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Abstract

Atrial fibrillation (AF) is the most common cardiac arrhythmia as well as a significant risk factor in heart failure
and coronary artery disease. AF can be detected by using a short ECG recording. However, discriminating atrial
fibrillation from normal sinus rhythm, other arrhythmia and strong noise, given a short ECG recording, is challenging.
Towards this end, we propose MultiFusionNet, a deep learning network that uses a multiplicative fusion method to
combine two deep neural networks trained on different sources of knowledge, i.e., extracted features and raw data.
Thus, MultiFusionNet can exploit the relevant extracted features to improve upon the utilization of the deep learning
model on the raw data. Our experiments show that this approach offers the most accurate AF classification and
outperforms recently published algorithms that either use extracted features or raw data separately. Finally, we
show that our multiplicative fusion method for combining the two sub-networks outperforms several other combining
methods.

1 Introduction

Atrial Fibrillation (AF) is a critical health condition among cardiovascular diseases due to its prevalence, complexity
and healthcare costs. Early diagnosis of AF is crucial as it can help prevent other diseases such as stroke [1]. Elec-
trocardiogram (ECG) is the most prevalent and effective diagnostic tool for detecting cardiac arrhythmia. However,
identifying whether there is AF in an ECG recording remains a challenging task since AF is asymptomatic [2] and
may only appear briefly in the ECG signal.

In this paper, we are interested in detecting whether an ECG signal includes AF and distinguish it with other heart
rhythm issues. This is orthogonal to detecting the starting and ending positions of AF in an ECG signal which is not in
the scope of this study. Although using ECG is common practice, the actual AF detection is generally performed in a
manual or semi-automated manner by cardiologists who visually inspect the signal for abnormalities. This process is
time-consuming, requires an expert trained to interpret the signals, and is error-prone as signals may be misinterpreted
or not seen. During AF, the P-waves in the ECG signal degenerate into a series of fibrillatory f-waves with small
magnitudes [3], short and variable RR-intervals also appear [4]. P-waves, f-waves, and RR-intervals are described in
more details in Section 3. Many AF detection methods based on the statistical information of P-waves, f-waves, and
RR-intervals were developed as in [5, 6, 7, 8].

More recently, with the development of data-driven approaches in machine learning, some methods [9, 10, 11] for
automated classification of normal/abnormal ECG signals have been proposed, which offer higher accuracy than pre-
vious approaches. However, these machine learning algorithms require relevant hand-crafted features as input which
can be time-consuming to generate. The resulting performance heavily depends on the features and may not be robust.
With the advance of GPU technology, deep neural networks can approximate very complicated learning function with
a reasonable training time. Deep convolutional neural networks [12] that take raw data as input were proposed to
automatically learn latent features. One challenge of AF detection using this approach is that it requires a large labeled
ECG training dataset. To address these challenges, we develop a method to utilize both extracted features and raw
data values for more effective and robust AF detection without relying on a large training dataset or hand-tuned feature
selection benefiting from the best of the two worlds.

In particular, we propose a neural network MultiFusionNet using a multiplicative fusion method to combine two
networks trained with two different sources of knowledge, i.e., the raw data and the relevant extracted features, to
classify short single ECG signals. This approach utilizes the hand-crafted features to enhance the power of deep
learning model taking raw data as input. Our experiments show that the proposed approach offers higher F1-scores
and AUC ROCs for AF classification than the recent algorithms using only one source of knowledge. We also show
that our multiplicative fusion method to combine two sub-networks, the raw data sub-network and extracted feature



sub-network, offers better classification performance than several other combining approaches.

The remainder of the paper is organized as follows. In Section 2, we discuss the related work. In Section 3, we present
the problem definition and our proposed solution. In Section 4, we report our experiments and the results. Finally, in
Section 5, we conclude the paper.

2 Related Work

ECG classification is a problem that has been studied for decades. There are three main approaches to detect AF from
an ECG signal which are listed as follows.
Identifying the absence of P-waves and the presence of f-waves. During AF, the P-waves in the ECG signal
degenerate into a series of fibrillatory(f)-waves with small magnitudes [3]. Meanwhile, short and variable RR-intervals
appear [4]. Therefore, the absence of P-waves, the appearance of f-waves [5, 6, 7, 8] and the irregularity in the RR-
intervals [7, 13, 3, 14, 15] can be used to detect AF. Pan et al. [16] introduced a method to automatically extract
RR-interval sequence. Chandra et al. [17] proposed a CNN [18] network to extract RR-interval sequence. Gawde et
al. [19, 20, 21] proposed techniques to compute the features and classify ECG signals on GPU to reduce running time.
Non-linear classifiers using the extracted features. Many machine learning algorithms such as Random Forest [9,
10], Decision Tree Ensemble [11], Support Vector Machine [22], Linear Discriminant Analysis [23], Fully Connected
Neural Network (FCNN) [24], Bivariate Gaussian Markov Model [19, 20, 21] focusing on streaming ECG data, were
developed with the extracted features, e.g., RR-intervals statistics or statistics of the data transformed in the frequency
space. This approach requires expertise in the field of ECG analysis, feature generation and selection process which
can be time-consuming and error-prone.
Deep neural network using raw ECG signal. Deep neural network can make predictions directly from raw data.
Hence the effectiveness of the learning process is increased when large datasets are available. Ghiasi et al. [25]
combined the output of CNN network using RR-sequence and a feature based approach which compares each feature
to an optimum threshold. Rajpurkar et al. [26] proposed a deep residual neural network for a multi-label classification
task for ECG recordings. Pourbabaee et al. [12], Xiong et al. [27], Zihlmann et al. [28] proposed CNN neural networks
to classify ECG recordings using raw data. Xiong et al. [29] proposed a recurrent convolutional network combined
with CNNs and showed that it outperforms other recent traditional machine learning techniques. We implement our
raw data sub-network by following this last approach.
Fusion Neural Network. Fusion neural networks which combine several sub-networks have been introduced in many
data mining tasks such as traveling time estimation [30], action recognition [31], and object detection [32].

3 Method
3.1 Problem Formulation

We represent the discretized ECG signal as a raw data vectorX = [x1, ..., xk] and formalize the AF detection problem
as a classification task that takes as input an ECG signal X and outputs its label y. We consider 4 possible labels:
L = [Normal,AF,Other,Noisy], where Normal represents a normal ECG signal, AF represents an ECG signal
that has AF, Other represents an ECG signal that has other abnormal heart rhythms and Noisy represents an ECG
signal that is too noisy to be classified. Note that we are not concerned with detecting the actual position of AF within
the ECG signal, we are only interested in detecting whether the ECG signal can be classified according to one of the
labels.

3.2 MultiFusionNet

As observed from existing studies, traditional machine learning methods using extracted features are shown to be
useful for ECG classification. However, their performance heavily depends on the correct feature extraction and
feature selection process. On the other hand, deep recurrent convolutional networks show great promise in inferring
latent features and temporal dependency of the ECG raw values that are not otherwise intuitive for feature engineering.
However, the training of such networks require obtaining a large labeled dataset, which is a challenging task because
ECG is part of private health record and the labeling process is time-consuming and error-prone. When trained on a
small dataset, the accuracy of the networks may be less than accurate. To utilize both the extracted features and the
raw data values, one approach is to use an ensemble of classifiers that are trained separately on the extracted features



Figure 1: MultiFusionNet Architecture

and raw values. However, this approach cannot learn the importance of latent features from the raw data compared to
the extracted features. Therefore, we have developed MultiFusionNet, a method to combine two sub-networks,
one with raw data and the other one with the extracted features so that the combined network can be learned efficiently
with a small training dataset and without using a careful feature selection process, benefiting from the best of the two
approaches.

The structure of this network is shown in Figure 1. The extracted feature set is passed through a fully connected
sub-network, since with more layers we can approximate more complicated function of the input data. The raw data is
passed through a raw data sub-network to extract latent features and capture the temporal dependency. The extracted
features are passed through the extracted feature sub-network. The output of the fully connected sub-network and
the recurrent convolutional sub-network are merged by using a multiplicative fusion operator which will be described
later. With this approach, we can simultaneously learn the parameters in both sub-networks. After merging, data is
passed through fully connected layers. The output is a one-hot vector y = [y0, y1, y2, y3] with yi = 1 corresponding to
the predicted label l = Li, L = [Normal,AF,Other,Noisy]. After each fully connected layer, we apply a rectified
linear activation 1. To reduce over-fitting, in each fully connected layer, we apply penalties on layer parameters during
optimization by using an L2 regularizer 2. Because of the imbalance between classes in the training dataset, we use
a weighted categorical cross entropy loss. Let w be the vector of weights for the classes, where a larger wi value
corresponds to a higher penalty applied to incorrect predictions for the label i. The weighted cross entropy loss
function 3 is defined as follows:

CE = − 1

D

D∑
j

C∑
i

witji log pji (1)

where D is the number of training examples, C is the number of classes, tji = 1 if example tj has class i, tji = 0
otherwise and pji is the predicted probability that example j has class i.

3.3 Raw Data Sub-network

The raw data sub-network takes the raw-data as input. It contains residual blocks and LSTM layers to capture temporal
dependency of the input data. Due to the long sequence of the inputs, the training time of CNN and LSTM layers can
be too high, thus in the raw-data sub-network, we apply an Average Pooling layer to the raw data, which works as
a down-sampling operator. Figure 2(a) shows an original ECG signal and its down-sampled signals after applying
average pooling operator with the pool sizes of 10 and 20. This aggregate operator reduces the length of the input
sequence with little information loss. We process the aggregated data in a sliding window fashion with windows of
W values and slides of S values. Each sliding window is the input for the deep residual blocks. In each residual
block, each convolutional layer feeds into the next layer and directly into the convolutional layers 2 hops away. The
skip connections in the residual blocks help to increase the number of layers with less over-fitting. After the residual
blocks, we use 3 recurrent layers to capture the temporal dependency between sliding windows.

1https://keras.io/activations/
2http://faroit.com/keras-docs/1.2.2/regularizers/
3https://www.tensorflow.org/api_docs/python/tf/nn/weighted_cross_entropy_with_logits
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3.4 Extracted Feature Sub-network

The extracted feature sub-network contains several fully connected layers and takes extracted features as input. We
used the source codes provided by the PhysioNet/Computing in Cardiology Challenge 2017 [33] to identify RR se-
quence and then compute related RR-intervals features. In addition, we used the same statistical features as in [23],
including Poincaré plot features, average beat, cross correlation, fiducial points, named intervals and their amplitudes
composed of fiducial points, existence of P-wave and atypical ventricular morphologies.

(a) ECG signal aggregated at different pool sizes

RR intervalR R

P T P

Q
S

Q

S

U

J point

PR 
segment

PR 
interval

QRS 
interval

QT 
interval

0

-.5

+.5

+1 mV

ST 
segment

TP
segment

Time
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Figure 2: ECG signal with different pool sizes and related interval features
These ECG signal named waves and related interval features are shown in Figure 2(b) and defined in the following.
ECG signals are composed of five waves named P, Q, R, S, and T. Based on the positions of these waves, one can
derive PR, ST, TP segments, and PR, QRS, QT, RR intervals. RR-intervals features are extracted by using HRV (heart
rate variability) analysis, average beat morphology analysis, and analysis of f-waves based on RR-interval sequences.
The features are described as follows.
RR-intervals statistical features: The mean (RRmean), standard deviation, min, max, median, mean deviation, pro-
portions of the standard and mean deviation from the mean value, ratio of the mean-to-median value of RR-intervals.
RR-intervals first-order difference statistical features: The mean value, min, max, median, standard deviation, me-
dian deviation and their proportions to RRmean, proportion of RR-intervals differing by > 50ms from the preceding
RR-interval, square root of the mean squared differences of successive RR-intervals (RMSSD) and its proportion to
RRmean (RMSSD).
RR-intervals second-order difference statistical features: The mean value, min, max, standard deviation value of the
RR-intervals second-order differences.
RR-Histogram: The ratio of total number of RR-intervals to the number of RR-intervals in the modal bin. HRV
Triangular Index is used to report this feature at a re-sampling frequency of 128Hz, as shown in the left part of Fig-
ure 3(a) [34].
Poincaré Plot: The geometry of the Poincaré plot is represented by 3 features which are short-to-long term HRV,
variability in the temporal structure (CCM), and the correlation coefficient respectively(corRR), as shown in the right
part of Figure 3(a). When there is an AF in the signal, the Poincaré plot is much more scattered.
Average beat calculation: We choose the most sustained beats which are in the window of [−300ms; 0.6 ·RRmean]
around the QRS fiducial point and have peak-to-peak amplitudes within a standard deviation of the mean of all beats,
and then signal averaging them to get a robust average beat.
Cross-correlation analysis: Maximal cross-correlation (corBeat) describes the relationship between the morphologies
of all beats and the average beat, which can be used to show the effects of abnormal morphologies.
Detection of fiducial points (R, S, Q, J, T-end, Tpeak, Ppeak): As shown in Figure 2(b), R point has the biggest
positive amplitude, while S point can be recognized with the most negative value. Q, J, T-end, T-peak is detected using
the algorithm described in [35], as shown in Figure 3(c) and 3(d). P-peak has a peak in the window [Q− 330ms;Q].
Calculation of intervals (QRS, PQ, QT): QRS=J-Q, PQ=Q-Ppeak, QT=Tpeak-Q.
Calculation of amplitudes (QRS, J, T, P): The amplitudes of QRS can be calculated by definition above. The ampli-
tudes of J, T, P points are the values relative to the value of Q point.
Detection of P-wave: As shown in Figure 3(b), P-wave is successfully detected if the requirements with certain thresh-
olds in [23] are satisfied. Otherwise, in AF, we may detect a series of fibrillatory(f)-waves with small magnitudes.



Detection of atypical ventricular morphologies: Atypical ventricular morphologies are the representative features of
“Other” category. Four types of the abnormal morphologies are QRS fragmentation, Inverted QRS and T-wave, Left
bundle branch block, and J-shift.
Calculation of curvature: c = 1/r is used to evaluate the curvature. We calculate three important curvature ratios
which are maxc(QRS/P ),maxc(QRS/T ),maxc(T/P ) based on the maximal curvature during P, QRS to evaluate
the relative activity of different waves.
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Figure 3: ECG signal named waves and related interval features

3.5 Multiplicative Fusion of Raw Data and Extracted Feature Sub-networks

In this section, we describe in more details how we merge the two sub-networks. As can be seen in Figure 1, after
the recurrent layer, LSTM, (in the raw data sub-network), we apply a fully connected layer to flatten the data. A fully
connected layer with the same size is applied after the fully connected network for the extracted features (the extracted
feature sub-network). Let A ∈ RM , A = [a1, a2, ..., aM ] and B ∈ RN , B = [b1, b2, ..., bN ] be the feature vectors
outputted from the last RNN layer with M units in the raw data sub-network and from the last fully connected layer
withN units from the extracted feature sub-network, respectively. LetK be the number of units of the fully connected
layer (in Figure 1) which are used to combine these two sub-networks. There are multiple options to combine two
feature vectors, e.g., element-wise addition or concatenation. We choose an element-wise product operator [31] which
was shown to be more effective at concurrently learning the feature importance of the features generated by the two
sub-networks. The output of the element-wise product operation is as follows:

ck = (

M∑
i=1

αkiai + θk)� (

N∑
j=1

βkjbj + δk), k ∈ [1, ...,K] (2)

where � is the element-wise product operator, α, β are weight matrices, θ, δ are the bias terms.

4 Experiments
4.1 Experimental Methodology

We compare MultiFusionNetwith Random Forest [9, 10], Fully Connected Neural Network (FCNN)
that take the extracted features as input and R-Resnet [29] with 21 convolutional layers that takes the raw data as



input. Fully Connected Neural Network (FCNN) corresponds to a MultiFusionNet without the raw
data sub-network. With FCNN, the computed features are passed through multiple fully connected layers. We used
5-fold cross-validation and the scores were averaged over all the folds. The algorithms were implemented in Python
using Keras with Tensorflow backend. We first vary the pool size, network depth, and fusion operator to justify our
choice of parameters. Then, we compare the F1-score and AUC ROC of the methods. Finally, we compare the impact
of the extracted feature and training data size on the methods. The experiments were executed on a Linux machine
with 4 cores 2.7 GHz and 24GB memory.

4.1.1 Dataset

We use a dataset with short single lead ECG recordings [33], including 8528 ECGs which are sampled at 300 Hz,
for scoring of 4 classes: Normal rhythm (Normal), Atrial fibrillation (AF), Other arrhythmia (Other), and Too noisy
(Noisy). Each recording lasts from 9 seconds to 61 seconds. The statistics of the dataset are reported in Table 1.

Type No. Recordings Time Length (s)
Mean SD Max Median Min

Normal 5050 31.9 10.0 61.0 30 9.0
AF 738 31.6 12.5 60 30 10.0

Other 2557 34.1 11.8 60.9 30 9.1
Noisy 46 27.1 9.0 60 30 10.2
Total 8528 32.5 10.9 61.0 30 9.0

Table 1: Statistics of the dataset.

4.1.2 Parameter Setting

In the raw data sub-network, the Average Pooling layer has a pool size of 1, the CNN layer in each residual block has
a kernel size of 15 × 1, the recurrent layer has 128 units. The window size W and slide size S of sliding windows
are set to 20 and 1, respectively. The extracted feature sub-network contains one fully connected layer of 512 units.
The fully connected layers that are the input of the element-wise product operator contains 512 units. After merging
two sub-networks, data is passed through fully connected layers with 1000, 200, 50 and 4 units. In the weighted
categorical cross-entropy loss function, we set the weight of class Normal, AF, Other and Noisy to be 1.0, 1.2, 1.2 and
1.0, respectively, according to unbalanced number of samples in each class. We use Adam optimizer, set the learning
rate to be 0.001, the batch size to be 64. For Random Forest, we used 250 estimators.

4.1.3 Evaluation Metrics

In this study, we compare the F1-scores and AUC ROCs of the algorithms. F1-score is the harmonic average of the
precision and recall, and reaches its best value at 1 and worst value at 0. AUC ROC represents the capability of
distinguishing between classes. Higher the AUC ROC, better the model is at prediction.

4.2 Experiment Results

Trade-off between Classification Performance and Training Time. Training the Raw data sub-network with a
sequence of thousands of data points is time consuming. The average pooling layer is used for reducing training time
with a small information loss. We vary the pool size from 1 to 20. When the pool size increases, the training time
decreases but the information loss grows. Table 2 reports the F1-scores and AUC ROCs of MultiFusionNet as
we vary the pool size of the Average Pooling Layer. As observed from these tables, when the pool size increases, the
F1-scores and AUC ROCs of the MultiFusionNet decrease as there is more information loss. Figure 4 shows the
training time for one epoch of MultiFusionNet in seconds as the pool size changes. When the pool size increases,
the sequences going through the CNN and LSTM layers are shorter, therefore the running time decreases. The default
value of pool size used in our following experiments is 1. When the pool size is set to 5, the training time is reduced



significantly but the F1-score and AUC ROC only decrease slightly.

Figure 4: Training time per epoch for different pool sizes

Pool Size F1-score AUC ROC
Normal AF Other Noisy Normal AF Other Noisy

1 0.9 0.83 0.75 0.69 0.87 0.9 0.82 0.88
5 0.89 0.81 0.72 0.66 0.86 0.9 0.79 0.88
10 0.89 0.81 0.72 0.54 0.86 0.9 0.8 0.76
20 0.88 0.75 0.7 0.58 0.85 0.85 0.79 0.79

Table 2: F1-scores and AUC ROCs of MultiFusionNet for varying pool Size

Impact of the Network Depth in Raw Data Sub-network. We vary the number of residual blocks b from 1 to 8
to examine the impact of the network depth to the classification performance. The network with a higher depth is
capable of approximating a more complicated learning function. Because residual blocks are used for latent feature
extraction, when the number of residual blocks increases, the performance of the model is supposed to be improved
empirically. However, in practice, the model may be overfitted. Table 3 shows the F1-scores and AUC ROCs of
MultiFusionNet when b changes. As illustrated in this table, with b = 3, MultiFusionNet achieves the
highest F1-scores and AUC ROCs for most classes. Therefore, we set b to 3 in our other experiments.

Number of
Residual Blocks

F1-score AUC ROC
Normal AF Other Noisy Normal AF Other Noisy

1 0.89 0.81 0.68 0.62 0.84 0.91 0.76 0.81
3 0.90 0.83 0.75 0.69 0.87 0.90 0.82 0.88
8 0.88 0.79 0.69 0.64 0.83 0.90 0.75 0.78

Table 3: Impact of number of residual blocks in raw data sub-network

Fusion Operator Comparison. We compare our multiplicative fusion approach with some baseline fusion methods
using element-wise add and concatenate operators. The element-wise add operator takes as input multiple vectors
with the same size and returns a vector in which each value is the sum of the value in the corresponding column of the
input vectors. The concatenate operator concatenates multiple vectors to return a vector with the length as the total
length of the input vectors. Table 4 shows the F1-scores of all the classes with the 3 fusion methods. As illustrated in
Table 4, multiplicative fusion method offers the highest F1-scores for all the classes. Concatenate and element-wise
add operators perform very close to each other.

F1-scores and AUC ROCs Comparison. As depicted in Table 5, MultiFusionNet offers the highest F1-
scores and AUC ROCs for all the classes. R-Resnet has lower F1-scores and AUC ROCs than those of the
MultiFusionNet due to the difficulty of automatically learning the features from raw data with a small training
dataset. Random Forest and FCNN offer similar F1-scores and AUC ROCs and lower than those of R-Resnet
and MultiFusionNet because they are trained with the same set of features but without the latent features that can
be learnt by neural networks. For all the methods, the F1-scores and AUC ROCs of the Normal class is the highest



Fusion Method Normal AF Other Noisy
Element-wise Product ( MultiFusionNet) 0.90 0.83 0.75 0.69

Element-wise Add 0.88 0.79 0.72 0.68
Concatenate 0.88 0.79 0.71 0.65

Table 4: Fusion method comparison - F1-score

because majority of the ECG examples in the dataset are normal. Since noisy examples takes only 3% of the dataset,
the F1-scores of the Noisy class is the lowest among all the classes.

Data Method F1-score AUC ROC
Normal AF Other Noisy Normal AF Other Noisy

Raw Data R-Resnet 0.88 0.79 0.73 0.63 0.84 0.88 0.78 0.73

Extracted Features Random Forest 0.87 0.78 0.68 0.53 0.85 0.86 0.78 0.77
FCNN 0.87 0.74 0.67 0.55 0.82 0.81 0.73 0.69

Raw Data and
Extracted Features MultiFusionNet 0.9 0.83 0.75 0.69 0.86 0.88 0.81 0.81

Table 5: F1-scores and AUC ROCs Comparison

Confusion Matrix. Table 6 shows the confusion matrix of MultiFusionNet with 5-fold cross-validation. Normal
samples are classified with the highest accuracy. Normal and AF samples are well distinguished. Small portions of
AF samples are mistakenly classified as Other and Noisy. MultiFusionNet has difficulty in distinguishing Other
and Noisy from Normal.

Actual
Predicted Normal AF Other Noisy

Normal 4585 36 395 34
AF 30 620 80 8

Other 550 108 1852 46
Noisy 59 21 25 179

Table 6: Confusion Matrix of MultiFusionNet
Impact of Extracted Features. We compare the average F1-score and AUC-ROC of Random Forest (RF), FCNN,
and MultiFusionNet when each feature is perturbed with a randomly generated noise within 10%, 20% and 30%
of the feature value. Both RF and FCNN only use extracted features. As can be seen in Table 7, both RF and FCNN
are quite sensitive to the noise while MultiFusionNet is fairly robust. When noise is increasing, the decrease in
average F1-score and AUC ROC of MultiFusionNet is significantly less than that of other methods. It shows that
our proposed method does not heavily depend on hand-extracted feature input compared to other methods.

Impact of Training Data Size. We vary the training data size from 1000 to 6000 ECG series and report the average
AUC ROC and F1-score of all the methods. As reported in Table 8, with smaller training sizes, the F1-score and
AUC ROC of R-Resnet which only uses raw data as input drop significantly because R-Resnet does not learn latent
features well from a small training dataset. In contrast, RF and FCNN, which only use extracted features, have smaller
drops in F1-scores and AUC ROC when reducing the training size. In all cases, our proposed method performs much
better than the methods using only either raw data or the extracted features because our method utilizes the advantages
of both data types.

5 Conclusions

In this paper, we introduced a deep neural network to classify single ECG records. The network combines two sub-
networks that take the raw data and the extracted features as inputs using a multiplicative fusion approach. The network
architecture works well with a small training dataset. We showed that our approach outperforms the recent techniques
which take as input the extracted features or raw data separately. We showed that our proposed method to combine the



Method Average F1-score Average AUC ROC
Without
Noise

Noise
≤ 10%

Noise
≤ 20%

Noise
≤ 30%

Without
Noise

Noise
≤ 10%

Noise
≤ 20%

Noise
≤ 30%

Random Forest 0.74 0.50 0.40 0.32 0.81 0.67 0.62 0.58
FCNN 0.75 0.60 0.52 0.43 0.81 0.76 0.74 0.67

MultiFusionNet 0.80 0.75 0.69 0.59 0.85 0.83 0.78 0.74

Table 7: Average F1-score and AUC ROC when perturbing feature inputs

Data Method Average F1-score Average AUC ROC
W = 1000 W = 3000 W = 6000 W = 1000 W = 3000 W = 6000

Raw Data R-Resnet 0.25 0.48 0.75 0.58 0.69 0.82

Extracted Features Random Forest 0.60 0.63 0.74 0.72 0.74 0.81
FCNN 0.63 0.67 0.73 0.74 0.77 0.81

Raw Data and
Extracted Features MultiFusionNet 0.70 0.74 0.80 0.77 0.82 0.85

Table 8: Varying training data size

two sub-networks offers higher F1-scores and AUCs than the other approaches. With the detected AF signals, finding
the starting and ending positions of AF can be explored in the future work.
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