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Abstract—Skyline, aiming at finding a Pareto optimal subset of points in a multi-dimensional dataset, has gained great interest due to its
extensive use for multi-criteria analysis and decision making. The skyline consists of all points that are not dominated by any other points.
It is a candidate set of the optimal solution, which depends on a specific evaluation criterion for optimum. However, conventional skyline
queries, which return individual points, are inadequate in group querying case since optimal combinations are required. To address this
gap, we study the skyline computation in the group level and propose efficient methods to find the Group-based skyline (G-skyline).
For computing the front l skyline layers, we lay out an efficient approach that does the search concurrently on each dimension and
investigates each point in the subspace. After that, we present a novel structure to construct the G-skyline with a queue of combinations
of the first-layer points. We further demonstrate that the G-skyline is a complete candidate set of top-l solutions, which is the main
superiority over previous group-based skyline definitions. However, as G-skyline is complete, it contains a large number of groups which
can make it impractical. To represent the “contour” of the G-skyline, we define the Representative G-skyline (RG-skyline). Then, we
propose a Group-based clustering (G-clustering) algorithm to find out RG-skyline groups. Experimental results show that our algorithms
are several orders of magnitude faster than the previous work.

Index Terms—Group-based skyline, multiple skyline layers, representative skyline, concurrent search, subspace skyline, combination
queue, group-based clustering.
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1 INTRODUCTION

S KYLINE, known as Maxima in computational geometry
or Pareto in business management field, is of great

significance for many applications. Skyline returns a subset
of points that are Pareto optimal [1], indicating that these
points cannot be dominated by any other points in the
dataset. Though the exact optimal point depends on the spe-
cific criterion for optimum, skyline can provide a candidate
set so that we can prune the non-candidates from the dataset
when the optimal solution is queried.

Given a dataset S with n points, each point p has d nu-
meric attributes and can be represented as a d-dimensional
vector (p[1], p[2], · · · , p[d]) ∈ Rd, where p[i] is the i-th
attribute. Given two points p = (p[1], p[2], · · · , p[d]) and
p′ = (p′[1], p′[2], · · · , p′[d]), point p dominates point p′ if
p[i] < p′[i] for at least one attribute and p[i] ≤ p′[i] for the
others (1 ≤ i ≤ d). The skyline of dataset S is defined as
a subset consisting of all points that are not dominated by
any other points in S. Evidently, all the points in the skyline
are Pareto optimal solutions.

Figure 1(a) illustrates ten hotels with two attributes (the
price and the distance to a given destination) in the table.
Travelers desire to choose a hotel with both low price
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and short distance. Figure 1(b) represents ten points in 2-
dimensional space and each point represents a hotel in
Figure 1(a) correspondingly. When choosing hotels, travel-
ers will not benefit by choosing p5, p6, p8, or p10 because
they are dominated by p4 and are in worse situation in
both distance and price attributes. Hotels p1, p2, p4, and p7
might be chosen since they are not dominated by any other
hotels. The final choice depends on the travelers’ criteria or
the weights of attributes. For example, if the travelers are
wealthy, they may attach more importance to the distance
and choose p1 or p2. If they want to be cost-effective, they
may prefer p4 or p7 because of the lower price. We can see
that the skyline is a candidate set of the optimal solution,
and the final decision depends on travelers’ specific criteria.

hotel distance price
p1 3 350
p2 6 250
p3 10 400
p4 13 50
p5 16 75
p6 20 160
p7 23 25
p8 26 100
p9 30 300
p10 40 130

(a)
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Fig. 1. A skyline example of hotels.

Motivation. Extensively studied in the database commu-
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nity, the skyline has been extended with many variants
to provide a candidate set in different situations. How-
ever, traditional skyline, which focuses top-1 solutions, is
inadequate when optimal groups, i.e., top-l solutions, are
searched rather than individual points. This is a very im-
portant problem with many real-world applications that is
surprisingly neglected. To address this gap, group-based
skyline (with size l), which is a candidate set of all top-
l solutions, is proposed. However, the few existing works
either do not return complete candidate set [2], [3] or are too
computationally expensive [4], so an efficient and complete
method is greatly desired.

Recalling our hotel example, we suppose that a travel
agency wants to collaborate with the three best hotels.
If they are mainly targeting low-end travelers, they may
choose hotels {p4, p7, p5} or {p4, p5, p6}. If for high-end
travelers, they may choose {p1, p2, p3}. And they may
choose {p1, p2, p4}, {p2, p4, p7}, or {p1, p4, p7} if they
want to provide a more extensive service. In some groups
mentioned above, all points contained are skyline points,
e.g., {p1, p2, p4}, {p2, p4, p7}, {p1, p4, p7}, but in the others,
non-skyline points may be included, e.g., {p4, p7, p5}, {p4,
p5, p6}, {p1, p2, p3}. It is apparent that the non-skyline
points can also be chosen in this problem. However, the
components of these groups are not arbitrary and they need
to satisfy certain requirements. For instance, groups {p4,
p7, p8} or {p4, p7, p6} cannot be the best choice since p5
dominates p6 and p8, so {p4, p7, p5} is better than them.
We can see that it becomes more complicated when finding
top-l solutions.

A Group-based skyline (G-skyline1) is defined to ad-
dress this problem. Consider a dataset S of n points
in d-dimensional space. G = {p1, p2, · · · , pl} and G′ =
{p′1, p′2, · · · , p′l} are two different groups with l points. If
we can find two permutations of the l points for G and
G′, G = {pu1

, pu2
, · · · , pul

} and G′ = {p′v1 , p
′
v2 , · · · , p

′
vl
},

letting pui
� p′vi for all i and pui

≺ p′vi for at least one
i (1 ≤ i ≤ l), we say G g-dominates G′. All groups
containing l points that are not g-dominated by any other
groups with the same size compose the G-skyline. Similar
to conventional skyline, G-skyline is a candidate set of
top-l solutions. Recalling our hotel example, agencies with
different criteria has different optimal groups and G-skyline
contains all possible choices for all agencies. We construct
G-skyline to support agencies for decision making.

G-skyline is a complete candidate set for top-l solutions
(proved in Section 4), but there are two critical issues, (1)
it is really time-consuming and (2) it returns an oversized
candidate set. To address these two problems, we (1) pro-
pose fast algorithms for the G-skyline and (2) define the
Representative G-skyline (RG-skyline).

To reduce the time complexity, we optimize the algo-
rithms proposed in [4]. We first define Multiple Skyline
Layers (MSL) as the first l skyline layers, which is very im-
portant in both traditional skyline and G-skyline problems.
To construct MSL efficiently, our framework searches con-
currently in each dimension to reduce the redundant search,
and the search strategy utilizes the property of the skyline

1. Note that we only use “G-skyline” to indicate the Pareto optimal
group-based skyline proposed in [4]. For other kinds of group-based
skyline [2], [3], we do not use the abbreviation.

in subspace to improve efficiency. Then, based on MSL,
we propose fast algorithms to construct G-skyline groups.
Considering the observation that skyline points contribute
more to G-skyline groups compared to non-skyline points,
we use a queue to enumerate all combinations of skyline
points and then find the groups that contain non-skyline
points by the queue efficiently.

To reduce the output size, we introduce a distance-based
representative G-skyline, RG-skyline. The key idea is to rep-
resent similar G-skyline groups with a representative group,
and RG-skyline contains all these representative groups. To
measure the similarity between groups, we match the points
of each pair of groups and calculate the Euclidean distance
between these groups. We then extend the clustering algo-
rithm from the point level to the group level to propose
a novel Group-based clustering (G-clustering) algorithm.
Finally, we take the set of all cluster centers as RG-skyline.

Contributions. We briefly summarize our contributions as
follows:

• We propose a new algorithm to construct MSL,
which is significantly more efficient than existing
algorithms.

• To address the issue of high time complexity, we
propose two fast algorithms to construct G-skyline
groups with the combination queue.

• To address the issue of oversized output, we define
RG-skyline to represent the “contour” of the whole
G-skyline and propose a novel G-clustering algo-
rithm to construct it.

• We devise comprehensive experiments in synthetic
and real datasets. The experimental results show that
our algorithms are highly efficient and scalable.

Organization. The rest of the paper is organized as follows.
Section 2 presents the related work. Section 3 presents
the definition of MSL and the algorithmic technique to
construct it. Two algorithms for finding G-skyline groups
are presented in Section 4. The definition and algorithm
for the RG-skyline are illustrated in Section 5. We evaluate
the performance of each algorithm in Section 6. Section 7
concludes the paper.

2 RELATED WORK

In this section, we briefly explore previous works on skyline
computation. After Kung’s original work that proposed the
in-memory algorithms to handle the skyline computation
problem [5], skyline query has attracted extensive attention
over the last decade due to its significance in computational
geometry and database fields [6], [5]. [1] first studied how to
process skyline queries in database systems and devised the
skyline operator. Since then, the research includes improved
algorithms [7], [8], progressive skyline computation [9], [10],
query optimization [11], [12], top-l dominating queries [13],
[14], [15], and variants of skyline queries [16], [17], [18], [19].
There are also works focusing on different types of data, for
example, dynamic data [20] and uncertain data [21], [22].

Group-based Skyline. In recent years, there are increasing
works focusing on group-based skyline [3], [2], [23], [4].
The definition of dominance between groups in these works
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varies greatly. [3], [2], [23] used a single aggregate point
to represent a group and find the dominance relationship
of groups using the aggregate points in a traditional way.
An aggregate function is responsible for generating the
aggregate point, whose attribute values are aggregated over
the corresponding attribute value of all points in the group.
Though many aggregate functions can be considered in
calculating aggregate points, only several of them, such as
SUM, MIN, MAX, have been discussed in previous works.
[2] used SUM to aggregate the points and [3] utilized MAX
and MIN. Intuitively, SUM captures the collective strength
of a group, while MIN/MAX compares groups by their
weakest/strongest member on each attribute. The skyline
groups constructed by these methods are not complete
because not all Pareto optimal groups can be captured.
Instead of aggregating data, [4] proposed a different notion
of group-based skyline called G-skyline, the dominance
relationship between two groups is defined based on the
pair-wise dominance between points in the two groups.
Compared with previous works, G-skyline gives a more
complete solution. In fact, group-based skyline proposed in
[2] is a subset of G-skyline in [4]. However, completeness
also means high time consumption in computation thus
efficient algorithms are desired. This paper is an extended
version of our previous work [24], which proposed several
efficient methods for G-skyline.

Representative Skyline. Due to the large output size of
skyline, many research focused on representative skyline
that represents the principal tradeoffs to users. [25] first
proposed the representative skyline by finding the skyline
points that dominate the maximum number of points, which
can be called max-dominance representative skyline. Simi-
larly, [26], [27] computed skyline points that maximize the
dominated area or volume to show the “contour” of the
entire skyline. [28] first proposed a distance-based represen-
tative skyline. Following that, there are several works on
efficient distance-based methods [29], [30]. Their goal is to
minimize the distance between representative skyline points
and non-representative skyline points (representation error).

At the group level, representative skyline has a more
pressing demand due to the even larger output size. There
is only one existing paper for representative skyline at the
group level [31]. It proposed the k-SGQ, which is a max-
dominance representative skyline, by finding k groups with
maximum number of dominated points. Though k-SGQ
is efficient and easy to construct, it tends to return very
balanced groups, which is against the goal of skyline to
show different tradeoffs to users. To address this gap, we
propose a distance-based method, RG-skyline, to show the
“contour” of the original skyline better.

3 CONSTRUCTING MULTIPLE SKYLINE LAYERS

We define Multiple Skyline Layers (MSL) of a dataset as the
first l layers of skyline, where the first layer is the skyline
of the original dataset and the second layer is the skyline of
the remaining points after the first layer is removed from the
dataset and so on. MSL is indispensable in all group-based
skyline algorithms, including G-skyline [4] and aggregation
approaches [2], [3]. It is proved that only the first l layers
are necessary to find group-based skyline rather than the

whole dataset [2], [3], [4]. However, very few papers study
this issue, they usually focus on how to establish the group-
based skyline. MSL is also useful in traditional skyline
problems [32], [33], [34]. It can be computed layer by layer
using a traditional skyline method but it is ineffective. In
fact, [5] showed that O (n log n) time is needed to construct
one layer. So, constructing l layers costs O (ln log n) running
time.

[4], [34], [32] laid out several new methods that can
find all layers in one enumeration. [4] proposed a Binary
Search (BS) algorithm with O (n + Sl log l) time complexity
for two- and O (nSl) for higher-dimensional spaces, which
is the state-of-the-art algorithm for MSL. BS algorithm
constructs MSL by ordering the points by one dimension
and determine each point’s layer in this order. It is much
better but there is still great room for improvement. In
this section, we investigate a high-efficiency approach to
construct the first l skyline layers, defined as MSL, with
O
(
Tl

(
n

d−1
d l + Sl log l

))
time complexity, where Sl is the

number of the points in the first l layers and Tl is the
subspace skyline size of the l-th layer. Noticing Tl is 1
in the 2-dimensional space, the time complexity becomes
O (
√
nl + Sl log l).

TABLE 1
The summary of notations.

Notation Definition

S\layeri points in S but not in layeri
p ≺ / ⊀ p′ p dominates/dose not dominate p′

p � p′ p dominates or equals to p′

skyline(S) the skyline of dataset S
layer(pi) the skyline layer of pi
D(layeri) the dominance domain of layeri

skylines(S′) the skyline of S′ in the subspace
Ds(layer′i) the dominance domain of layer′i in the subspace

TS(p)/TS(G) tail set of point p/group G in sequence S
G ≺g G′ group G g-dominates group G′

GS the G-skyline
RS the RG-skyline

A summary of notations is given in Table 1. We pre-
process the dataset to make the definitions and proofs later
in this article concise and normative. (1) We assume the
criterion function f( ) monotonically decreases with each
attribute, or we take the opposite of this attribute. That is,
for certain point p, the smaller p[i] (i = 1, · · · , d) are, the
better p is. (2) All attributes are normalized to [0, a]. (3) We
regard the coincidence points as one point since they are
equivalent when making decision.

Definition 1 (Skyline). Given a dataset S of n points in d-
dimensional space. Let p and p′ to be two different points in S,
p dominates p′, denoted by p ≺ p′, if for all i, p[i] ≤ p′[i] and
for at least one i, p[i] < p′[i], where p[i] is the i-th dimension of
p and 1 ≤ i ≤ d. The skyline consists of the points that are not
dominated by any other points in S.

Definition 2 (Multiple Skyline Layers (MSL)). Given a
dataset S with n points in d-dimensional space, MSL is a
multi-layer structure. layer1 is the skyline of S, i.e., layer1 =
skyline (S) and layer2 is the skyline of the complementary set
of layer1 in S, i.e., layer2 = skyline (S\layer1). Generally,
layeri is the skyline of the complementary set of the first i-1
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layers in S, i.e., layeri= skyline
(
S\
⋃i−1

j=1 layerj
)

. And MSL
is a multi-layer structure defined as {layerj}j=1,··· ,l, where l is
the size of the group.
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Fig. 2. MSL (n = 10, d = 2, l = 3).

3.1 Simultaneous Search in Each Dimension
According to the definition of MSL, we need to establish
the first l layers by computing skyline l times. To replace
this ineffective way, we devise a novel method to find each
layer’s points by searching the dataset one time. Noticing
that the information of each layer’s points is equivalent to
the information of each point’s layer, we can construct each
layer by finding which layer each point belongs to. The
detailed procedure is introduced below.

Definition 3 (Dominance Domain). Given a dataset S and
a skyline layer layeri, dominance domain of layeri is de-
fined as: D (layeri) = S\

⋃i
j=1 layerj , or D (layeri) =⋃lm

j=i+1 layerj , where lm is the maximum layer number. In 2-
dimensional case, dominance domain of layeri is the set of points
in the upper right area of layeri intuitively.

Property 1. If a point p ∈ D(layeri), there is at least one point
p′ ∈ layeri making p′ ≺ p and if p /∈ D(layeri), there is no
point p′ ∈ layeri, p′ ≺ p.

Proof. When i > 1, layeri is the skyline of D(layeri−1).
For certain p ∈ D(layeri), there is at least one sequence
{p1, p2, · · · , pm} in D(layeri−1), satisfying pm � · · · � p1 �
p. Since no point in D(layeri−1) can dominate pm, pm ∈
layeri. For certain p /∈ D(layeri), then p ∈ layerj(j ≤ i)
and no points in layeri can dominate it. We can get the same
result when i = 1.

Property 2. The layer of point p is equal to the maximal
layer of the points that dominate p plus 1, i.e., layer (p) =
max{layer (p′) |p′ ≺ p} + 1, and layer(p) = 1 if {p′|p′ ≺
p} = ∅.

Proof. According to Definition 3 and Property 1, for any point p
in layeri, where 2 ≤ i ≤ l. For each m1 (1 ≤ m1 ≤ i−1), since
p ∈ D(layerm1

), there must be at least one point in layerm1

that dominates p. And for each m2 (i ≤ m2 ≤ l), since p /∈
D(layerm2

), no point in layerm2
can dominates p. We can see

that, all points that can dominate p belong to the first i-1 layers
and at least one in each. So, max{layer (p′) |p′ ≺ p} = i− 1.

Lamma 1. To determine the layer of certain point p, we just
need to compare it with all points in a hyper-cuboid space region,

which is in the range [0, p[i]] for each i (1 ≤ i ≤ d). This region
contains all points that can dominate p (Taking Figure 1(b) as an
example, the lower left area of the current point p).

Example 1. Considering the point p8 in Figure 2, we just
need to search the points in its lower left area (p4, p5, p7) to
determine layer(p8). According to Property 2, layer(p8) =
max

i=4,5,7
{layer (pi)}+ 1 = 3.

Algorithm 1: Concurrent MSL algorithm
Input: a set of n points in d dimensional space

(S = {p1, p2, · · · , pn}) and the group size l .
Output: l-layer MSL.

1 for i = 1 to n do
2 pi.times = 0;
3 pi.layer = 1;

4 maxlayer(1, · · · , d) = 1;
5 MSL(1, · · · , d)(1, · · · , l) = ∅;
6 for i = 1 to d do
7 sort the n points by the i-th dimension in ascending

order and record the order of the indexes
Oi = {oi1, oi2, · · · , oin};

8 flag = 0;
9 for i = 1 to n do

10 for j = 1 to d do
11 poji .times += 1;
12 if poji .times == d && poji .layer == l then
13 flag = 1;
14 break;

15 if poji .times == 1 then
16 for layer num = 0 to maxlayer(j)− 1 do
17 if there is a point in MSL(j)(maxlayer(j)−

layer num) can dominate poji then
18 poji .layer = maxlayer(j) −

layer num + 1;
19 break;

20 if poji .layer ≤ l then
21 store poji to MSL(j)(poji .layer);
22 if poji .layer > maxlayer(j) then
23 maxlayer(j) = poji .layer;

24 if flag == 1 then
25 break;

26 return MSL;

We propose a framework for MSL based on the above
properties. We determine a given point’s layer by Property
2 and in order to find all points that can dominate p, we
only need to check the hyper-cuboid region (the lower-left
area in two dimensional case) according to Lemma 1. So our
main idea is to slide a hyperplane over the points along
each dimension concurrently and for each point visited,
determine its layer and store it into the corresponding layer.
The detailed algorithm is shown in Algorithm 1. We order
all points d times by all d attributes (lines 6-7) and for each
attribute, slide a hyperplane along the axis point by point
in an increasing order (lines 9-25). When a point is visited
by a hyperplane, compare it with all points that are already
visited by this hyperplane to determine if it is dominated
by any of them, and then label it with the maximal layer
number of the dominating points plus one (lines 15-19). The
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point is then stored in the corresponding dimension and
layer (lines 20-23). When a point in the l-th layer has been
visited by all d hyperplanes, the iteration stops (lines 12-14
and 24-25). We show example steps in Example 2.

A1 A2 A3 A4 A5

Hyperplane A
A6

B1
B2
B3

Hyper-
plane B

B4
B5

B6
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(a)

Hyperplane MSL
A1 {[p1], []}, {[], []}, {[], []}
B1 {[p1], [p7]}, {[], []}, {[], []}
A2 {[p1, p2], [p7]}, {[], []}, {[], []}
B2 {[p1, p2], [p7, p4]}, {[], []}, {[], []}
A3 {[p1, p2], [p7, p4]}, {[p3], []}, {[], []}
B3 {[p1, p2], [p7, p4]}, {[p3], [p5]}, {[], []}
A4 {[p1, p2, p4], [p7, p4]}, {[p3], [p5]}, {[], []}
B4 {[p1, p2, p4], [p7, p4]}, {[p3], [p5]}, {[], [p8]}
A5 {[p1, p2, p4], [p7, p4]}, {[p3, p5], [p5]}, {[], [p8]}
B5 {[p1, p2, p4], [p7, p4]}, {[p3, p5], [p5]}, {[], [p8]}
A6 {[p1, p2, p4], [p7, p4]}, {[p3, p5], [p5]}, {[p6], [p8]}
B6 {[p1, p2, p4], [p7, p4]}, {[p3, p5], [p5]}, {[p6], [p8, p6]}

(b)

Fig. 3. Example steps of Algorithm 1.

Example 2. Figure 3 illustrates the steps of constructing the
MSL presented in Figure 2. Figure 3(a) shows the location of
the hyperplanes during each iteration. Figure 3(b) shows the
intermediate result at each iteration ([ ] indicates one dimension
and { } indicates one layer). The algorithm stops at B6 since
the current point p6 is in the l-th layer and has been scanned d
times by all hyperplanes. From this example, we can see that some
points, e.g., p4, p5, and p6, are visited twice by both hyperplanes
and can be compared against different points for dominance. Will
these comparisons return the same and correct result? Taking
p6 as an example, when visited by A6, it is compared with the
points in the left area, notated with S1 = {p1, p2, p3, p4, p5}.
Similarly, when visited by B6, it is compared with points in
the area below, notated with S2 = {p4, p5, p7, p8, p10}. While
according to Lemma 1, we only need to check the points in the
lower left area, notated with S0 = {p4, p5}. Because S0 ∈ S1

and S0 ∈ S2, we can draw the same conclusion by checking
either of the two sets. Consequently, we only check when a point
is first visited by a hyperplane. When it is visited again by other
hyperplanes, we only save it in the corresponding dimension and
layer without checking again.

Advancement. Benefiting from our novel structure, there
are two main advancements in the proposed algorithm.

One advancement is that we reduce the number of
points that need to be compared significantly. Similar to
BS algorithm, our algorithm also prunes the comparison
set of each point by ordering all points at the beginning.
Besides this, we implement concurrent comparison in all
dimensions, hence the number of points to investigate can
be reduced significantly.

Another advancement is that our work provides an
explicit condition to stop the iterations. It is proved that
only the points in the first l layers are necessary to con-
struct group-based skylines, so the procedure can stop when
points in the first l layers are all found and labeled. In
previous works, it is very complicated to determine when
to stop. In fact, in BS algorithm [4], authors do not terminate
the procedure until all points are enumerated in dataset S.
But in our work, we have an explicit condition to stop the
algorithm: when a point in the l-th layer is labeled by all d
hyperplanes, we can terminate the procedure.

Example 3. Figure 8 gives several examples of 3-layer MSL in an
independent (INDE) synthetic dataset (points are even-distributed
and independent among all attributes) in 2-dimensional space.
Shadow areas in Figures 8(a)(b)(c) represent the points need to be
investigated in BS method and shadow areas in Figures 8(d)(e)(f)
represent the points need to be investigated in our works. The
investigation areas of our method are two narrow bands. When
there is a point labeled by the two hyperplanes appearing in the
third layer, the procedure can be terminated.

Efficiency Comparison. We estimate the number of points
that need to be investigated in BS method [4] and in our
concurrent MSL algorithm to demonstrate the efficiency
improvement. To simplify the problem, we assume the
dataset is INDE. A simple case in 2-dimensional space is
investigated first and then the conclusion is extended to
high-dimensional spaces. We use A1 to represent the area of
shadow regions in Figures 8(a)(b)(c) and A2 to represent that
in Figures 8(d)(e)(f). We use b and c to represent the width
of them (shown in Figure 8). And the value of each attribute
is normalized into [0, a] in the dataset preprocessing.

First, we give an analysis of BS method in 2-dimensional
space. We define a random variable X1 to indicate the
maximum of the first attribute of the points in layer1.
According to Definition 2, we know that X1 = {pi[1]|i =
arg mim

j
pj [2], pj ∈ S}, so X1 ∼ U(0, a) due to the inde-

pendence of the two dimensions. We discuss in the most
optimistic situation for the lower bound of b. We can ig-
nore the influence of removing layer1 when n � l and
simply regard the complementary set D(layer1) as an even-
distributed and independent dataset too. Similarly, we no-
tate X2={pi[1]|i=arg mim

j
pj [2], pj∈D(layer1)} to present

the maximum of the first attribute of the points in layer2.
It obeys uniform distribution approximately. To extend this,
we deem that all Xi∼U(0, a), i=1, 2, . . . , l when n� l. X is
a random variable defined as X=max{X1, X2, . . . , Xl} and
b = E(X) = l

l+1a.

Proof. The probability distribution function of random variable
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X can be represented as

FX(x) =P (X ≤ x) = P (max{X1, X2, . . . , Xl} ≤ x)

=P (X1 ≤ x)P (X2 ≤ x) . . . P (Xl ≤ x) =
(x
a

)l
,

accordingly the probability density function is

fX(x) = F ′X(x) =
lxl−1

al
,

then we can get the expectation by integrating

b =E(x) =

∫ a

0
xf(x)dx =

∫ a

0

lxl

al
dx

=
l

al

(
xl+1

l + 1

)a

0

=
l

l + 1
a.

We then discuss in the most pessimistic situation to get
the upper bound. n is not big enough that we cannot just
ignore the influence of removing layer1 when investigating
X2. We consider that layer1 captures most points with a
small value of the second attribute and X2 is less likely
to be located in the left area that loses these points after
removing layer1. In the most extreme situation, X2 has
no possibility of falling in the left area and we can get
X2 ∼ U(x1, a). Similarly, Xi ∼ U(xi−1, a), 1 < i ≤ l. Let
X = max{X1, X2, . . . , Xl} = Xl, we can get b = E(X) =
(1− 0.5l)a.

In a more general situation, b ∈
[

l
l+1a, (1− 0.5l)a

]
.

Since A1 = a × b, A1 ∈
[

l
l+1a

2, (1− 0.5l)a2
]
. The con-

clusion is then extended to the high-dimensional situa-
tion. Using A1 to present the volume of the hyper-cuboid
area swept by the hyperplane, we can easily get A1 ∈[

l
l+1a

d, (1− 0.5l)ad
]
.

Calculating the shadow areas in Figures 8(d)(e)(f) is
a very tough task, we demonstrate a very simple model
shown in Figure 4 to give a rough estimation. Also, we first
study the problem in a 2-dimensional situation and then
extend it to high-dimensional space. The shadow area is
swept by the two hyperplanes, which intersect each other at
point p. Obviously, the value of c is crucial in this problem
and the case of the c × c square area depends on l only.
Assuming there are m points on the edge of this area and
we get the relationship 2(m − 1) + 1 = l when l is odd
(m = 3, l = 5 in this example). Considering that points on
the boundary just have 50% probability to fall in the area, the
average number of points in the c× c area can be expressed
as n′ = m2−(m−1) = l2+3

4 . Because the density of points in

the whole a×a area is constant, c =
√

n′

n a. When l� n, the

investigation area in our work A2 = 2ac − c2 ≈
√

l2+3
n a2.

We can get the same conclusion when l is even.
Now considering a high-dimensional case, we need to

study the cd hypercube area. l is the number of points on
the edge of this area and we have d(m−1)+1 = l similarly.

With the relationship c = d

√
n′

n a, n′ = md − d
2 ·m

d−1, and
A2 = d ·cad−1−(d−1)cd, we can get A2 ≈ l

d
√
n
ad when l, n,

m are large and the overlap of hyper-cuboids are neglected.
In the G-skyline problem, n� l, hence A2 � A1, we can see
that our new algorithm can reduce the cost of time highly.

c
a p

Fig. 4. A model for efficiency analysis.

3.2 Subspace Skyline Searching

We have introduced a framework to construct the MSL in
Subsection 3.1, but the search technique for each point is still
inadequate. Comparing with all the points visited already
for dominance when processing each new point is not effi-
cient. In this section, we illustrate some detailed searching
strategies including utilizing skyline in the subspace and
binary search to make searches more efficient.

A hyperplane mentioned in Subsection 3.1 is indeed a
d − 1 dimensional subspace, for instance, a line in planar
space and a plane in 3-dimensional space. When processing
a point p, we can project it and the points that we need to
compare against to the subspace. We utilize the properties
of dominance in the subspace to construct the MSL. Of
special note is that though points in certain layeri, which is
the skyline of D(layeri−1), cannot dominate each other in
original space, but their projections can since one attribute
is neglected in the subspace.

x1

p2

p3

p4

p5

p'1

p'2
p'3

p'4

p'5

x3

x2

p1
Hyperplane

p'1

p'2
p'3

p'4 p'5x1

Hyperplane x3

Fig. 5. Points in original space and projected to the subspace.

Property 3. When points are ordered increasingly by certain
attribute i and point p2 is behind p1, p′1 and p′2 are the projections
of these two points in the i-th hyperplane. If p′1 ≺ p′2, then
p1 ≺ p2. If p′1 ⊀ p′2, then p1 ⊀ p2.
Proof. Since point p2 is behind p1, we know that p1[i] ≤ p2[i].
And since p′1 ≺ p′2, we know that p1[j] ≤ p2[j] (j = 1, · · · , i−
1, i + 1, · · · ,m), and p1[j] < p2[j] for at least one j, so we
know that p1 ≺ p2. Similarly, when p′1 ⊀ p′2, we can infer that
p1 ⊀ p2.

Theorem 1. When investigating if current point can be domi-
nated by certain points in the current layer in our framework, we
just need to compare its projection with the subspace skyline of
this layer.
Proof. According to Property 3, when searching if there is a
point in certain layer can dominate current point, we just need
to execute this procedure in the subspace. Notate current point as
p0 and the current layer as layeri. According to the definition of
skyline, for certain point p′1 not in skylines(layer

′
i), there must

be some points p′2, · · · , p′m in layer′i making p′m � · · · p′2 � p′1.
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Since no point can dominate p′m, p′m ∈ skylines(layer
′
i). So,

if there is a point p′1 that can dominate current point p′0, there
must be at least one corresponding skyline point p′m dominating
p′0, and vice versa. So, when investigating p′0, only points in
skylines(layer

′
i) need to be compared.

Algorithm 2: MSL with subspace skyline.
Input: a set of n points S in d-dimensional space and the

group size l.
Output: l-layer MSL.

1 sort the n points by the first dimension in ascending
order S = {po1 , po2 , · · · , pon};

2 po1 .layer = 1;
3 max layer = 1;
4 sub skyline(1, · · · , l) = ∅;
5 store po1 to sub skyline(1);
6 MSL = sub skyline;
7 for i = 2 to n do
8 if poi is in Ds(sub skyline(max layer)) then
9 poi .layer = ++ max layer;

10 max layer = min{max layer, l};
11 else if poi is not in Ds(sub skyline(1)) then
12 poi .layer = 1;

13 else
14 use binary search to find j(2 ≤ j ≤ max layer)

letting poi is in Ds(sub skyline(j − 1)) but not
in Ds(sub skyline(j));

15 poi .layer = j;

16 if poi .layer ≤ l then
17 if there are points in sub skyline(poi .layer)

dominated2 by poi then
18 delete these points from

sub skyline(poi .layer);
19 store poi to sub skyline(poi .layer);
20 store poi to MSL(poi .layer);

21 return MSL;

Consolidating theories above, we give the detailed al-
gorithm in Algorithm 2. To make the introduction more
concise, we use the framework of BS algorithm, where the
points are ordered by only one dimension. In this algorithm,
we use a binary search to label the current point (lines 7-
20). When searching if the current point is in certain layer,
compare its projection with the skyline of this layer’s projec-
tion in the subspace (lines 8, 11, and 14, where Ds( ) is the
dominance domain in the subspace). Renew the subspace
skyline after each search (lines 16-19) and store the point to
the corresponding layer (line 20). In fact, the tail point in BS
algorithm is a special case in a 2-dimensional dataset of our
subspace skyline.

TABLE 2
Example steps of Algorithm 2.

Current
point

Skyline of
layer′1

Skyline
of layer′2

MSL

p1 {p′1} {} {p1}, {}
p2 {p′1, p′2} {} {p1, p2}, {}
p3 {p′1, p′2} {p′3} {p1, p2}, {p3}
p4 {p′1, p′2, p′4} {p′3} {p1, p2, p4}, {p3}
p5 {p′1, p′4, p′5} {p′3} {p1, p2, p4, p5}, {p3}

2. All dominance relationships in Algorithm 2 are in the subspace.

Example 4. Table 2 shows the steps of Algorithm 2 with the
example in Figure 5 (n = 5, d = 3, l = 2). Taking p5 as an
example, we compare p′5 with the subspace skyline of each layer
({p′1, p′2, p′4} and {p′3}). Once it is labeled and added to the first
layer, we renew the subspace skyline of the first layer (adding p′5
and removing p′2, since it is dominated by p′5).

Recalling the Property 3, we know that p′1 ⊀ p′2 then
p1 ⊀ p2. However, p2 may dominate p1 (when p′2 ≺ p′1
and p′2[i] = p′1[i]). In this case, we need to make sure p2 is
ordered in front of p1, or the skyline returned by Algorithm
2 will be incorrect. So when ordering points by the i-th
attribute and there are several points with the same value
of this attribute, we need to find another attribute to order
them increasingly. If there are still points with the same
value, we keep this procedure till the order is determined.

3.3 MSL Algorithm

We introduce a framework based on simultaneous search
in each dimension in Subsection 3.1 and detailed searching
strategies in Subsection 3.2. The complete algorithm for
MSL is a combination of the two algorithms. We search the
points concurrently in all dimensions. In each dimension,
we use binary search and subspace skyline to investigate
each point.

Running Time. According to previous analysis in Subsec-
tion 3.1, the number of points we need to investigate is
A2

ad n = n
d−1
d l. For those points that are not in the first l

layers, we only need to compare it with the subspace skyline
of the l-th layer. There are Tl points in it, so this part costs
O
(
Tln

d−1
d l
)

. For each point pj in the first l layers, we need

to search and label it, the time complexity is O
(∑

i∈BSj
Ti

)
,

where BSj is the set of layer index in the binary search for
pj and |BSj | = log l. When n � Sl, we can ignore the
influence of the first i layers (1 ≤ i ≤ l) and regard the
complementary set D(layeri) as an even-distributed and
independent dataset. In this situation, all Ti, 1 ≤ i ≤ l, are
approximately the same. Accordingly, the time complexity
for investigating one points is O (Tl log l) and the total cost
of the second part isO (TlSl log l). Ignoring the preprocess-
ing time, our algorithm requires O

(
Tl

(
n

d−1
d l + Sl log l

))
time in total for constructing MSL. Noticing that Tl = 1
in the 2-dimensional space, the time complexity becomes
O (
√
nl + Sl log l).

We note that the skyline layers are closely related to the
l-skyband [9] (we use l to represent the depth instead of k).
The differences between l-skyband and MSL were discussed
in [4]. In fact, (l − 1)-skyband is the subset of l-layer MSL.
There are two reasons we use MSL instead of skyband: (1)
We can design efficient algorithms to construct MSL, as
we shown in this section. (2) The more important reason
is that MSL is a multi-layer structure. Points in the same
layer cannot dominate each other. Points in the low-layer
can dominate points in the high-layer, but not vice versa.
These properties are very important to construct G-skyline,
as shown in next section.
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4 FINDING G-SKYLINE GROUPS

In this section, we devise a novel structure for finding G-
skyline groups.

Definition 4 (G-Skyline). Given a dataset S of n points
in d-dimensional space. G = {p1, p2, · · · , pl} and G′ =
{p′1, p′2, · · · , p′l} are two different groups with l points. If
we can find two permutations of the l points for G and G′,
G = {pu1

, pu2
, · · · , pul

} and G′ = {p′v1 , p
′
v2 , · · · , p

′
vl
}, letting

pui
� p′vi for all i and pui

≺ p′vi for at least one i (1 ≤ i ≤ l),
we say G g-dominates G′, denoted by G ≺g G′. All groups
containing l points that are not g-dominated by any other groups
with the same size compose G-skyline, denoted by GS [4].

Obviously, the Brute-force method for G-skyline is ex-
tremely time-consuming and far from practical [4]. We
demonstrate some important properties of G-skyline groups
that can be utilized to construct the G-skyline.

Property 4. For certain l-size group G, the necessary and
sufficient conditions of G ∈ GS is that for all pi ∈ G and all
pj ≺ pi in dataset S, pj ∈ G.

Proof. Necessity. By contradiction, for certain group G ∈ GS
and point pi ∈ G, assume there is a point pj satisfying pj /∈ G
and pj ≺ pi. We construct a new group G′ by using pj to replace
pi, then G′ ≺g G since pj dominates pi and all the other points
are the same, which contradicts the G-Skyline definition. We come
to the conclusion, for all points in a G-skyline group, all its parents
are in this group.

Sufficiency. By contradiction, we assume that there exits a group
G satisfying for all pi ∈ G and all parents of pi are in G,
and G is not a G-skyline group. According to Definition 4, we
have G /∈ GS, so there is a group G′ g-dominating G and two
permutations of these groups, G′ = {p′u1

, p′u2
, · · · , p′ul

} and
G = {pv1 , pv2 , · · · , pvl}, letting p′ui

� pvi and p′ui
≺ pvi

for at least one i (1 ≤ i ≤ l). We know that p′ui
is a parent

node of pvi
, so p′ui

∈ G, and assume it is notated as pvj in
G. Considering G′ ≺g G, there is a point p′uj

∈ G′ making
p′uj
� pvj . Since p′ui

= pvj , we can get p′uj
6= pvj (there

are no coincident points in the dataset S after the preprocessing
mentioned in Section 3) and p′uj

≺ pvj strictly. For the same
reason, p′uj

∈ G, which can be denoted as pvm , and there is a
point p′um

∈ G′ that can dominate it, so pvi � pvj � pvm · · · .
We can continue this procedure until there is a point pvn

∈ G,
no points in G can dominate it, which is the end of the dominance
chain pvi � pvj � pvm · · · � pvn . Since all parents of pvi are
in G, pvn

is a parent of it and no points in G can dominate pvn ,
pvn

is a skyline point. However, we can get a point p′un
∈ G′

making p′un
≺ pvn according to the relationship G′ ≺g G, which

is a contradiction. We come to the conclusion that if a group G
satisfies for all pi ∈ G and all parents of pi are in G, G is a
G-skyline group.

Property 4 is a very important property of the G-skyline.
The sufficient condition is the theoretical foundation of all
algorithms for Pareto optimal groups even though it has not
been explicitly studied. We can demonstrate other interest-
ing properties with Property 4. Next, we demonstrate the
G-skyline is a complete candidate set of top-l solutions. To
do so, we demonstrate these two following properties.

Property 5. For all monotonically decreasing criterion function
f( ), the group G consists of the top-l solutions belongs to G-
skyline.
Proof. For all monotonically decreasing function f( ), G is the
set of top-l solutions. For any pi ∈ G, assuming there is a point
pj ≺ pi. It is obvious that f(pj) > f(pi) according to the
definition of dominance and monotonicity, so pj ∈ G. Finally,
we can get G ∈ GS according to Property 4.

Property 6. For all G ∈ GS, there exists at least one mono-
tonically decreasing function f( ) that lets G be the set of top-l
solutions.
Proof. We prove the existence by giving a specific example. For a
group G = {p1, p2, · · · , pl} in G-skyline, the criterion function
could be in the form of

f(x) =


d∑

i=1

(
max

j
{pj [i]} − xi

)
,

l∨
j=1

(
d∧

i=1
xi ≤ pj [i]

)
−

d∑
i=1

xi, otherwise

,

where x = (x1, x2, · · · , xd) are all attributes. It is a piecewise
function and decreases monotonically in all domain. All points in
G can get non-negative scores while points in S\G get negative
scores, so G is the top-l solutions.

We come to a conclusion that all G-skyline groups can be
the top-l solution, while all non-skyline groups can not. So
G-skyline is the exact candidate set of optimal solution. This
is the main superiority over other definitions of group-based
skyline [2], [3].

G-skyline is established by the MSL, however we ob-
served that not all layers in MSL contribute equally to G-
skyline. The first layer is much more important. Groups that
consist of only the first layer points take a great proportion.

Definition 5 (Primary Group). l-point groups consisting of
only layer1 points in MSL are primary groups. According to the
definition of G-skyline, all primary groups are G-skyline groups
because every individual point cannot be dominated.

Definition 6 (Secondary Group). G-skyline groups that are not
primary groups are defined as secondary groups.

Example 5. Taking the synthetic INDE dataset (n = 1000, d =
4, l = 3) as an example, there are 76 points in layer1, 152 points
in layer2, 189 points in layer3 in MSL and 75034 groups in G-
skyline. The number of primary groups and secondary groups is(76
3

)
= 68450 and 6584 respectively. We can see that the number

of primary groups dominates with an overwhelming advantage.

TABLE 3
Percentage of primary groups.

dataset CORR INDE ANTI
d 2 4 6 8 2 4 6 8 2 4 6 8

l
2 62.5 97.6 98.8 99.5 80.3 97.9 99.6 99.9 98.1 99.9 99.8 99.9
3 18.6 87.8 97.8 98.9 38.2 91.2 98.0 99.3 91.0 98.9 − −
4 2.1 84.3 − − 16.9 87.4 − − 88.2 − − −

Table 3 shows the percentage of primary groups in
different datasets, with various parameters. We can see that
the primary groups occupy a large proportion in most cases,
especially with a small l and a large d. This phenomenon
motivates the following.

(1) Primary groups, which are combinations of l points
in layer1, contribute to a majority number of G-skyline
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groups. It is important to give priority to enumerate all
these combinations in the most direct and efficient way. (2)
Though there are significantly more points in later layers,
they contribute very little to the G-skyline groups. So, an
efficient pruning strategy is desired.

Considering these motivations, we introduce two new
approaches, fast PWise algorithm (F PWise) and fast UWise
algorithm (F UWise), based on the PWise and UWise+ algo-
rithms proposed in [4]. Here we give a very brief summary
of them: Authors first constructed the directed skyline graph
(DSG), which is a graph saves all points in MSL and the
dominance relationship among them. DSG is then pruned
with preprocessing (remove all points with more than l − 1
parents). In DSG, points with larger index than current
point/a group of points are stored as a tail set of this
point/group, denoted as TDSG(p)/TDSG(G). Point p and
all its parents form the unit group. In PWise and UWise+
algorithm, points and unit groups from the tail set of the
current group are added into it to construct a new group
based on Property 4. The new group is removed if it is not
a G-skyline group and is outputted if the size is l.

4.1 Fast PWise Algorithm

In this subsection, we propose the fast PWise algorithm
(F PWise) to construct G-skyline based on the combination
queue. Besides the previous pruning strategies in PWise
algorithm, we give the edge pruning for DSG to make the
algorithm more effective. We first give the definition of DSG
and then illustrate the pruning strategy.

Definition 7 (Directed Skyline Graph (DSG)). A directed
skyline graph is a graph where a node represents a point and
an edge represents a dominance relationship. Each node has a
structure as [layer index; point index; parents; children]

Edge Pruning. For any two points pi and pj in DSG (pj is
in the tail set of pi), if pj .layer − pi.layer > 1, delete the
edge between them. Also, taking Figure 2 as an example,
we can delete (p7, p8) because when adding p8 to a group
containing p7, it must contain p5 and p4 too or the new
group will be a non-skyline group and removed by subtree
pruning [4]. We can find p8 in the child set of p5 hence the
connection between p7 and p8 is not necessary.

Definition 8 (Combination Queue). A queue to enumerate
combinations by adding elements in the tail set of current set.

We enumerate all combinations of no more than l layer1
points with a combination queue. It can output all the
primary groups and can also be used to find secondary
groups in the next procedure. The detailed algorithm is
shown in Algorithm 3. The algorithm prunes the DSG by
preprocessing [4] and edge pruning (line 1). A combination
queue is used to find all primary groups (line 3). Lines 4-15
show the procedure to find the secondary group with the
intermediate results of the combination queue. Lines 10-14
show the subtree pruning since a group which is not an
(i − 1)-size G-skyline group cannot be an i-size G-skyline
group by adding a point from its tail set [4].

Example 6. Figure 6 uses MSL in Figure 2 as an example to
show the steps of Algorithm 3. Figure 6(a) shows a DSG, where

Algorithm 3: Fast PWise algorithm
Input: a DSG and group size l.
Output: G-skyline GS.

1 prune DSG with preprocessing and edge pruning;
2 GS = ∅;
3 construct combination queue Q to find out all primary

groups and store them to GS;
4 queue pointer = 1;
5 while queue pointer ≤ length(Q) do
6 for each pi in Q(queue pointer) do
7 for each pj in pi’s children set in DSG do
8 if pj is in TDSG(Q(queue pointer)) then
9 combine Q(queue pointer) and pi as G;

10 if G is a skyline group then
11 if there are l points in G then
12 add G to GS;

13 else
14 add G to Q;

15 queue pointer + +;

16 return GS;

p1 p2 p4 p7

p3 p5

p6

layer1

layer2

layer3

(a) DSG

p1
p2
p4
p7
p1, p2
p1, p4
p1, p7
p2, p4
p2, p7
p4, p7,
p1, p2, p4
p1, p2, p7
p1, p4, p7
p2, p4, p7

p4, p5
p1, p2, p3
p1, p4, p5
p2, p4, p5
p4, p7, p5

p4, p5, p6

output

(b) Example steps

Fig. 6. Example steps of Algorithm 3.

solid line arrows point to child nodes and dotted arrows point to
parent node. Node p8 and edge (p4, p6) are all removed (only
the solid line arrow is removed, the dotted arrows is reserved for
subtree pruning). In Figure 6(b), the first column is a combination
queue to enumerate all primary groups and the later two columns
find secondary groups by adding points in layer2 and layer3 to
groups in the first column.

4.2 Fast UWise Algorithm
In this subsection, we propose the fast UWise algorithm
(F UWise) by adding combination queue to UWise+ algo-
rithm. UWise+ method constructs G-skyline by adding unit
groups (groups composed of certain point and all its parents
in DSG) [4]. We find all primary groups by the combination
queue and secondary groups by UWise+ method. Unlike
F PWise, F UWise gives these two kinds of groups inde-
pendently by different methods. It is a simple combination
but also performs well.

5 FINDING RG-SKYLINE GROUPS

We demonstrated the completeness of G-skyline in Section
4. However, it can be a rather costly process returning
a huge number of groups, especially when l is large, or
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in high-dimensional space. We introduced several efficient
algorithms in Sections 3 and 4 to deal with the problem
of high time consumption. In this section, we focus on the
problem of huge output size by defining RG-skyline. In real-
world applications, reasonable output size is very important
for user experience, so we just show k RG-skyline groups
that represent the “contour” of the whole G-skyline to users
rather than the original G-skyline. [31] computed k-SGQ by
finding G-skyline groups that can dominate the most points.
However, it only returns the groups with similar attribute
patterns hence is not representative enough.

Example 7. Recalling the hotel example shown in Figure 2, the
k-SGQ groups are {p1, p2, p4}, {p1, p4, p7}, and {p2, p4, p7}
(l = 3, k = 3).

We can see that a max-dominance method tends to
return the groups that all their points are scattered. In fact
{p1, p2, p4}, {p1, p4, p7}, {p2, p4, p7} are quite similar, they
are all for agencies who want to provide extensive service.
The agencies targeting low-end travelers (may collaborate
with hotels {p4, p7, p5} or {p4, p5, p6}) and high-end trav-
elers (may prefer {p1, p2, p3}) cannot find their choice in
k-SGQ. To bridge this gap, we define a novel distance-
based representative skyline in the group level, RG-skyline,
to show all main patterns of groups and propose a novel
G-clustering method to construct it.

Definition 9 (RG-Skyline). Given a G-skyline GS and an
integer k, cluster all GS groups into k clusters, the RG-skyline
consists of k cluster centers 3.

To construct RG-skyline, all G-skyline groups are clus-
tered. We regard a cluster, which is considered as a category
in unsupervised learning, as a pattern and use the cluster
center to represent it. However, the conventional clustering
algorithms are not competent in the group situation. Next,
we introduce a k-means G-clustering algorithm. There are
two steps in k-means algorithm, assign each observation to
the cluster whose mean has the least distance and update
the new means to be the centroids of the observations in
the new clusters. So, in the G-clustering algorithm, we need
to define how to calculate the distance between two groups
(introduced in Subsetion 5.1) and how to update the cluster
centers (introduced in Subsetion 5.2).

5.1 Distance Between Groups

There are several ways to measure the distance between
two groups, such as aggregating a group into one point
with MAX, MIN, or SUM. However, aggregate functions
capture fragmentary attributes (strongest/weakest/average
attributes with MAX/MIN/SUM). To address this gap, we
give a new definition of distance in the group level. Con-
sidering groups with the same pattern have similar spacial
distribution of points, we define the group distance by
calculating the distance among their points.

Definition 10 (Group Distance). For two groups G = {p1, p2,
· · · , pl} and G′ = {p′1, p′2, · · · , p′l}, the distance between them

3. The clustering is on group-level thus the cluster centers returned
are groups.

is defined as:

dg(G,G′) =

√√√√min
u,v

l∑
i=1

d2(pui
, p′vi), (1)

where u and v are two permutations that minimize Equation 1
and d( ) is the Euclidean distance between two points.

Calculating the group distance is an assignment problem
[35]. We use a distance matrix D ∈ Rl×l to denote the
distances between points in two groups and a Boolean
matrix X ∈ {0, 1}l×l to denote the matching strategy. Di,j

is the distance between pi and p′j ; Xi,j = 1 means pi is
matched to p′j and Xi,j = 0 otherwise. An assignment
problem can be formulated as:

min
l∑

i=1

l∑
j=1

Xi,jDi,j

s.t.
l∑

i=1
Xi,j = 1

l∑
j=1

Xi,j = 1

There are several existing methods to solve the as-
signment problem, such as Hungarian algorithm [36] and
heuristic algorithms [37], [38], [39]. Nevertheless, in our RG-
skyline group problem, l is usually small, and these existing
algorithms are inefficient (even slower than Brute-force,
shown in Figure 17(a)). Compared with methods for global
optimization, the greedy method is much more efficient
while it usually returns an inaccurate solution. As the basic
operation of G-clustering, a very fast and accurate algorithm
for small scale matching is greatly desired. To bridge these
gaps, we modify the greedy method and propose a Greedy+
algorithm (represented in Algorithm 4). In the naive greedy
method, all elements in D are selected in an increasing
order to try to establish the matching strategy. Since only
one element can be chosen in each row and column, once an
element is chosen, the elements in the same row or column
are out of consideration, even though they are involved
in the optimal matching strategy. So greedy method easily
gets trapped in a local optimum. In our Greedy+ algorithm,
more strategies are investigated (lines 1-11). We define the
elements searched in all previous iterations as candidate
matchings (lines 2, 9-11), they are better than the worst
matching in the local optimization, hence with considerable
probability to be involved in the global optimal solution.
In Greedy+ algorithm, we investigate matching strategies
covering all candidate matchings (lines 3-11) and return the
best strategy (lines 12, 13).

5.2 Updating Strategy

In conventional k-means, we update the cluster centers by
calculating the mean of each cluster. However, in G-skyline,
a group is a set and all points in it are unordered, so we
cannot sum groups to calculate the mean. To deal with this
problem, we need to determine the sequence of points in
each group. To do this, we utilize the permutations (u and
v) we get in Equation 1. However, Equation 1 only gives the
permutations between each pair of groups hence cannot be
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Algorithm 4: Greedy+ algorithm
Input: a distance matrix D.
Output: distance between two groups d and

corresponding matching strategy u and v.
1 sort all elements of D increasingly and record in List;
2 candidate matchings = List;
3 while candidate matchings are not empty do
4 strategy = ∅;
5 add candidate matchings(1) to strategy;
6 for each Di,j in List do
7 if Di,j are not in the same row or column with

elements in strategy then
8 add Di,j to strategy;

9 if length(strategy) == l then
10 remove the elements appearing in strategy or

larger than Di,j from candidate matchings;
11 break;

12 record the minimum group distance d and
corresponding matching strategy u, v during
iterations;

13 return d, u, v;

used to sum several groups up. To deal with the problem,
we revise the updating procedure. We first formulate the
procedure in the point level and then extend the form to the
group level.

In the point level, for certain cluster C , we have the mean
p̄:

p̄ =

∑
pi∈C

pi

|C|
=

∑
i∈{j|pj∈C}

(p0 + ∆i)

|C|
= p0 +

∑
i∈{j|pj∈C}

∆i

|C|
,

where p0 is the previous center and ∆i is the vectorial
difference between pi and p0.

Similarly, in the group level, the new centroid of cluster
C is:

Ḡ = G0 +

∑
Gi∈C

∆(Gi, G0)

|C|
, (2)

where the previous cluster centroid G0 is not a set
(
{
p
(0)
1 , p

(0)
2 , · · · , p(0)l

}
) but a concatenated vector:

G0 =
((

p(0)v1 [1], · · · p(0)v1 [d]
)
, · · · ,

(
p(0)vl

[1], · · · p(0)vl
[d]
))

,

and ∆( ) in Equation 2 is also defined as a concatenated
vector:

∆(Gi, G0) =
((

p(i)u1
[1]− p(0)v1 [1], · · · p(i)u1

[d]− p(0)v1 [d]
)
, · · · ,(

p(i)ul
[1]− p(0)vl

[1], · · · p(i)ul
[d]− p(0)vl

[d]
))

, (3)

where u and v are determined in Equation 1. We fix v
as {1, 2, · · · , l} to give the unique solution and the vec-
torial difference in Equation 3 is denoted as ∆u(Gi, G0).
We can see that the distance in Equation 1 dg(Gi, G0) =
‖∆(Gi, G0)‖2. All additions in Equation 2 are for vectors.

Example 8. For the hotel example illustrated in Figure 2, assum-
ing there are three groups in current cluster C = {G1, G2, G3},
where G1 = {p2, p4, p7}, G2 = {p4, p5, p7}, and G3 =

{p2, p4, p5}. The cluster center is initialized to G1 and the new
cluster center is:

Ḡ = G0 +

3∑
i=1

∆(Gi, G0)

3
,

where
G0 = (6, 250, 13, 50, 23, 25),

∆(G1, G0) =(6, 250, 13, 50, 23, 25)− (6, 250, 13, 50, 23, 25)

=(0, 0, 0, 0, 0, 0),

∆(G2, G0) =(16, 75, 13, 50, 23, 25)− (6, 250, 13, 50, 23, 25)

=(10,−175, 0, 0, 0, 0),

∆(G3, G0) =(6, 250, 13, 50, 16, 75)− (6, 250, 13, 50, 23, 25)

=(0, 0, 0, 0,−7, 50),

Ḡ = (9.33, 191.67, 13, 50, 20.67, 41.67).

The new cluster center is

{(9.33, 191.67), (13, 50), (20.67, 41.67)}.

G1 (G0) G3

 02 ,GG

 03 ,GG

 
i

i GG 0,

G

G2

Fig. 7. An example for cluster center updating. Each point in this figure
indicates a group, the red point represents the new cluster center and
the red arrow is the shift vector

∑
i ∆(Gi,G0)

|C| . G1, G2, and G3 cannot be
summed up directly since they are sets and the order of their elements
are not determined. However, ∆(Gi, G0), i = 1, 2, 3 are vectors so we
can sum them together.

We can see that after updating, the cluster centers may
not correspond to any G-skyline groups. When the iteration
stops, for each cluster center, we find a G-skyline group with
the shortest distance to replace it (please see Algorithm 5 for
details).

Our final G-clustering algorithm is presented in Algo-
rithm 5. To initialize the clustering centers (line 1), we first
choose an arbitrary group and then add a group to RS k−1
times. For each addition, we select a group in GS with
the largest distance to those in RS. In fact, our initialized
clustering centers are sufficient to represent the whole G-
skyline [28]. In each iteration, we assigning each group to
the nearest cluster (lines 6-12) and then updating the centers
with new means (lines 13-14). The iteration is terminated
when the composition of each cluster remains stable (lines
2-14). After being updated many times, the cluster centers
we get may not be skyline groups, so we return groups with
the shortest distance as RG-skyline groups (lines 15-18).

Example 9. RG-skyline groups returned by G-clustering are
{p1, p2, p3}, {p4, p5, p7}, and {p2, p4, p5} (l = 3, k = 3). We
can see that agencies for high-end travelers, low-end travelers, or
extensive service can all find their choices.
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Algorithm 5: G-clustering algorithm
Input: a G-skyline GS, the size of RG-skyline k.
Output: a set of RG-skyline groups RS.

1 initialize the RG-skyline: RS = {Gcj}, j = 1, · · · , k;
2 while not converge do
3 for j = 1 to k do
4 Cj = ∅;
5 initialize ∆j to a zero vector of length d× l;

6 for each Gi in GS do
7 for each Gcj in RS do
8 calculate the distance matrix D;
9 calculate dg(Gi, Gcj ) and u by Greedy+

algorithm;

10 find the Gcj with the minimum dg(Gi, Gcj ),
record Gcj as Gcen, record u as ucen;

11 add Gi to Cj ;
12 ∆j+= ∆ucen(Gi, Gcen);

13 for j = 1 to k do
14 Gcj += ∆j/length(Cj);

15 for each Gcj in RS do
16 for each Gi in GS do
17 calculate dg(Gi, Gcj );

18 record the nearest group Gi and replace Gcj with it in
RS;

19 return RS

6 EXPERIMENTS

In this section, we demonstrate the effectiveness and the
efficiency of our proposed methods in the synthetic and
real-world datasets. All algorithms were implemented in
python4. We conducted the experiments on a PC with Intel
Core i7 2.8GHz processors, 512K L2 cash, 3M L3 cash, and
8G RAM.

Datasets. We performed each algorithm in synthetic
datasets and a real NBA dataset. To examine the scalability
of our methods, we generated independent (INDE), corre-
lated (CORR), and anti-correlated (ANTI) datasets. These
three types of data distribution are first proposed by [1] to
simulate different actual application scenarios.

CORR is for the objects whose attributes are all corre-
lated. As an example, an outstanding student may perform
well in all subjects. ANTI is for the objects whose attributes
are all anti-correlated, like the hotel example shown in
Figure 1, the long distance one may have a lower price.

We crawl the data of NBA players from the official web-
site5 to construct the NBA dataset. There are five attributes
to investigate players’ performance, points (PTS), rebounds
(REB), assists (AST), steals (STL), and blocks (BLK).

6.1 MSL on the Synthetic Data

In this subsection, we run the approaches for MSL in
synthetic datasets. Figure 8 gives examples of MSL and
compares the number of points need to be investigated by
different methods. Figures 9-11 show the running time of
MSL algorithm (presented in Subsection 3.3), the binary

4. All the codes and datasets used in this paper are available on https:
//github.com/Wenhui-Yu/Gskyline.

5. http://stats.nba.com.

search algorithm (BS) [4], and the baseline approach (BL,
iteratively compute and remove each skyline layer).

(a) (b) (c)

a

b

c (d) (e) (f)

Fig. 8. Comparison between previous methods and our method.

Figure 8 compares different investigate ranges between
previous methods and our method (INDE, d = 2, l =
3, n = 50 in Figures 8(a)(d), n = 300 in Figures 8(b)(e)
and n = 1, 000 in Figures 8(c)(f)). Shadow areas in Figures
8(a)(b)(c) mean the points that are investigated in binary
search (BS) algorithm. Shadow areas in Figures 8(d)(e)(f)
mean the points need to be investigated in our approach.
It is evident that there is less redundant computation in our
approach. And the larger n is, the more efficient our work
is.

(a) CORR (b) INDE (c) ANTI

Fig. 9. MSL in synthetic datasets of varying l.

Figure 9 shows the time cost of each approach with
varying group size l in three different datasets respectively
(n = 100, 000, d = 3). It indicates that our approach outper-
forms others especially when the output size is large. When
l is very small, there are very few points in MSL (Figure 9(a),
l = 2, as an example), ordering before building MSL spends
much time so that our approach is not the fastest. But with
the increasing of l, the advantage of our approach becomes
more and more significant. Another interesting observation
is that running the skyline algorithm 20 times (BL, l = 20)
costs 100 times more than running it twice (BL, l = 2). This
is because when we construct and remove skylines layer by
layer, there are more and more points in later layers (it is
obvious in Example 5 and Figure 8(a)). It costs more time to
construct later layers so the increasing of the total cost is not
linear with the increasing of l.

Figure 10 presents the time cost of each approach with
varying number of points n (d = 3, l = 10). For each
approach, the running time grows almost linearly with the
increasing of the point number n since the amount of com-
putation is almost proportional to the scale of the dataset.

https://github.com/Wenhui-Yu/Gskyline
https://github.com/Wenhui-Yu/Gskyline
http://stats.nba.com.
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(a) CORR (b) INDE (c) ANTI

Fig. 10. MSL in synthetic datasets of varying n.

Also, when output size is very small, our approach does not
perform the best due to the overhead cost of ordering.

(a) CORR (b) INDE (c) ANTI

Fig. 11. MSL in synthetic datasets of varying d.
Figure 11 illustrates the running time of each approach

with different number of dimensions d (n = 100, 000, l = 2).
The result shows that the efficiency advantage of our ap-
proach decreases with the increasing of d. It is because in
our search approach (shown in Algorithm 2), we save the
subspace skyline of each MSL layer instead of the layer itself
and compare with them when investigating a new point. We
reduce the number of points to store and compare to save
time but we waste some to update the subspace skyline each
time. However, both theoretical analysis and experiment
show that the scale of skyline will grow intensively with
the increasing of d since a large number of attributes means
difficulty for points to dominate each other (and the same
situation in the subspace). In this case, the time wasted for
skyline updating is more than the time gained in search
strategy. When d is large, the framework (FW) only, shown
in Algorithm 1, performs better than the whole MSL algo-
rithm.

6.2 MSL on the NBA Data
In this section, we implemented all algorithms in a real
NBA dataset. We gathered 5, 000 records of players after
filtering out some inferior ones (we added 5 attributes to
rank players and removed the bottom ones).

(a) Varying l (b) Varying n (c) Varying d

Fig. 12. MSL in NBA datasets of varying parameters.

Figure 12 shows the influence of different parameters
on the time cost of MSL in the NBA dataset. Figure 12(a)
represents the variation of the running time with the impact
of group size l (n = 5, 000, d = 3). We can see that our
approach performs better than previous approaches. The

variation of the time cost with the impact of dataset size
n is presented in Figure 12(b) with d = 3 and l = 10. The
time cost does not vary intensively with the varying n due
to the “saturation” of each MSL layer. And the variation
of the running time with the impact of dimension size d is
represented in Figure 12(c) when n = 5, 000 and l = 5. As
we have analyzed in Subsection 6.1, the efficiency advantage
of our approach decreases distinctly with the increase of d
because of the dramatic increase of Tl. Our approach costs
O
(
Tl

(
n

d−1
d l + Sl log l

))
time and becomes inefficient in

high-dimensional space. So, in this case, we can implement
framework (FW, shown in Algorithm 1) only instead of the
whole MSL algorithm.

6.3 G-skyline on the Synthetic Data

In this section, we show the experimental result of the
proposed approaches for computing G-skyline. F PWise
and F UWise are executed and the baseline approach (BL)
is the UWise+ algorithm, which is the best performing
algorithm in [4]. To show the effectiveness of our G-skyline
algorithms, we only compare the time after building MSL
in the experiments, to eliminate the effect of our proposed
MSL algorithm.

All existing approaches for G-skyline return a candidate
set that is too large to be useful. In fact, if G-skyline is used
for data pruning, primary groups are not necessary to return
as result. This is because when investigating if a group is
a primary group, we can search if all its points are in the
skyline (lS1 times for the worst case) rather than searching
if it is in G-skyline (more than

(S1
l

)
times for the worst case).

Only when investigating if it is a secondary group, it needs
to be searched in G-skyline. So, we just output secondary
groups in our methods and the result shows the time cost of
each approach.

Line charts in Figures 13 to 15 show the time cost of BL,
F PWise and F UWise and histograms in Figures 13 to 15
show the size of G-skyline with certain varying parameter
(group size l, number of points n, and number of dimen-
sions d) in CORR, INDE, and ANTI dataset respectively.

(a) CORR (b) INDE (c) ANTI

Fig. 13. G-skyline in synthetic datasets of varying l.

Figure 13 shows the time cost and the G-skyline size with
varying group size l (n = 100, 000, d = 3). We can see that
the increasing of output size is almost exponential with the
increasing of the group size l, accordingly the running time
of each approach also increases exponentially with it.

Figure 14 shows the time cost and the output size with
varying number of points n (d = 5, l = 2). Distinctly, they
both increase approximately linearly with the increasing of
n.

Figure 15 shows the time cost and the size of G-skyline
with varying number of dimensions d (n = 100, 000, l = 2),
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(a) CORR (b) INDE (c) ANTI

Fig. 14. G-skyline in synthetic datasets of varying n.

(a) CORR (b) INDE (c) ANTI

Fig. 15. G-skyline in synthetic datasets of varying d.

which increase approximately exponentially with the in-
creasing of d.

Unit group based approach is a pretty artful way for the
G-skyline problem. It fits the property of G-skyline group
well and UWise+ usually performs better than PWise [4].
But in our new approaches, F PWise performs much better
than F UWise in most situations, especially in a large output
size. We can see that the new pruning strategy promotes
the efficiency of F PWise dramatically. In addition, there are
many overlaps between each unit groups. When the output
size is large, there are a large number of unit groups to
search and the overlap issue becomes serious whereas our
point-based method is enhanced dramatically by the edge
pruning.

6.4 G-skyline on the NBA Data
In this subsection, we implemented BL (UWise+), F UWise,
and F PWise in NBA dataset and report the result. Figure
16 shows the output size and the time cost of G-skyline in
NBA dataset with different parameters.

(a) Varying l (b) Varying n (c) Varying d

Fig. 16. G-skyline in NBA dataset with varying parameters.

The line chart in Figure 16(a) shows the variation of the
running time for G-skyline with the impact of group size l
(n = 5, 000, d = 3). The improvement of our approaches is
not so significant compared with that in other cases shown
in Figure 16(b) or Figure 16(c), it may be because that our
approaches omit primary groups, which account for a lower
proportion when there are many layers in MSL (shown
in Table 3). As a result, the time complexity is the same
order of magnitude with the baseline. Another interesting
phenomenon is that in most situation, F PWise performs
better, especially with a large n or d, however F UWise
generally performs better in this situation. The reason may
be that with a large l, there are too many children of each

node in DSG and enumerating them takes significant time
in F PWise. And in F UWise, the overlap issue, mentioned
in Subsection 6.3, is not so serious. The histogram in Figure
16(a) is the illustration of output size with different group
size l.

The line chart in Figure 16(b) illustrates the variation of
the time cost with the impact of dataset size n with d = 5
and l = 2 and the histogram in Figure 16(b) illustrates the
variation of the output size. We can observe that the output
size does not vary prominently. The reason may be that the
NBA dataset is correlated, so the skyline becomes “saturate”
even with the increase of the dataset size, hence the running
time and the output size of G-skyline keep constant.

The line chart in Figure 16(c) presents the variation of
the running time with the impact of dimension size d when
n = 5, 000 and l = 2. Line chart in Figure 15 and Figure
16(c) show that with the increase of d, F Pwise becomes
more and more efficient and surpasses F UWise eventually.
The reason may be that when there are more attributes,
it is harder for a point to dominate another and there are
fewer child nodes of each node in DSG, so the enumeration
complexity reduces and F PWise becomes more efficient.

6.5 Representative skyline on the Synthetic Data
In this subsection, we devise experiments to validate the
effectiveness of all algorithms for the assignment problem
and the representative skyline (including k-SGQ and RG-
skyline). Finally, we report the performance.

(a) Time consumption (b) Error

Fig. 17. Comparison of the methods for the assignment problem.

In Figure 17, the performance of four methods for the
assignment problem (Brute-force, Hungarian, Greedy, and
Greedy+) are reported. Figure 17(a) shows the cost of time
of each method and Figure 17(b) shows the error. Brute-
force calculates the distance by enumerating all possible
matchings. We can see that though small at the begin-
ning, the cost of Brute-force increases with the explosive
exponential growth when l grows. With much additional
computation, Hungarian algorithm is far from satisfactory
in the situation with small l. Greedy is the most efficient
method though very inaccurate. Our proposed Greedy+
shows a good balance between cost of time and accuracy.

We then show the performance of algorithms for rep-
resentative skyline: k-SGQ [25], G-cluster B (G-clustering
with Brute-force to match the points), and G-clustering. k-
SGQ algorithm constructs the k-SGQ while G-cluster B and
G-clustering construct the RG-skyline. Figures 18 to 20 show
the cost of time to calculate representative skyline in three
synthetic datasets.

Figure 18 shows performance with varying k (l = 3,
n = 1, 000, 000, d = 2). As shown in the figure, the time cost
of k-SGQ keeps constant with the increasing of k, since we
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(a) CORR (b) INDE (c) ANTI

Fig. 18. Representative skyline in synthetic datasets of varying k.

only need to iterate one time to construct the RG-skyline.
G-cluster B and G-clustering has a linear time cost with
respect to k, since we need to iterate k times. Since the time
cost of Brute-force and Greedy+ are similar (represented in
Figure 17(a)), their lines almost coincide.

(a) CORR (b) INDE (c) ANTI

Fig. 19. Representative skyline in synthetic datasets of varying l.

Figure 19 illustrates performance of three algorithms
with varying group size l (k = 4, n = 1, 000, 000, d = 2).
Benefiting from our novel Greedy+ method, G-clustering
outperforms G-cluster B as l grows.

(a) CORR (b) INDE (c) ANTI

Fig. 20. Representative skyline in synthetic datasets of varying n.

Figure 20 presents the time cost with a varying number
of points n (k = 4, l = 3, d = 2). The time cost of k-SGQ
increases obviously with the increase of n. This is because
when there are a large number of points in the dataset, it
will cost more time to search how many points a group can
dominate.

6.6 Representative skyline on the NBA Data

In this subsection, we report the performance of all algo-
rithms for representative skyline in the NBA real-world
dataset.

(a) Varying k (b) Varying l (c) Varying n

Fig. 21. Representative skyline in NBA datasets of varying parameters.

Figure 21 illustrates the time cost of k-SGQ, G-cluster B,
and G-clustering. The performance with varying k, l, and
n are shown in Figures 21(a)(b)(c) respectively. We can get
the similar conclusion with experiments in the synthetic
datasets, our G-clustering method performs better when k,
l are small and n is large. We can see that our method costs
more time than the baseline in some cases. Of particular
note is that the main superiority of G-clustering is not the
efficiency, but the effectiveness — it returns groups with
different tradeoffs thus more representative (presented in
Tables 4 and 5).

TABLE 4
k-SGQ

G1 LeBron James Hakeem Olajuwon Dirk Nowitzki Chris Paul very balanced
G2 LeBron James Hakeem Olajuwon Dirk Nowitzki Isiah Thomas very balanced
G3 LeBron James Hakeem Olajuwon Dirk Nowitzki Earl Monroe very balanced
G4 LeBron James Hakeem Olajuwon Carmelo Anthony Chris Paul very balanced
G5 LeBron James Hakeem Olajuwon Carmelo Anthony Isiah Thomas very balanced
G6 LeBron James Hakeem Olajuwon Carmelo Anthony Earl Monroe very balanced

TABLE 5
RG-skyline

G1 Michael Jordan LeBron James Kevin Durant George Gervin high PTS
G2 Pete Myers Lance Blanks Luke Hancock Wayne Turner high STL
G3 Nate Thurmond Dave Cowens Wes Unseld Jerry Lucas high REB, BLK
G4 Michael Jordan Anthony Davis Lance Blanks Allen Iverson very balanced
G5 John Stockton Magic Johnson Steve Francis John Stockton high REB, AST, STL
G6 Michael Jordan Luke Hancock Lance Blanks Pete Myers high PTS, STL

Tables 4 and 5 present the k-SGQ and our RG-skyline
respectively. The last column in Table 4 records the domi-
nance score of current group. From the tables we can see
that all groups returned by k-SGQ are in single pattern, i.e.,
they are all very balanced (i.e., get satisfactory score in all
attributes) and with similar component. Considering that
(group-based) skyline is devised to offer different tradeoffs
to the users, k-SGQ is not competent to represent G-skyline.
In contrast, RG-skyline performs much better: Groups in it
are pretty different to each other and the coach will have
more choices. For example, the coach can choose G4 for
a regular competition and G1 for slam dunk competition.
To prevent buzzer beater from opponents at the end of the
competition, the coach can choose G3 or G5 to strengthen
defense.

7 CONCLUSION

In this paper, we proposed several novel structures to ad-
dress the G-skyline problem. First, we developed a novel
algorithmic technique to build MSL using concurrent search
and subspace skyline properties. We investigated all points
by searching concurrently in each dimension and for a
point, we compared it only with the subspace skyline of
current layer. Then, we developed two new methods to
find G-skyline by dividing the G-skyline groups into two
categories, primary groups and secondary groups. We used
a combination queue to enumerate all primary groups and
then find the secondary groups in point-wise and unit
group-wise algorithms. To mitigate the drawback of too
many returned G-Skyline groups, we extended the clus-
tering algorithm from the point level to the group level
to propose our G-clustering algorithm, and then use it to
establish the RG-skyline by finding out all cluster centers.
Experimental results show that the proposed algorithms
perform several orders of magnitude better than the baseline
method in most situations.
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