variations.

Definition 1: (Truth Inference) Given a set of tasks T, set of
workers W and a bipartite graph indicating tasks assigned to
each worker, a truth inference method returns a set of predicted
true label for tasks, denoted as Ẑ.

In an adversarial environment, a certain percentage of
attackers may behave maliciously and strategically attempt to
flip the true label of tasks. The goal of robust truth inference
is to effectively infer the truth through correct estimation of
the label even in the presence of malicious workers.
Attack Setup. Based on the adversary’s level of knowledge,
attacks can be classified into black-box, gray-box, and white-
box attacks. In black-box attacks, the adversaries only knows
about their assigned tasks. In white-box attacks, the adversary
has full knowledge about the inference method being used, the
task assignment and answered provided by other workers. In
gray-box attacks, the adversary may have partial knowledge
of the above. The two attack methodologies based on different
levels of adversarial knowledge are described as follow.

Heuristics Based Attacks. We adapt the heuristics based
attacks in a black-box setting when the malicious workers do

not know each other, as a non-collusive strategy. The simplest
heuristic for an attacker would be to always report the wrong
answer for each of their assigned tasks. However, this may
be easily recognized by most of the truth inference systems
(besides majority voting) which model the workers’ reliability.
The attackers could disguise themselves as honest workers by
providing true answers for some tasks so that they won’t be
detected by the system. To model this behavior, we use the
following heuristics approach [33].

The worker’s behavior is modeled by defining a confusion
matrix πw that captures a worker’s probability of providing
a certain label given the true label. Given the label set
L = {0, 1}, α and β indicate the probability of workers
provide a correct label given the true label of 1 and 0,
respectively. Each malicious worker w′ is associated with a
malicious confusion matrix πw

′
with α′ and β′ and a normal

confusion matrix πw with α and β, and a disguise parameter
γ. w′ behaves as a normal worker modeled by πw with
probability γ and as a malicious worker modeled by πw

′
with

probability 1− γ. This parameter helps attackers to obfuscate
their behavior and deceive the system into not detecting them
as malicious workers. For example, a malicious worker with
a moderate disguise may have πw =

[
β = 0.85 0.15
0.05 α = 0.95

]
and

πw
′
=

[
β′ = 0.05 0.95

0.9 α′ = 0.1

]
, and γ = 0.2.

Optimization Based Attacks. We adopt the optimization
based attack [26], [33] in a white box setting where an
adversary has full knowledge of the truth inference algo-
rithm being used, answers provided by other workers, and
task assignments, therefore, can optimally inject manipulated
answers to maximize the damage to the system. The attack
goal is to maximize the number of flipped labels before
and after the attack along with maximizing the attackers’
collective confusion matrix parameters (reliability) inferred by
the system. Intuitively, this will help them to obfuscate their
malicious nature and cause more disruption in the system. Let
ẑatj and ẑbtj denote the inferred answer by the DS method
after and before attack for task tj , respectively, and α̂w′ and
β̂w′ represent the inferred confusion matrix parameters of
the malicious worker w′. The optimization problem can be
formulated as follows:

max
C′

M∑
j=1

1(ẑatj 6= ẑbtj ) + λ
∑
w′∈W′

(α̂w′ + β̂w′) (1)

where λ controls the trade-off between the objectives of
maximizing the inferred collective reliability of malicious
workers and maximizing the number of flipped labels.

IV. DEFENSE METHODOLOGY

In this section, we propose two solutions: 1) Edge-NN and
2) Edge-PGM that benefits from data augmentation technique
followed by the enhanced inference method. Figure 1 depicts
the overall framework of our solution.

Boundary Task based Data Augmentation. Intuitively, mali-
cious workers can gain power in a crowdsourcing system and
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Fig. 1: Overall Framework of EdgeInfer Solution

manipulate the result of predicted labels for some but not all
tasks, by preventing normal workers to reach consensus which
normally reflects the true label of the task. These boundary
tasks for which workers fail to reach a strong consensus
are particularly vulnerable to manipulations and may lead
to wrong inferences. Hence our proposed approach focuses
on these boundary tasks. We present two phases here, 1)
detection phase in which vulnerable tasks (i.e. boundary tasks)
are identified; and 2) augmentation phase in which matrix
completion technique is utilized to nullify the misleading
engineered answers of malicious workers.

Detection Phase. The vulnerable boundary tasks for which
workers do not reach a strong consensus are detected.

Definition 2: (Boundary task) Given a set of M tasks and
a set of N workers as t ∈T = {t1, ..., tm} and w ∈W=
{w1, ...wn}, a label set L = {0, 1} and answer matrix CN,M ,
the subset of tasks are called boundary tasks if the certainty
in workers’ majority label is less than or equal to a threshold
δ.

BT = {t : t ∈ T, max (p0t , p
1
t ) <= δ} (2)

where p0t and p1t are the probability of the truth label of
task t to be 0 and 1, respectively.

Figure 2 shows a crowdsourcing system consisting of 10
workers and 4 tasks where each task is answered by 6 workers.
For predicting the true label of task t2 and task t4, workers
strongly agree on label 1 and label 0 for task t1 and task
t4, respectively. The certainty in workers’ majority label is
83% and 100% for t2 and t4, which are quite high, so the
malicious workers might not have enough power to flip the
true label of these tasks. Therefore applying data augmentation
for these tasks would be unnecessary and may even introduce
noise. However, workers tie on the labels for task t1 and
have a weak consensus on the labels for task t3. Therefore,
malicious workers would potentially have a much greater
chance of flipping the true label of these tasks, we call these
tasks with less certainty for the majority label as boundary
tasks. Since the inferred label of boundary tasks is more
likely to be inaccurate, we run the matrix completion on
boundary tasks and concatenate the completed matrix to the
non-boundary tasks. Then, the truth inference method is run
on this augmented answer matrix.

Augmentation Phase. In a comprehensive comparison of
truth inference methods, Zheng et. al. [42] point out that
MV outperform other inference methods in case of complete
answer set, i.e all workers provide answers to all tasks.
Based on this conclusion, having a complete answer can be
advantageous in improving the accuracy of a crowdsourcing
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Fig. 2: Example of a Crowdsourcing System

system. Furthermore, study [33] shows that redundancy, i.e.
the average number of workers assigned per task, is an
important factor in resilience against attacks in crowdsourcing.

However, real world data are typically sparse, meaning the
number of answers per task is quite low, even though some
workers can answer a large number of tasks. Motivated by
this, we propose a data augmentation method to address the
sparsity challenge and enhance the robustness of existing truth
inference methods. The augmentation phase is only applied to
boundary tasks as a pre-processing step before the inference
to neutralize the potential contaminated data of adversaries.

Matrix Factorization is a common technique in data com-
pression and feature learning [21], [31]. Using this technique
for matrix completion shows the underlying interactions be-
tween workers, tasks, their corresponding level of worker re-
liability and task difficulty. This technique factorizes a matrix
to find two matrices such that their product would generate
the original matrix.

Definition 3: (Matrix Factorization): Given a set of N
workers and a set of M tasks. Let C of size |N | × |M | be the
matrix that contains all the answers that the workers provided
to the tasks. Find two matrices P|N |,|K| and Q|M |,|K| such
that P.QT approximate C.

Each row of P and Q draws the association of workers and
tasks with features. To obtain P and Q, gradient descent is
used to minimize the difference between their product and the
answer set C, iteratively. To avoid overfitting, a parameter η
is used to control the magnitude of the workers-feature and
task-feature vectors such that P and Q produce an accurate
approximation of C without having the elements of these
matrices to be unnecessarily large.

min (Cn,m −
K∑
k=1

pn,k qk,m)2 +
η

2

K∑
k=1

(‖P‖2 + ‖Q‖2)

(3)
Our augmentation approach is generalizable and agnostic

of the inference method and it is applied as a processing
step before inference to increase the redundancy of answers.
There are studies based on tensor completion [12], [44]
that use matrix completion as an inference method under a
non-adversarial setting and apply it on the entire provided-
answer matrix and their empirical results are generally not as
impressive as the other state-of-the-art methods, therefor, we
exclude them from our analysis.
Enhanced Inference Method. Inference involves aggregating
provided answers to estimate the true label of each task.
The details of inference methods in Edge-NN and Edge-PGM
approaches are described here.



Edge-NN Inference. The recent survey paper [42] compares
the traditional inference methods and conclude that DS is
one of the overall winners. Also, this study shows [33] that
LAA-S as the latest neural network based method outperforms
previous methods. Here we present a neural network based
approach enhanced with a stronger prior to achieve more
robustness. The existing state-of-the-art neural network based
approach LAA-S [39] adopts a variational autoencoder (VAE)
network [19] to leverage the learned latent truth label distribu-
tion that best represents the original task vector for inference.
However, LAA-S can also be subjective to poisoning attacks
as it is employing the distribution of the original answers as a
prior (essentially majority voting). Our main idea is to enhance
it with a stronger prior that considers workers’ reliability. We
propose a hybrid model that utilizes the neural network model
while incorporating the DS result as its prior. Since DS models
the reliability of workers as a confusion matrix it outperforms
majority voting in terms of approximating the true labels of
the tasks. Therefore, utilizing the distribution labels of DS as
the prior might result in some unsophisticated attackers being
filtered out from the system.

Figure 3 shows our proposed enhanced inference method
composed of two parts: 1) prior estimation that approximates
the distribution of labels using the inferred truth of the
tasks from DS inference method and 2) inference through
the enhanced LAA-S algorithm, while leveraging the prior
obtained in the previous step.
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Fig. 3: Components of Inference Method in Edge-NN

DS method [6] is a PGM based method that models the
reliability of each workers with a confusion matrix. It utilize
the EM algorithm to calculate the maximum likelihood and
estimate the item’s true label and worker’s reliability (i.e. their
confusion matrix).

LAA-S [39] inference algorithm adopts a VAE network [19]
to leverage the learned latent truth label distribution that best
represent the original task vector. This model contains two
shallow neural networks: 1) an encoder or classifier (qθ)
transforming the task vector (v) into the latent feature (z)
indicating the truth label, and 2) a decoder or reconstructor
(pφ) which recovers a task vector based on the latent features.

Inputs and output of the VAE represent each task as a
vector consisting of the one-hot encoding of the provided
answers by each worker to the task. The network is trained
on all one-hot encoded task vectors (v) by minimizing the
reconstruction error between the original and recovered task
vectors. Additionally, the training also considers how closely
the learned estimated ground truth resemble those inferred by
DS, supplied to the model as the prior. The objective function
is shown below.

min
qθ,pθ

Eqθ(z|v)logpφ(v|z)−DKL(qθ(z|v)|| prior) (4)

where the first term is the reconstruction error and the second
term enforces the distribution of inferred labels to follow a
specific prior through the negative KL divergence DKL term.

Edge-PGM Inference. GLAD inference method [37] is a
PGM based model that considers workers’ reliability and the
difficulty level of task to estimate the true answer of tasks.
One drawback of GLAD method mentioned in Zheng et al.
study [42] is that in some cases the estimation of the difficulty
level parameter related to the tasks is inaccurate. Hence, the
GLAD fails to outperform the other inference methods.

We adopt the GLAD truth inference method which incorpo-
rates the level of difficulty of tasks into their inference method
by replacing the vanilla prior of task difficulty level with a
better prior based on boundary tasks [37]. Our key insight
is that the more difficult tasks are the one that workers fail
to reach a strong consensus on and therefore are particularly
vulnerable to manipulations and may lead to wrong inference.
Figure 4 depicts the Components of Inference Method in Edge-
PGM.
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Fig. 4: Components of Inference Method in Edge-PGM

GLAD models each client i reliability as a single value ri ∈
[0,+∞), a higher value implies a higher reliability, and each
task’s j difficulty level as a single value 1/χ

tj
∈ [0,+∞).

A high value of 1/χtj implies task tj is more sensitive or
difficult. The true label of tasks (Ẑ) are estimated based on
workers’ reliability (r) and tasks’ difficulty (χ) parameters, as
follow:

p(ztj |C, r, χ) =
∏
i∈Wtj

1

1 + e
−rwiχtj

(5)

The Edge-PGM inference method initializes the difficulty
level (χ) of detected boundary tasks as 10 and the other tasks
are all treated equally and their difficulty level is set to 1, as
follow:
{1/χ

tj
= 10 if tj ∈ BT else 1/χ

tj
= 1 for tj ∈ T}

Then the expectation–maximization (EM) algorithm is iter-
atively applied to estimate parameters (r,χ ).

V. EXPERIMENTS AND RESULTS

Experiment Setup. In this section, we introduce the datasets
and conduct experiments on them to evaluate the performance
of the proposed robust mechanism.

Datasets. We tested our method on three public benchmark
datasets for decision making tasks. Table I shows the summary
of the datasets and their key properties.
• Product Dataset. This dataset includes 8315 tasks where

each task is a question about a comparison of two



TABLE I: Statistics and Properties of Datasets
Dataset Product PosSent Temp

N (# of tasks) 8,315 1,000 462
M (# of workers) 176 85 76
V (# of answers) 24,945 20,000 4620

Redundancy (# of answers per task) 3 20 10
Engagement (# of answers per worker) 141 235 60

Avg workers’ credibility 0.79 0.798 0.73
Truth Labels Ratio (negative,positive) (88%, 12%) (52.8%, 47.2%) (50%, 50%)

products. An example is ”are iPad Two 16GB WiFi
White and iPad 2nd generation 16GB WiFi White the
same?” [14].

• PosSent Dataset. This dataset contains information about
the general sentiment of a tweet about the reputation of a
company. Workers assess each tweet and provide positive
label, meaning that the tweet will increase the reputation
of the company, or negative to indicate the opposite [2].

• Temp Dataset. In this dataset, each task is to identify
whether or not one event happened before another in a
given context. [1]. An example news text is ”John fell.
Sam pushed him.”, and the task is to decide if the events
that the colored words describe happened before or after
each other. ”pushed” happened before ”fell”.

Poisoning Dataset. For poisoning answers, assuming ad-
versaries W ′, with the fraction of malicious workers being
|W ′|

|W |+|W ′| , we applied heuristics based (Black Box) and opti-
mization based (White Box) attacks given the attack strategies
described in Section III. Heuristic based attacks are designed
based on black-box knowledge and the disguise parameter (γ)
is set to 0.0. Optimization based attacks are designed based
on white-box knowledge and use DS as a inference methods
in which worker’s reliability is modeled based on confusion
matrix, we set the λ parameter to be 1.

Parameters. In Edge-NN method, for data augmentation
phase, the learning rate for Temp, PosSent and Product dataset
are set as [0.01, 0.01, 0.001], respectively. Also the number of
latent dimensions for each of the Temp, PosSent and Product
dataset are set to [13, 13, 20], respectively. The regularization
parameter(η) is set to 0.005. In Edge-PGM method, the range
for δ parameter is limited to [50%-70%] since other values
are just complementary to this interval. The δ in Edge-PGM
is chosen as 0.55 for all the experiments.

Metrics and Comparison. We evaluate inference perfor-
mance using accuracy and F-score, computed based on the
predicted labels and ground truth. Since the Product dataset is
heavily unbalanced, F-score is chosen as the metric. For the
other two datasets, we report accuracy. Accuracy is defined as
the fraction of tasks whose truth are inferred correctly.
Experiment Results. We conduct several experiments with
three real datasets to assess the effectivness of our solutions.

Effect of Certainty Threshold (δ) on Accuracy/F-score. Fig-
ure 5 shows the effect of the parameter δ (certainty threshold)
on accuracy/f-score of the proposed method, Edge-NN, for
different percentage of malicious workers. We run this experi-
ment on three datasets, and contaminated these datasets based
on heuristic and optimization attacks described in Section III.

The δ= 1 corresponds to augmenting all tasks and δ= 0.45
corresponds to no augmentation. When the % of malicious
workers (%mal) is low, having no augmentation performs the
best and the accuracy drops when augmentation increases.
This trend is as expected since the data has high quality and
augmentation does not help. However, as the %mal increases,
accuracy increases as augmentation increases and then drops
back when augmenting all tasks. This verifies the benefit of
augmenting the boundary tasks only when there is significant
noise in the data.

As show in Figure 5, we observe that the accuracy of the
system is sensitive to the value of noise added for augmen-
tation on boundary tasks. Note that the number of candidate
tasks is directly proportional to the certainty threshold (δ).
Furthermore, it is shown that the optimal δ for an effective
defense is dependent on %mal. Intuitively, at a higher %mal,
there will probably be more contaminated tasks, and so by
choosing a higher δ, we will apply augmentation on more
tasks. We replicated this experiment on the PGM based
methods and observed similar trends, which stresses that the
success of boundary task augmentation is not bound to a
specific inference method. This trend remains the same in both
heuristic and optimization attack.

For the remaining comparison, we choose to set δ as 0.55,
0.55, 0.65 for Temp, PosSent and Product dataset for heuristic
and optimization attack, respectively. In general, the range of
[0.5, 0.65], corresponding to the boundary tasks, gives a good
overall performance over varying percentage of malicious
workers. This also confirms our intuition that it is beneficial
to only perform data augmentation on the boundary tasks. We
note that in practice, the percentage of malicious workers will
not be too high due to the cost of creating sybil workers. Given
that Product dataset is comparatively more sparse it would be
harder to reach a strong consensus with fewer labels for each
task. Therefore, to correctly infer the truth of those boundary
tasks, more of them should be included in matrix completion,
hence a higher δ = 0.65 is selected.

Ablation Study. We assess the impact of augmentation as
a preprocessing step and utilizing an enhanced prior on the
three truth inference methods, DS, GLAD, and LAA-S (i.e.
majority voting as prior). The methods that just consider the
edge augmentation are called in the form of Edge-$method-
name$. The methods with enhanced prior are named in the
form of $method-name$+. Also, the methods that combine
both of these techniques are named as Edge-$method-name$+.
For example, Edge-DS is a DS inference method with edge
augmentation, LAA-S+ is a LAA-S method with enhanced
prior (i.e. DS as prior) and Edge-LAA-S+ is a LAA-S method
with enhanced prior along with edge augmentation.

First, we assess the impact of augmentation, as shown in
Figure 6, in all three datasets, Edge-GLAD, Edge-DS and
Edge-LAA-S+ outperform GLAD, DS and LAA-S, especially
in the most likely range for %mal, from 20 to 30. This confirms
the benefit of the data augmentation technique in enhancing
the performance of the existing truth inference methods.
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Fig. 5: The Effect of Certainty Threshold (δ) on Accuracy
across different %mal

Moreover, we assess the impact of using DS as prior on
the LAA-S method instead of majority voting. As it is shown
in Figure 6, using the DS as a prior (LAA-S+) helps to
slightly improve the performance of the model, however, if
the number of malicious workers is higher than 20%, the
DS model completely failed, therefore using DS could not
outperform the original LAA-S model. Edge-LAA-S+ (i.e.
Edge-NN) outperforms other methods and verifies the benefit
of both augmentation as a preprocessing phase and using DS
as prior.

Furthermore, we assess the impact of using different distri-
bution for boundary tasks versus other tasks as prior on the
GLAD method instead of using uniform distribution for all
tasks. As it is shown in Figure 6, differentiating the difficulty
level of tasks and using it as a prior (Edge-GLAD+) helps to
improve the performance of the model.

Comparison of Edge-NN and Edge-PGM. Figure 6 shows
that Edge-NN (i.e. Edge-LAA-S+) and Edge-PGM (i.e. Edge-
GLAD+) are robust against both type of attacks (i.e. black-box
and white-box) and reduce the attack’s success rate.

Edge-NN performs better than Edge-PGM when the %mal
is less than 20%, since the performance of Edge-NN depends
on the prior and DS method at that specific interval performs
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Fig. 6: Ablation Study: Robustness vs %mal

well. By increasing the number of malicious workers in the
system the DS method is unable to perform well and it effects
the performance of Edge-NN method. However, Edge-PGM
outperform Edge-NN when the %mal is greater than 20%.

VI. CONCLUSION & FUTURE WORK

We proposed two solutions Edge-NN and Edge-PGM to
improve the robustness of existing truth inference methods
against data poisoning attacks in crowdsourcing systems. The
proposed solutions provide a novel algorithm that applies
matrix completion on a subset of tasks in which workers
cannot reach a sufficiently strong consensus. In addition, it
is combined with two enhancements to existing state-of-the-
art inference methods by utilizing prior information. For the
evaluation of our work, we applied a heuristic based attack
and optimization based attack and our results confirm the
effectiveness of our defense solution.

Our future work includes studies on other types of attacks
such as targeted attacks and further improvement on robustness
especially against strong white-box attacks. Furthermore, we
plan to study automatic selection of δ by analyzing the distance
between the distribution of estimated ground truth obtained
from a weak truth inference method (e.g. MV) and a strong
truth inference method (e.g. DS) as a proxy for the percentage
of malicious workers in the system.
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