
Dynamic Shapley Value Computation
Jiayao Zhang∗, Haocheng Xia∗, Qiheng Sun∗, Jinfei Liu†, Li Xiong‡, Jian Pei§, Kui Ren∗

∗Zhejiang University, {jiayaozhang,xiahc,qiheng sun,kuiren}@zju.edu.cn
†Zhejiang University, ZJU-Hangzhou Global Scientific and Technological Innovation Center, {jinfeiliu}@zju.edu.cn

‡Emory University, lxiong@emory.edu
§Simon Fraser University, jpei@cs.sfu.ca

Abstract—With the prevalence of data-driven research, data
valuation has attracted attention from the computer science field.
How to appraise a single datum becomes an imperative problem,
especially in the context of machine learning. Shapley value is
widely used to fairly measure the contribution of data points in
machine learning since it is the unique definition that satisfies
all four desired properties: balance, symmetry, additivity, and zero
element. However, computing Shapley value is known to be a #P-
hard problem. As data is subject to changes, dynamic data exists
pervasively in real-world scenarios. Pricing such dynamic data
is more challenging due to the prohibitively expensive cost of
recalculation from scratch. In this paper, we study the problem
of Dynamic Shapley Value Computation, which updates Shapley
value when dynamically adding/deleting data points. For adding
data points, to prune unnecessary computation of overlapping
model utilities, we propose the pivot-based algorithm that can
reduce half computation time in general. We also propose the
delta-based algorithm to capture Shapley value changes, which
requires a smaller sample size to converge. For deleting data
points, we present the YN-NN algorithm that derives the new
Shapley value from the data structure of precomputed model
utilities in an efficient way. Based on Shapley value changes, we
give another version of the delta-based algorithm for deleting
data points. Besides, we propose heuristic algorithms to draw
on experimental observations for both adding and deleting data
points. Extensive experimental results demonstrate the efficiency
and effectiveness of our proposed algorithms.

I. INTRODUCTION

Since data creates a steady stream of wealth, the economic
value of data attracts great attention from both industry and
academia. Data-driven applications, and more specifically ma-
chine learning, promote data valuation to become an increas-
ingly important discipline in data science. How to quantify the
value of a single datum equitably is a significant topic in the
emerging data market field [5, 16, 22, 23, 28, 29, 30, 33].

As depicted in Figure 1, a model-based data market connects
data owners, the broker, and model buyers [33, 37]. Data
owners sell data to the broker in exchange for compensation;
the broker collects data from multiple data owners, builds and
sells various machine learning models to model buyers; model
buyers pay for cost-effective models that satisfy their demands.
We focus on the interaction between data owners and the
broker in this paper. Data owners supply data to the broker
for compensation which should be allocated from the model
revenue and distributed fairly based on their contribution. To
enforce this desideratum, data valuation assigns a value to each

The first three authors contributed equally. Jinfei Liu is the corresponding
author.

Data Owners Broker Model Buyers

Data Market

Fig. 1: Overview of the data market.

data owner based on her contribution to this model task. That
is, the total compensation of each data owner is the sum of
compensation on all model tasks. One prevalent approach for
data valuation is Shapley value.

Shapley value is a concept used to measure the contribution
of each participant in cooperative game theory, which was
named in honor of Lloyd Shapley [38]. In decades, Shapley
value has been widely adopted in many domains [7, 17, 32, 36]
on the strength of its profound theoretical foundation. Shapley
value is demonstrated to be the only definition that satisfies all
four desired properties for payoff division: balance, symme-
try, additivity, and zero element [38]. Balance indicates that
the total payoff is fully distributed to all players; Symmetry
specifies that two players have the same valuation if they
have the same marginal contributions; Additivity indicates that
value on individual tasks sums up to the value on a combined
task; Zero element specifies that the value of players is null if
their marginal contributions are null, i.e., no contribution, no
payment.

In the context of machine learning, Shapley value has been
extensively applied to appraise the contribution of data points.
Shapley value of each data point is the average marginal
contribution of the data point over all possible permutations
of data points, where the marginal contribution refers to
the difference of utilities or accuracy of models trained on
(sub)coalitions of the dataset with and without the data point.
This value represents the contribution or the relevance of the
data point toward the model task. Empirical experiments show
that the prediction accuracy of models trained on data points
selected by Shapley value is substantially better than that of
the other popular data valuation method called leave-one-out
scores - the difference between model accuracy when trained
on the entire dataset with and without the data point [9]. How-

ever, computing the exact Shapley value is known to be a #P-
hard problem [12]. Complete enumeration consists of generat-
ing O(2n) (sub)coalitions of n data points and computing all
marginal contributions of each point. This prohibitively expen-
sive computational cost discourages Shapley value from being
implemented in practical applications. Several approximation
methods have been proposed to overcome such intractability.
Monte Carlo algorithms are the most general approaches
approximating Shapley value through permutation sampling
or coalition sampling [3, 19, 35].

Motivation. The prior works assume that all data points are
stable and immutable. They mainly attempt to approximate
Shapley value efficiently on a fixed dataset. In practice, a
dataset can be continuously changed with new or removed data
points. Shapley value derived from an original dataset is no
longer valid when the dataset is updated. Blindly reevaluating
Shapley value for a large dataset from scratch is inefficient
due to the exponential computation cost, which becomes more
intolerable under the complexity of machine learning models
particularly.

Different from the traditional Shapley value computation,
our work focuses on Shapley value calculated on the dynamic
dataset, referred to as Dynamic Shapley Value Computation,
which aims at improving the efficiency and effectiveness of
computing Shapley value with respect to dynamically adding
or deleting data points.

TABLE I: The patient information (before addition).
Id Age Sex Cp Rbps Chol Fbs Disease
z1 61 male level 4 138 166 <120 severe
z2 46 female level 2 105 204 <120 none

TABLE II: The patient information (after addition).
Id Age Sex Cp Rbps Chol Fbs Disease
z1 61 male level 4 138 166 <120 severe
z2 46 female level 2 105 204 <120 none
z3 59 male level 3 150 212 >120 none

TABLE III: Marginal contributions.

(a) Before addition.
Permutation z1 z2

[z1, z2] 5 7
[z2, z1] 6 6

(b) After addition.
Permutation z1 z2 z3

[z1, z2, z3] 5 7 8
[z1, z3, z2] 5 10 5
[z2, z1, z3] 6 6 8
[z2, z3, z1] 7 6 7
[z3, z1, z2] 7 10 3
[z3, z2, z1] 7 10 3

Motivating Example. There are many example applications
that dynamic Shapley value computation may be desired. For
instance, a medical institution known for treating heart disease
patients may wish to construct a predictive classifier for heart
disease in order to aid diagnosis. The patients contribute their
data for the model construction and get compensated according
to the corresponding contributions. It is common that new
patients may join and original participants drop out.

Tables I and II demonstrate a dynamic patient dataset from
the Cleveland Heart Disease Data Set [14] before and after
addition of patient z3, respectively. Each data point represents
the disease related information of a patient: the age, the resting
blood pressure, the degree of heart disease, etc. Given the

data update, a naive way is to recalculate Shapley value for
all patients from scratch. With the marginal contributions in
Table III where each value corresponds to column zi indicates
the marginal contribution of zi with respect to the permutation
on each row, the Shapley value of the two patients {z1, z2}
is {SV1,SV2} = { 11

2 , 13
2 }. The new Shapley value of the

patients’ data in Table II is {SV1,SV2,SV3} = { 37
6 , 49

6 , 17
3 }.

The detailed formula of Shapley value is shown in Section III,
which requires all possible marginal contributions generated
by data points. Recomputing the new Shapley value of patients
in Table II naively incurs repetitive evaluation of model
utilities U({z1}),U({z2}), and U({z1, z2}), which are al-
ready computed when evaluating Shapley value for patients in
Table I. Hence, we aim to propose more efficient and effective
approaches for incrementally computing Shapley values on
dynamic datasets.

Contribution. In this paper, for the first time, we give the
definition of dynamic Shapley value computation and propose
efficient approaches to solve it. For adding a data point, we
propose the pivot-based algorithm that utilizes precomputation
to replace half of marginal contributions in permutation-based
sampling. Different from traditional Monte Carlo algorithms, it
costs almost half with the same sampled permutations. Also,
we propose the delta-based algorithm based on the Shapley
value changes that can achieve an (ϵ, δ)-approximation in
O(

Tnd2 ln 2
δ

ϵ2) time. We demonstrate that the pivot-based al-
gorithm and the delta-based algorithm are suitable for adding
multiple data points as well. For deleting a data point, we
construct dynamic data structure of two three-dimension arrays
to store utility functions efficiently. It is easy to extend the
data structure to cope with deleting multiple data points by
using two additional multiple-dimensional arrays. Based on
the concept, we propose an algorithm with O(nk) space
complexity for deleting k data points. Inspired by empirical
observations, we propose heuristic algorithms when adding
or deleting data points, which allows us to efficiently update
Shapley value but comes with a small cost of accuracy.

Apart from data valuation, our proposed algorithms are
practical for Shapley value computation among dynamic play-
ers in the general class of games with characteristic utility
function forms. We briefly summarize our contributions.

• We identify the problem of dynamic Shapley value com-
putation and propose several algorithms that are capable of
deriving Shapley value on dynamic datasets.

• For optimization of dynamic Shapley value computation,
we offer some practical methods including intermediate
result reorganization, differential marginal contribution, and
heuristics.

• Extensive experiments on Iris and Adult datasets are con-
ducted, which demonstrate the effectiveness and efficiency
of our proposed algorithms for updating Shapley value when
data points are dynamically changed.

II. RELATED WORK

Data Market. The growing interest in data trading has led
to the emergence of data markets. Data markets with data-
based pricing sell raw data directly or supply the personalized
datasets for specific tasks, while data markets with query-
based pricing sell queries [4, 24, 25]. Data markets with
model-based pricing are proposed recently [5, 33], which allow
machine learning model trading among stakeholders instead
of raw data or queries. Kurtulmus et al. [26] developed a
model exchange market via blockchain technology. Chen et
al. [5] proposed a pricing framework for machine learning
over relational data. It sells model instances with different
accuracy options via a random noise injection approach, and
the price of the purchased model depends on its accuracy. Liu
et al. [33] proposed the first end-to-end model marketplace
with differential privacy, which responds to the needs of data
owners, the broker, and model buyers. Those efforts are made
to establish complete data market platforms to bridge gaps
in data exchange. In this paper, we focus on the interaction
between data owners and the broker in model-based markets.
Dynamic Shapley value computation is proposed to efficiently
and fairly distribute compensation among data owners in
response to the data owner dynamically joins or exits.

Shapley Value Computation. Shapley value [38] has an
incredible impact on the cooperative game theory, which has
been applied in tackling many problems, such as terrorist
network [32], profit allocation [39], query answering [13],
data/feature selection [15, 19], and data pricing [1, 5, 6, 21,
33, 31]. Computing the exact Shapley value can be a #P-hard
problem [12]. To overcome the drawback, several techniques
are developed to approximate Shapley value. Castro et al. [3]
estimated Shapley value based on permutation sampling for the
general class of games. Maleki et al. [35] provided a stratified
sampling algorithm with non-asymptotic error bounds. Zhang
et al. [42] proposed a novel stratification design based on
complementary contributions.

In machine learning, Shapley value is used to quantify the
contributions of data points toward training a model. The
interpretation of the utility function is usually the model per-
formance trained by subsets of the training dataset predicted on
the test dataset. Ghorbani et al. [19] proposed Truncated Monte
Carlo Shapley and Gradient Shapley, which leads to substantial
computational savings of near-zero marginal contributions. Jia
et al. [22] focused on k-NN classifier which is considered
lazy and developed an algorithm based on Locality Sensi-
tive Hashing with sublinear complexity. Ghorbani et al. [18]
proposed distributional Shapley to measure the value of data
points where the dataset is drawn i.i.d from the underlying
distribution. On the basis of this work, Kwon et al. [27] derived
the analytic expressions for distributional Shapley for the
canonical problems of linear regression, binary classification,
and non-parametric density estimation. Distributional Shapley
can derive the Shapley value distribution of a subset from the
Shapley value distribution of the whole dataset, but cannot
estimate Shapley value for a specific data point.

Dynamic Problem. Dynamic problem is a classic area not
only in computational geometry but also in networking, data
mining, etc. Those computational problems arise in contexts
where the input is changing and we call this setting dynamic
as opposed to static. Algorithms in dynamic setting have
been studied for decades. For instance, a self-balancing binary
search tree attempts to keep its height under random insertions
or deletions [20]. Tong et al. [40] formally defined the global
dynamic pricing problem in spatial crowdsourcing, presented a
base pricing strategy and developed MAPS to optimize supply
and pricing. Similarly, Liu et al. [34] proposed a skyline
diagram which can be used to facilitate dynamic skyline
queries.

The most related literature to our work is [10, 11, 41] for
dynamic query-based pricing in data markets, which refers to
price temporal views on data stream properly. Upadhyaya et
al. [41] designed a notion of refunds on data APIs to achieve
optimal history-aware pricing so that buyers do not have to be
charged twice for the same data. As Deep and Koutris [10]
pointed out, the refund mechanism gives no guarantee to
arbitrage-freeness. A pricing platform, called Qirana [10, 11],
provided a query-based real-time pricing mechanism with an
arbitrage-free guarantee. These works offer dynamic prices for
buyers, while our work focuses on the dynamic contribution
evaluation of data owners based on Shapley value. Further-
more, those existing techniques on dynamic problems cannot
be adopted to our problem directly.

III. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we first revisit the definition of Shapley value
in data markets as well as the classical approximation method.
Then, we present the problem statement.

Algorithm 1: Monte Carlo Shapley value computation.
input : data points z1, . . . , zn and τ > 0
output: Shapley value SVi for each data point zi (1 ≤ i ≤ n)

1 SVi ← 0 (1 ≤ i ≤ n);
2 for k=1 to τ do
3 let πk be a random permutation of {1, . . . , n};
4 for i=1 to n do
5 SV(z

πk(i)
) =

U({z
πk(1)

, . . . , z
πk(i)

})− U({z
πk(1)

, . . . , z
πk(i−1)

});
6 SV

πk(i)
+ = SV(z

πk(i)
);

7 for i=1 to n do
8 SVi/ = τ ;

9 return SV1, . . . ,SVn;

Consider n data owners Di, . . . , Dn such that data owner
Di owns a data point zi (1 ≤ i ≤ n). A coalition S is a
subset of {z1, . . . ,zn}. Denote by U(S) a utility function that
represents the performance of a model trained on coalition
S towards a task, e.g., model accuracy. Shapley [38] gave
a function that evaluates the contribution from each owner
Di to the whole coalition {z1, . . . ,zn}, which is the unique
function satisfying four desirable properties, namely balance,
symmetry, additivity, and having a zero element.

SVi =
1

n

∑
S⊆{z1...zn}\zi

U(S ∪ {zi})− U(S)(
n−1
|S|

) (1)

Computing the exact Shapley value is exponential in time.
In practice, the Monte Carlo simulation method [3] is a well-
known technique to approximate Shapley value, as shown in
Algorithm 1. Concretely, let τ be the number of sampled
permutations and zπk(i) be the data point with position index i
in permutation πk. In line 3, we randomly sample permutations
of all data points. In lines 4-5, we traverse each permutation
from the head to the tail and then calculate the marginal
contribution of each data point. Finally, we compute the
average of the marginal contributions as the approximate
Shapley value in line 6. This Monte Carlo simulation gives an
unbiased estimation of the exact Shapley value. The number
of permutations controls the trade-off between approximation
error and time cost. A larger number of samples brings more
accurate Shapley value at the expense of more running time.

In this paper, we consider computing Shapley value in a
dynamic dataset. A dataset D is said to be dynamic if the data
points in the dataset may be added or deleted over time.
Addition A set of data points Dadd are added to D to form

a new dataset N+ = D ∪Dadd.
Deletion A subset of data points Ddel ⊆ D are removed from

D to form a new dataset N− = D −Ddel.
Given a dynamic dataset with n data points D =

{z1, . . . ,zn}, denote by SVi the Shapley value of zi in
D. For a set of added data points Dadd = {zn+1, . . . ,zm}
(m ≥ n) and the updated data set N+ = {z1, . . . ,zn} ∪
{zn+1, . . . ,zm}, denote by SV+

i the Shapley value of zi in
N+ (1 ≤ i ≤ m). That is,

SV+
i =

1

m

∑
S⊆N+\zi

U(S ∪ {zi})− U(S)(
m−1
|S|

) . (2)

Similarly, for a set of data points Ddel = {zp, . . . ,zq} ⊆ D
and the updated data set N− = {z1, . . . ,zn}− {zp, . . . ,zq},
denote by SV−i the Shapley value of zi in N− (1 ≤ i ≤ n).
That is,

SV−i =
1

n+ p− q − 1

∑
S⊆N−\zi

U(S ∪ {zi})− U(S)(
n+p−q−2
|S|

) . (3)

Trivially, for any i (1 ≤ i ≤ n) such that zi ∈ Ddel, since
zi is removed from D and thus does not appear in N− at all,
SV−i = 0. In this paper, we only focus on the Shapley values
of those data points zi that belong to N− in the deletion case.

In dynamic schema, the dataset can be sequentially added
or delete a data point. Thus, the problem of dynamic Shapley
value computation is to compute SV+

i /SV−i for all the data
points in N+ and N− efficiently in real time.

It is far from trivial to compute dynamic Shapley values.
A straightforward approach is to compute the new Shapley
value using the Monte Carlo simulation method on the new
dataset once changes occur. Because the measurement of
utility functions involves model training, the time cost is
dramatic. We notice that not all utilities of subsets are affected
by changes, an efficient dynamic Shapley value computation
method should try to reduce or avoid recomputing utility
functions.

IV. ADDING DATA POINTS

We start from the basic scenario where only one data point is
added. In Section IV-A we develop the pivot-based algorithm,
which can reuse half of the utility results. While the pivot-
based method focuses on reducing redundant computation, a
method which aims to reduce the number of permutations is
needed. Thus, in Section IV-B, we develop the delta-based
algorithm, which evaluates differential marginal contributions.
In Section IV-C, we extend the delta-based algorithm to handle
the general situation where multiple data points are added
sequentially.

A. The Pivot-based Algorithm

As discussed in Algorithm 1, the Shapley value can be in-
terpreted as the average marginal contribution over all possible
permutations. Consider dataset D = {z1, . . . ,zn} and updated
dataset N+ = {z1, . . . ,zn, zn+1}. For the permutations in the
updated dataset N+, each original data point zi (1 ≤ i ≤ n)
appears either before or after the new data point zn+1 with
equal frequency. It is easy to see that, for the half of the
permutations where zi appears before the new point zn+1,
the marginal contributions of zi remain the same as in D. For
example, in Table II, data point z1 appears before new point z3
in three permutations [z1, z2, z3], [z2, z1, z3], and [z1, z3, z2].
The marginal contributions of z1, i.e., U({z1}) − U(∅),
U({z1, z2}) − U({z2}), and U({z1}) − U(∅), respectively,
are the same as in the original dataset and can be reused.

Motivated by this observation, we propose the pivot-based
algorithm that reuses the unchanged marginal contributions
computed in the original dataset for the new dataset. For each
data point zi (1 ≤ i ≤ n) in the original dataset, taking
the new data point zn+1 as the pivot, we can divide all
permutations in the new dataset into two groups: Gi

L consists
of the permutations where zi is located in front of the pivot and
Gi
R consists of the permutations where zi is located behind

the pivot. For example, consider z3 in Table II as a pivot. For
z1, G1

L contains [z1, z2, z3], [z2, z1, z3], and [z1, z3, z2], and
G1
R contains [z3, z2, z1], [z2, z3, z1], and [z3, z1, z2].
It is easy to see that the Shapley value of zi is the average

of marginal contributions over the two groups. The marginal
contributions in Gi

L can be inherited from the original dataset.
We propose a new representation of Shapley value as shown
in Lemma 1.

Lemma 1: In datasets D = {z1, . . . ,zn} and N+ =
{z1, . . . ,zn, zn+1}, for zi (1 ≤ i ≤ n), denote by

LSV+
i =

1

(n+ 1)!

∑
πk∈Gi

L

[U(zπk(1), . . . ,zπk(j)})

− U({zπk(1), . . . ,zπk(j−1)})]

the average marginal contribution in group Gi
L and by

RSV+
i =

1

(n+ 1)!

∑
πk∈Gi

R

[U({{zn+1, zπk(1), . . . ,zπk(j)})

− U({{zn+1, zπk(1), . . . ,zπk(j−1)})]

the average marginal contribution in group Gi
R, zπk(j) is zi.

Then, the Shapley value of zi in N+ is SV+
i = LSV+

i +
RSV+

i .
We first compute Shapley value on D adopting the Monte

Carlo algorithm and store LSV+
i (1 ≤ i ≤ n) at the same

time. This computation is performed only once, which is
described in Algorithm 2. Denote by τ1 the number of sampled
permutations. We follow the steps of Algorithm 1 to compute
SV on D. Then we compute LSV+. In line 1, we define
LSV+

i to store marginal contributions in Gi
L. In lines 8-9, we

design a uniform sampling distribution for the position index
of the new data point and accumulate LSV+.

Algorithm 2: Initialization (computing SV in D).
input : datasets D = {z1, . . . , zn} and sample size τ > 0
output: SVi for each data point zi (1 ≤ i ≤ n), LSV+

i for each data
point zi (1 ≤ i ≤ n), the set of permutations π1, . . . , πτ1 , and
the set of indexes t1, . . . , tτ1

1 SVi,LSV+
i ← 0 (1 ≤ i ≤ n);

2 for k=1 to τ1 do
3 let πk be a random permutation of {1, . . . , n};
4 let tk be an integer uniformly randomly drawn from {0, . . . , n};
5 for i=1 to n do
6 SV(z

πk(i)
) =

U({z
πk(1)

, . . . , z
πk(i)

})− U({z
πk(1)

, . . . , z
πk(i−1)

});
7 SV

πk(i)
+ = SV(z

πk(i)
);

8 if i ≤ tk then
9 LSV+

πk(i)
+ = SV(z

πk(i)
);

10 for i=1 to n do
11 LSV+

i / = τ1;
12 SVi/ = τ1;

13 return SV1, . . . ,SVn,LSV+
1 , . . . ,LSV+

n , π1, . . . , πτ1 , t1, . . . , tτ1 ;

We then develop two incremental algorithms which aim
to compute Shapley value on N+. SV+

i can be obtained by
summing LSV+

i and RSV+
i which can be approximated by

sampling the same or different permutations. The algorithm
with the same permutations is shown in Algorithm 3. We store
the set of permutations π1, . . . , πτ1 and the set of indexes
t1, . . . , tτ1 used in computing SV on D, and take them as
input. In line 4, we update πk by inserting zn+1 at tk. In lines
7-8, we calculate marginal contributions containing zn+1 for
RSV+

i . In lines 11-12, we combine LSV+
i and RSV+

i to get
SV+

i . In lines 15-16, we update t to p because p is the set of
indexes corresponding to new permutations.

Given the same number of sampled permutations, sampling
the same permutations can provide more accurate Shapley
value than sampling different permutations. However, if more
sampled permutations for LSV are allowed, sampling different
permutations outperforms sampling the same permutations
in terms of space cost and accuracy. First, no storage of
permutations is required for sampling different permutations,
which can save space. Second, as the size of coalitions
increases, the change in model utility by adding a data point
becomes smaller. Therefore, LSV+

i plays a more important
role in SVi than RSV+

i . To improve the accuracy, we can
sample more permutations when computing LSV+

i offline,
which does not affect the time cost of the online dynamic
processing. Moreover, we can sample fewer permutations
when computing RSV+

i online due to the limitation of time

Algorithm 3: The pivot-based algorithm with the same
sampled permutations.

input : datasets N+ = {z1, . . . , zn, zn+1}, the set of permutations
π1, . . . , πτ1 , the set of indexes t1, . . . , tτ1 , and sample size
τ1 > 0

output: Shapley value SV+
i for each data point zi (1 ≤ i ≤ n + 1),

LSV+
i for each data point zi (1 ≤ i ≤ n + 1), a set of

permutations π1, . . . , πτ1 , and the set of indexes t1, . . . , tτ1

1 SV+
i ,RSV+

i ,∆LSV+
i ← 0 (1 ≤ i ≤ n + 1);

2 LSV+
n+1 ← 0;

3 for k = 1 to τ1 do
4 πk ← {z

πk(1)
, . . . , z

πk(tk−1)
, zn+1, zπk(tk)

, . . . , z
πk(n)

};
5 let pk be an integer uniformly randomly drawn from {0, . . . , n + 1};
6 for i = tk to n + 1 do
7 SV(z

πk(i)
) =

U({z
πk(1)

, . . . , z
πk(i)

})− U({z
πk(1)

, . . . , z
πk(i−1)

});
8 RSV+

i + = SV(z
πk(i)

);
9 if i ≤ pk then

10 ∆LSV+

πk(i)
+ = SV(z

πk(i)
);

11 for i=1 to n+1 do
12 SV+

πk(i)
= LSV+

i +RSV+
i /τ1;

13 for i=1 to n+1 do
14 LSV+

i = 2
3LSV

+
i + ∆LSV+

πk(i)
/τ1;

15 for i=1 to τ1 do
16 ti = pi;

17 return
SV+

1 , . . . ,SV+
n+1,LSV

+
1 , . . . ,LSV+

n+1, π
1, . . . , πτ1 , t1, . . . , tτ1 ;

cost. These important advantages of sampling different per-
mutations lead to computing LSV+

i and RSV+
i with different

sampled permutations.
Algorithm 4 shows the processing of computing RSV+

i and
SV+

i (1 ≤ i ≤ n + 1) via sampling different permutations.
Denote by τ2 the number of sampled permutations. In line
1, we define RSV+

i to store marginal contributions in Gi
R.

We begin with drawing permutations sampled from a uniform
distribution. In line 5, we find the position index t of the
added data point. In lines 8-9, we scan each permutation from
t to n+1, and calculate marginal contributions to approximate
RSV+

i . Finally, we derive the new Shapley value via summing
LSV+

i and RSV+
i in lines 12-13.

LSV+
i should be constantly updated according to the dy-

namic changes of the dataset. In Algorithm 3 and Algorithm 4,
we update LSV+ in the same way. Taking Algorithm 4 as
an example, we record the changes of LSV+

i as ∆LSV+
i

in line 1. Suppose that we add data point zn+2 after adding
data point zn+1. For data point zi (0 < i < n), we can
construct permutations [zi, zn+1, zn+2], [zi, zn+2, zn+1], and
[zn+2, zi, zn+1], which are computed in LSV+

i . We take
2
3LSV

+
i because only [zi, zn+1, zn+2] and [zi, zn+2, zn+1]

are still valid for computing LSV+
i after adding zn+2. We

then compute marginal contributions in permutations like
[zn+1, zi, zn+2]. In line 6, we uniformly randomly draw the
position index p of zn+2. In lines 10-11, we obtain ∆LSV+

i .
In lines 14-15, we update LSV+

i by summing up 2
3LSV

+
i and

∆LSV+
i .

Example 1: Given D = {z1,z2} and N+ = {z1,z2,z3}, we
compute SV+

i for zi ∈ N+. In Algorithm 2 with τ1 = 2, suppose
that we sample π1 = {z1,z2} and t1 = 1 at k = 1. We can get

LSV+
1 = U({z1}) − U(∅) and LSV+

2 = 0. Suppose that we sample
π2 = {z2,z1} and t2 = 2 at k = 2. We can get LSV+

1 = U({z1}) −
U(∅) + U({z1,z2}) − U({z2}) and LSV+

2 = U({z2}) − U(∅). In
Algorithm 4 with τ2 = 2, suppose that we sample π1 = {z1,z3,z2} at
k = 1. We can get RSV+

1 = 0, RSV+
2 = U({z1,z2,z3})−U({z1,z3}),

and RSV+
3 = U({z1,z3})−U({z1}). We then sample π2 = {z3,z2,z1}

at k = 2. We can get RSV+
1 = U({z1,z2,z3}) − U({z2,z3}),

RSV+
2 = U({z1,z2,z3})−U({z1,z3})+U({z2,z3})−U({z3}), and

RSV+
3 = U({z1,z3}) − U({z1}) + U({z3}) − U(∅). Finally, we get

SV+
1 = LSV+

1 +RSV+
1 , SV+

2 = LSV+
2 +RSV+

2 , and SV+
3 = RSV+

3 .

Algorithm 4: The pivot-based algorithm with different
sampled permutations.

input : datasets N+ = {z1, . . . , zn, zn+1}, LSV+
i for each data point

zi (1 ≤ i ≤ n), and sample size τ2 > 0
output: Shapley value SV+

i for each data point zi (1 ≤ i ≤ n + 1) and
LSV+

i for each data point zi (1 ≤ i ≤ n + 1)

1 SV+
i ,RSV+

i ,∆LSV+
i ← 0 (1 ≤ i ≤ n + 1);

2 LSV+
n+1 ← 0;

3 for k=1 to τ2 do
4 let πk be a random permutation of {0, . . . , n + 1};
5 let t be the index of zn+1 in πk;
6 let p be an integer uniformly randomly drawn from {0, . . . , n + 1};
7 for i=t to n+1 do
8 SV(z

πk(i)
) =

U({z
πk(1)

, . . . , z
πk(i)

})− U({z
πk(1)

, . . . , z
πk(i−1)

});
9 RSV+

πk(i)
+ = SV(z

πk(i)
);

10 if i ≤ p then
11 ∆LSV+

πk(i)
+ = SV(z

πk(i)
);

12 for i=1 to n+1 do
13 SV+

i = LSV+
i +RSV+

i /τ2;

14 for i=1 to n+1 do
15 LSV+

i = 2
3LSV

+
i + ∆LSV+

πk(i)
/τ2;

16 return SV+
1 , . . . ,SV+

n+1,LSV
+
1 , . . . ,LSV+

n+1;

By drawing a sufficient number of samples of permutations
in line 4 in Algorithm 4, the pivot-based algorithm with differ-
ent sampled permutations can provide an (ϵ, δ)-approximation
for RSV+

i of all data points in the updated dataset.
Theorem 1: Algorithm 4 returns an (ϵ, δ)-approximation to

RSV+
i if the number of sampled permutations τ satisfies τ ≥

2r2 ln 2
δ

ϵ2 with time complexity O(
Tnr2 ln 2

δ

ϵ2), where T is the
time of training the model once, r is the range of marginal
contributions, and n is the size of the new dataset.

Proof 1: Let U({zπ(1), . . . , zπ(k)})−U({zπ(1), . . . , zπ(k−1)}
be R. Given R ∈ [−r, r] (r ≥ 0), an error bound ϵ, and
a confidence 1 − δ, according to Hoeffding’s inequality, the
number of sampled permutations required such that P (|R −
E(RSV+

i)| ≥ ϵ) ≤ δ is P (| 1τ
∑τ

k=1 R − E(RSV+
i)| ≥ ϵ) ≤

2 exp (− 2τ2ϵ2∑τ
k=1 (2r)2).

Since we want the right hand side to be at most δ, we have
τ ≥ 2r2 ln 2

δ

ϵ2 . Therefore, the time complexity is O(
Tnr2 ln 2

δ

ϵ2).

B. The Delta-based Algorithm

As sampling-based methods in approximating Shapley value
raise the question of finding a compromise between accuracy
and computation time, the approach that gives better results
with a sample of the same size is always desired. Generally
speaking, the sample size needed for achieving the stability of
a variable with a small range is smaller than that of a larger one

according to Hoeffding’s inequality. In this part, we propose
an approach that requires a smaller sample to achieve the same
accuracy by representing the difference of Shapley value with
the differential marginal contribution, whose absolute value
is smaller than the marginal contribution. Given the original
data points with previous Shapley values, the key idea is to
compute the relative changes of their Shapley values instead
of their absolute values. Utilizing the definition of Shapley
value, the difference between the precomputed Shapley value
and the new Shapley value for each original data point can be
represented formally as Lemma 2.

Lemma 2: In datasets D = {z1, . . . ,zn} and N+ =
{z1, . . . ,zn, zn+1}, for any zi ∈ D, the difference between
the new Shapley value and the precomputed Shapley value
of zi is ∆SVi = 1

n+1

∑
S⊆D\zi

|S|+1

n(n−1
|S|)

{[U(S ∪ {zn+1} ∪
{zi}) − U(S ∪ {zi})] − [U(S ∪ {zn+1}) − U(S)]}, where
[U(S∪{zn+1}∪{zi})−U(S∪{zi})]−[U(S∪{zn+1})−U(S)]
denotes the differential marginal contribution.

Proof 2:

∆SVi =
1

n + 1

∑
S⊆D\zi

U(S ∪ {zn+1} ∪ {zi})− U(S ∪ {zn+1})(n
|S|+1

)
+

1

n + 1

∑
S⊆D\zi

U(S ∪ {zi})− U(S)(n
|S|

) −
1

n

∑
S⊆D\zi

U(S ∪ {zi})− U(S)(n−1
|S|

)
=

1

n + 1

∑
S⊆D\zi

U(S ∪ {zn+1} ∪ {zi})− U(S ∪ {zn+1})(n
|S|+1

)
−

∑
S⊆D\zi

(|S|+ 1)!(n− 1− |S|)!
(n + 1)!

[U(S ∪ {zi})− U(S)]

=
1

n + 1

∑
S⊆D\zi

|S|+ 1

n
(n−1

|S|
){[U(S ∪ {zn+1} ∪ {zi})− U(S ∪ {zi})]

− [U(S ∪ {zn+1})− U(S)]}.

Based on Lemma 2, we present the delta-based algorithm
based on the precomputed Shapley value and the difference
of Shapley value. It is shown in Algorithm 5 in detail. The
computation starts with the given precomputed Shapley value.
In line 4, we randomly sample permutations of all original data
points. In lines 5-7, we scan the permutation from the first data
point to the last data point, and then construct and calculate
the differential marginal contribution of each data point. In
line 8, we estimate the Shapley value of the new data point
via marginal contributions. Repeating the same procedure over
multiple permutations, the difference of Shapley value can be
approximated by the average of all the calculated differential
marginal contributions. Finally, in lines 9-10, it combines the
precomputed Shapley value and the Shapley value difference
to infer the new Shapley value of original data points. As
Shapley value computation is reduced to the estimation of
the average differential marginal contributions, fewer sampled
permutations are required to achieve the same accuracy.

Example 2: Given D = {z1,z2} and N+ = {z1,z2,z3}, we com-
pute ∆SVi (1 ≤ i ≤ 2). In Algorithm 5 with τ = 2, suppose that we sample
π1 = {z1,z2} at k = 1. We can get ∆SV1 = 1

6
[U({z1,z3})−U({z1})−

U({z3}) + U(∅)] and ∆SV2 = 1
3
[U({z1,z2,z3}) − U({z1,z2}) −

U({z1,z3}) + U({z1})]. Suppose that we then sample π2 = {z2,z1}
at k = 2. We can get ∆SV1 = 1

6
[U({z1,z3}) − U({z1}) − U({z3}) +

U(∅)]+ 1
3
[U({z1,z2,z3})−U({z1,z2})−U({z2,z3})+U({z2})] and

∆SV2 = 1
3
[U({z1,z2,z3})−U({z1,z2})−U({z1,z3})+U({z1})]+

1
6
[U({z2,z3})− U({z2})− U({z3}) + U(∅)].

Algorithm 5: The delta-based algorithm (adding a data
point).

input : datasets N+ = {z1, . . . , zn, zn+1}, SVi for each data point zi

(1 ≤ i ≤ n), and sample size τ > 0
output: Shapley value SV+

i for each data point zi (1 ≤ i ≤ n + 1)
1 ∆SVi ← 0 (1 ≤ i ≤ n);
2 SV+

i ← 0 (1 ≤ i ≤ n + 1);
3 for k=1 to τ do
4 let πk be a random permutation of {1, . . . , n};
5 for i=1 to n do
6 ∆SV(z

πk(i)
) = [U({z

πk(1)
, . . . , z

πk(i)
, zn+1})−

U({z
πk(1)

, . . . , z
πk(i)

})]−
[U({z

πk(1)
, . . . , z

πk(i−1)
, zn+1})−

U({z
πk(1)

, . . . , z
πk(i−1)

})];
7 ∆SV

πk(i)
+ = ∆SV(z

πk(i)
)/τ/(n + 1) · i;

8 SV+
n+1+ = [U({z

πk(1)
, . . . , z

πk(i)
, zn+1})−

U({z
πk(1)

, . . . , z
πk(i)

})]/nτ ;

9 for k=1 to n do
10 SV+

k = SVk + ∆SVk;

11 return SV+
1 , . . . ,SV+

n+1;

The following theorem provides an error bound on the
number of sampled permutations τ needed to achieve an (ϵ, δ)-
approximation.

Theorem 2: Algorithm 5 returns an (ϵ, δ)-approximation to
∆SVi if the number of sampled permutations τ satisfies τ ≥
2n2d2 ln 2

δ

(n+1)2ϵ2 with time complexity O(
Tnd2 ln 2

δ

ϵ2), where n is the
size of the original dataset, and d is the range of differential
marginal contributions.

Proof 3: Let ϕk
i denote k+1

n+1{[U(S ∪ {zn+1} ∪ {zi}) −
U(S ∪ {zi})] − [U(S ∪ {zn+1}) − U(S)]}, where |S| = k.
Suppose that ϕk

i is drawn with the following sampler. First,
uniformly sample the length k from 0, 1, . . . , n − 1. Second,
uniformly sample a coalition S from

(
n−1
k

)
all possible length-

k coalitions.

E(ϕk
i) =

n−1∑
k=0

1

n

1(
n−1
k

) ∑
zi /∈S,|S|=k

ϕk
i

=
1

n+ 1

∑
S⊆{z1,...,zn}\zi

|S|+ 1

n
(
n−1
|S|

){[U(S ∪ {zn+1} ∪ {zi})

− U(S ∪ {zi})]− [U(S ∪ {zn+1})− U(S)]} = ∆SVi

Now, E(ϕk
i) = ∆SVi. Given [U(S ∪ {zn+1} ∪ {zi}) −

U(S ∪ {zi})] − [U(S ∪ {zn+1}) − U(S)] ∈ [−d, d] (d ≥ 0),
an error bound ϵ, and a confidence 1 − δ, according to
Hoeffding’s inequality, the sample size required such that
P (ϕk

i − E(∆SVi) ≥ ϵ) ≤ δ is:

P (|1
τ

τ∑
k=1

ϕk
i − E(∆SVi)| ≥ ϵ) ≤ 2 exp (− 2τ2ϵ2∑τ

k=1
(k+1)2

(n+1)2 (2d)
2
)

≤ 2 exp (− τ2ϵ2

2τd2 n2

(n+1)2

).

Since we want the right hand side to be at most δ, we
have τ ≥ 2n2d2 ln 2

δ

(n+1)2ϵ2 . For τ random sampled permutations, the
number of model training required is 2nτ . Therefore, the time
complexity is O(

Tnd2 ln 2
δ

ϵ2).

The following theorem provides that Algorithm 5 can
achieve a convergence rate of O(1/

√
τ).

Theorem 3: Algorithm 5 returns an unbiased estimator of
Shapley value difference with a convergence rate of O(1/

√
τ),

which is the same as the convergence rate of the Monte
Carlo algorithm and the pivot-based algorithm with different
sampled permutations, where τ is the number of sampled
permutations.

Proof 4: As the calculation of ∆SVi is a discretiza-
tion method, the convergence rate of ∆SVi should be
E[1τ

∑τ
t=1 Xt − ∆SVi|], where Xt represents the sam-

pled value of ϕk
i . According to Central Limit Theorem,

E[(1τ
∑τ

t=1 Xt−∆SVi)
2] =

δ2d
τ , where δ2d represents the vari-

ance of ϕk
i . Meanwhile, for any random variable Z, E[|Z|]2 ≤

E[Z2]. So E[| 1τ
∑τ

t=1 Xt − ∆SVi|]2 ≤ E[(1τ
∑τ

t=1 Xt −
∆SVi)

2] =
δ2d
τ . Obviously, E[| 1τ

∑τ
t=1 Xt −∆SVi|] ≤ δd√

τ
=

O(1/
√
τ). The same conclusion can be obtained that the

convergence rate of Shapley value calculated by the Monte
Carlo algorithm or the pivot-based algorithm with different
sampled permutations is E[1τ

∑τ
t=1 Yt − SVi|] ≤ δ2m

τ , where
Yt represents the sampled value of R and δ2m represents the
variance of R. It is worth noting that because δ2d is smaller than
δ2m, the actual convergence rate of the delta-based algorithm
is better than both the pivot-based algorithm and the Monte
Carlo algorithm.

C. Adding Multiple Data Points

Update operation of adding multiple data points can be
thought of as gradually adding a single data point at a time.
Thereby, the problem of updating Shapley value when adding
multiple data points can be solved by applying Algorithm 3,
Algorithm 4, or Algorithm 5 progressively. However, apply-
ing the pivot-based algorithm or the delta-based algorithm
while adding a large amount of data points could be more
time-consuming than using the Monte Carlo algorithm once.
Thereby, we introduce heuristic algorithms with stable time
cost in Section VI.

V. DELETING DATA POINTS

In this section, we tackle the case of deleting data points.
The marginal contributions in the original dataset cover all
marginal contributions in the new dataset. Motivated by this,
we design the YN-NN algorithm with a polynomial-time
bound based on dynamic data structure which maintains
marginal contributions of unchanged data points in an efficient
way in Section V-A. In Section V-B, we present the delta-
based algorithm based on differential marginal contributions.
In Section V-C, we show how to extend our algorithms towards
deleting multiple data points. The two algorithms are proposed
from two angles. The YN-NN algorithm aims to reduce un-
necessary computation, while the delta-based algorithm aims
to reduce the number of sampled permutations.

A. The YN-NN Algorithm

To avoid unnecessary marginal contribution computation,
we capture the storage of utilities which are performed before

data points are changed. Our proposed solution contains two
phases: Phase Preprocessing - computing Shapley value over
the original dataset and Phase Merging - updating Shapley
value over the new dataset.

Phase Preprocessing is performed only once. We design
and utilize two three-dimensional arrays: YN and NN , which
store the utilities for all data points. Y refers to ”Yes” and N
refers to ”No”. We give the definition of YN and NN as
follows.

Definition 1: Given a dataset of n data points D =
{z1 . . . zn},

YN [zi][zj][k] =
∑

S⊆D,|S|=k,zi∈S,zj /∈S

U(S)

NN [zi][zj][k] =
∑

S⊆D,|S|=k,zi /∈S,zj /∈S

U(S)

In Phase Merging, the aforementioned two arrays YN and
NN assist in averting superfluous computation. Based on
the definition of Shapley value, one can derive the following
formula of the new Shapley value after deleting a data point.

Lemma 3: Suppose that zdel is the deleted data point. N− =
{z1, . . . ,zn} \ zdel. For any remaining data point zi ∈ N−,
the new Shapley value is

SV−i =
1

n− 1

n−1∑
k=1

(YN [zi][zdel][k]−NN [zi][zdel][k − 1])(
n−2
k−1

)
Example 3: Given three patients’ data points {z1,z2,z3} shown in

Table II and the deleted data point z3, as for z1, arrays are shown as follows.

YN [z1][z3][0] = U(∅) NN [z1][z3][0] = U(∅)
YN [z1][z3][1] = U({z1}) NN [z1][z3][1] = U({z2})
YN [z1][z3][2] = U({z1,z2}) NN [z1][z3][2] = U(∅)

The new Shapley value of z1 can be calculated as follows.

SV−
1 =

1

2

2∑
k=1

YN [z1][z3][k]−NN [z1][z3][k − 1](1
k−1

)
=

1

2
U({z1,z2}) +

1

2
U({z1})−

1

2
U({z2})−

1

2
U(∅)

Based on Lemma 3, the key idea of updating Shapley value
is generating the utility arrays. We show the pseudo-code for
filling YN and NN during computing original Shapley value
in Algorithm 6 and show how to derive the new Shapley value
from YN and NN succinctly in Algorithm 7. Concretely, in
Algorithm 6, we store utility functions in two arrays when
calculating Shapley value on the original dataset in lines 8-
10, which does not lead to extra computational overhead. Then
we can recover Shapley value of the remaining data points in
O(n2) whichever a data point is removed in Algorithm 7.

B. The Delta-based Algorithm

Based on similar rationale in Section IV-B, we introduce
another version of Lemma 2. Suppose that zdel is the deleted
data point in the dataset. For any zi ∈ D\zdel, the difference
between the new Shapley value and the original Shapley value
of zi is ∆SVi = − 1

n

∑
S⊆D\{zi,zdel}

|S|+1

(n−1)(n−2
|S|)

{[U(S ∪
{zdel}∪{zi})−U(S ∪{zi})]− [U(S ∪{zdel})−U(S)]}. The

Algorithm 6: Preprocessing (deleting a data point).
input : datasets D = {z1, . . . , zn}, and sample size τ > 0
output: SVi for each data point zi (1 ≤ i ≤ n), YN , and NN

1 let YN and NN be two n3 arrays;
2 SVi,YN [zi][zj][k],NN [zi][zj][k]← 0 (1 ≤ i, j, k ≤ n);
3 for k=1 to τ do
4 let πk be a random permutation of {1, . . . , n};
5 for i=1 to n do
6 SV(z

πk(i)
) =

U({z
πk(1)

, . . . , z
πk(i)

})− U({z
πk(1)

, . . . , z
πk(i−1)

});
7 SV

πk(i)
+ = SV(z

πk(i)
);

8 for j=i to n do
9 YN [z

πk(i)
][z

πk(j)
][i]+ =

U({z
πk(1)

, . . . , z
πk(i)

})/τ ;
10 NN [z

πk(i)
][z

πk(j)
][i− 1]+ =

U({z
πk(1)

, . . . , z
πk(i−1)

})/τ ;

11 return SV1, . . . ,SVn,YN ,NN ;

Algorithm 7: Merging (deleting a data point).
input : datasets N− = {z1, . . . , zn} \ zp,YN , and NN
output: Shapley value SV−

i for each data point zi (1 ≤ i ≤ n, i ̸= p)
1 for i=1 to n do
2 if i ̸= p then
3 for j=1 to n do
4 SV−

i + =
(YN [zi][zp][j]−NN [zi][zp][j−1])·(n−1)/(n−j);

5 return SV−
1 , . . . ,SV−

n ;

pseudo-code can be seen in Algorithm 8. We aim at deriving
new Shapley value from Shapley value changes. In line 3, we
uniformly sample a permutation. In lines 5-6, we calculate the
difference of marginal contributions to model Shapley value
changes based on differential marginal contributions.

The following theorem provides an error bound on the
number of sampled permutations τ needed to achieve an (ϵ, δ)-
approximation.

Theorem 4: Algorithm 8 returns an (ϵ, δ)-approximation to
∆SVi if the number of sampled permutations τ satisfies τ ≥
2(n−1)2d2 ln 2

δ

n2ϵ2 with time complexity O(
Tnd2 ln 2

δ

ϵ2), where n is
the size of the original dataset, and d is the range of differential
marginal contributions.

Proof 5: The proof is similar to the proof of Theorem 2.

Algorithm 8: The delta-based algorithm (deleting a
data point).

input : datasets N− = {z1, . . . , zn} \ zp, SVi for each data point zi

(1 ≤ i ≤ n), and sample size τ > 0.
output: Shapley value SV−

i for each data point zi (1 ≤ i ≤ n, i ̸= p)

1 SV−
i ,∆SVi ← 0 (1 ≤ i ≤ n);

2 for k=1 to τ do
3 let πk be a random permutation of {1, . . . , n} \ p;
4 for i=1 to n-1 do
5 ∆SV(z

πk(i)
) = −[U({z

πk(1)
, . . . , z

πk(i)
, zp})−

U({z
πk(1)

, . . . , z
πk(i)

})] +
[U({z

πk(1)
, . . . , z

πk(i−1)
, zp})−

U({z
πk(1)

, . . . , z
πk(i−1)

})];
6 ∆SV

πk(i)
+ = ∆SV(z

πk(i)
)/τ/n · i;

7 for i=1 to n do
8 SV−

i = SVi+∆SVi

9 return SV−
1 , . . . ,SV−

n ;

C. Deleting Multiple Data Points

In this section, we show how to retrieve Shapley value in a
scenario where multiple data points are deleted.

For the YN-NN algorithm, we introduce multiple-dimension
utility arrays as follows.

Definition 2: Given a dataset of n data points D =
{z1 . . . zn},

Y
d︷ ︸︸ ︷

N , . . . ,N [zt]

d︷ ︸︸ ︷
[zi], . . . , [zj][k] =

∑
S⊆D,|S|=k,zt∈S

zi,...,zj /∈S

U(S)

N
d︷ ︸︸ ︷

N , . . . ,N [zt]

d︷ ︸︸ ︷
[zi], . . . , [zj][k] =

∑
S⊆D,|S|=k,zt /∈S

zi,...,zj /∈S

U(S)

Analogously, one can derive the following formula naturally.
Lemma 4: Suppose that zp, . . . ,zq are d deleted data points.

N− = {z1, . . . ,zn} \ {zp, . . . ,zq}. For any remaining data
point zi ∈ N−, the new Shapley value is

SV−i =
1

n− d

n−d∑
k=1

1(
n−d−1
k−1

) (Y d︷ ︸︸ ︷
N , . . . ,N [zi]

d︷ ︸︸ ︷
[zp], . . . , [zq][k]

−N
d︷ ︸︸ ︷

N , . . . ,N [zi]

d︷ ︸︸ ︷
[zp], . . . , [zq][k − 1])

For deleting d data points, we obtain the two (d+2)-
dimension utility arrays in the process of Shapley value
computation on the original dataset. Based on Lemma 4, we
then derive the new Shapley value via conducting pairwise
subtraction operations between the two utility arrays similar
to deleting a data point.

For the delta-based algorithm, the problem of updating
Shapley value when deleting multiple data points can be
solved by applying the delta-based algorithm progressively.
Moreover, due to the fact that the delta-based algorithm only
requires the original Shapley value and the added/deleted data
points, it is natural to apply the delta-based algorithm on
dynamic datasets of interspersed addition and deletion.

VI. HEURISTIC ALGORITHM

In this section, two different heuristic algorithms are studied
to efficiently update Shapley value, which is inspired by our
empirical observations of changes in Shapley value caused by
dynamic data points on the labeled datasets.

Extrapolating from property Symmetry, data points with
similar features tend to have a similar performance on machine
learning models, which results in similar utility functions and
similar Shapley value. Thus, we develop a technique which
finds adjacent data points of the added data points powered by
k-nearest neighbors algorithm (k-NN) and averages over the
Shapley values. The pseudo-code is presented in Algorithm 9.
In lines 2-4, we assign the average Shapley value of adjacent
data points to the added data points.

The above algorithm assumes the Shapley values of the orig-
inal data points do not change when a new data point is added.

Algorithm 9: Heuristic SV computation (KNN).
input : datasets N+ = {z1, . . . , zn, zn+1, . . . , zm} (m > n), SVi

for each data point zi (1 ≤ i ≤ n)
output: Shapley value SV+

i for each data point zi (1 ≤ i ≤ m)

1 SV+
i ← 0 (1 ≤ i ≤ m);

2 for i = n+1 to m do
3 let nz1, . . . ,nzk be k neighbors of zi;
4 SV+

i = 1
k (SVnz1

+ . . . + SVnzk
);

5 for i = 1 to n do
6 SV+

i = SVi;

7 return SV+
1 , . . . ,SV+

m;

However, this is not the case. Figure 2 illustrates the changes
of Shapley values of the original data points after adding a
new point (star). We observed that the changes depend on their
similarity with the new data point. Concretely, when adding a
data point, Shapley values of data points with the same label
decrease, and those with different labels increase. Moreover,
the degree of changes decreases as the similarity distance
increases, which can be fitted into a function to represent
the corresponding relationship of 1) the similarity between
original data points and new data points and 2) the changes
of Shapley value.

4.5 5.0 5.5 6.0 6.5
Sepal.Length

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

Se
pa

l.W
id
th

add

−0.006

−0.004

−0.002

0.000

0.002

(a) Iris.

�� �� �� �� �� ��
Age

�

�

	

��

��

Ed
uc
at
io
nN

um

��

������

������

�����

�����

�����

(b) Adult.
Fig. 2: Changes of Shapley value.

With the discovery, we develop another heuristic technique,
as shown in Algorithm 10. The main idea is to learn a
regression function for the changes of Shapley values based
on their similarity to the new data point and use this function
to derive the updated Shapley values of original data points.
In lines 5-7, we sample a set of data points from the whole
original dataset and calculate the changes of Shapley value
through the Monte Carlo algorithm. In line 8, we fit the
changes into a function to represent the relationship between
changes and similarity. In lines 9-13, we update Shapley value
of original data points based on the changes derived from
similarity and assign the average Shapley value of several data
points selected by k-NN to new data points.

Both KNN and KNN+ are adoptable for deleting data
points. For KNN, we assign Shapley value of deleted data
points averagely to their neighbors, which is similar to Al-
gorithm 9. For KNN+, we update Shapley value based on
the relationship between the changes of Shapley value and the
similarity between original data points and deleted data points,
which is similar to Algorithm 10.

Algorithm 10: Heuristic SV computation (KNN+).
input : datasets N+ = {z1, . . . , zn, zn+1, . . . , zm} (m > n), SVi

for each data point zi (1 ≤ i ≤ n)
output: Shapley value SV+

i for each data point zi (1 ≤ i ≤ m)

1 SV+
i ← 0 (1 ≤ i ≤ m);

2 ∆SVi ← 0 (1 ≤ i ≤ n);
3 for i = 1 to n do
4 SV+

i = SVi;

5 sample train data points
{
zt1

, . . . , ztd

}
from train data points

{z1, . . . , zn};
6 for i = 1 to d do
7 ∆SV = MonteCarloShapley({z1, . . . , zn})−

MonteCarloShapley({z1, . . . , zn} \ zti
);

8 CurveFuncs[the label of zti
] =

CurveFitting(simi(zti
, {z1, . . . , zn}),∆SV);

9 for i=n+1 to m do
10 for j = 1 to n do
11 SV+

j += CurveFuncs[the label of zi](simi(zi, zj));

12 let nz1, . . . ,nzk be k neighbors of zi;
13 SV+

i = 1
k (SVnz1 + . . . + SVnzk

);

14 return SV+
1 , . . . ,SV+

m;

VII. EXPERIMENTS

A. Experiment Setup

We ran experiments on a machine with 2 Montage(R) Jin-
tide(R) C6226R @ 2.90GHz and 4 Geforce RTX 3090 running
Ubuntu 18.04 LTS 64-bit with 256GB memory. Support Vector
Machine (SVM) is employed as the machine learning model,
and the utility function is the accuracy score of the trained
SVM model on the test dataset. We used both Iris dataset and
Adult dataset from the UCI machine learning repository [14]
in our experiments. We adopt the Monte Carlo algorithm
as our benchmark, which is the universal baseline method
for Shapley value computation [19]. Even the state-of-the-
art Monte Carlo algorithm cannot support large datasets. It is
hard to obtain a sufficiently accurate Shapley value in tolerable
time for comparison on a large dataset. To make it feasible,
we performed analysis on datasets by sampling 10000 data
points at most. Our algorithms can be applied to larger datasets
in practical applications, which are comparable to the state-
of-the-art Monte Carlo algorithm because our algorithms are
much faster than the Monte Carlo algorithm in general when
they are used to compute fairly accurate dynamic Shapley
value.

For adding a data point, we compare the baseline algorithms
including MC (Alg. 1), Base which adopts original Shapley
value and assigns the average Shapley value of all data points
to the added data point, and TMC developed by [19] (the
performance tolerance is set to 1e-12 and the truncated point
must be in [n/2, n]) with the proposed algorithms including
Pivot-s (Alg. 3), Pivot-d (Alg. 4), Delta (Alg. 5), KNN
(Alg. 9), and KNN+ (Alg. 10).

For adding multiple data points, we compare the baseline
algorithms including MC, Base, and TMC with the proposed
algorithms including Pivot-s (Alg. 3), Pivot-d (Alg. 4), Delta
(Alg. 5), KNN (Alg. 9), and KNN+ (Alg. 10).

For deleting a data point, we compare the baseline algo-
rithms including MC and TMC with the proposed algorithms

including YN-NN (Alg. 7), Delta (Alg. 8), a variant of KNN,
and a variant of KNN+. The last two algorithms are briefly
discussed in Section VI.

For deleting multiple data points, we compare the base-
line algorithms including MC and TMC with the proposed
algorithms including YNN-NNN demonstrated in Section V-C
which is the extension of Alg. 4, Delta (Alg. 8), a variant of
KNN, and a variant of KNN+.

We compute the p-value [2, 8] of the differences between
the MSEs of our algorithms and MC for the following exper-
iments. All p-values are much smaller than 0.05, confirming
the statistical significance of the difference.

B. Evaluation Metrics

Effectiveness. We adopt the average of the mean squared
errors (MSEs) to verify the effectiveness of the proposed
algorithms. Given benchmark Shapley value SVi and esti-
mated Shapley value SVi (1 ≤ i ≤ n) computed by the
proposed algorithms, the mean squared error for the estimated
Shapley value compared to the benchmark Shapley value is
MSE(SV,SV) = 1

n

∑n
i=1(SVi −SVi)

2. Computing the ex-
act Shapley value SVi for evaluation purposes is prohibitively
expensive because it grows exponentially with the number of
data points. Therefore, we use the estimated Shapley value
computed by Algorithm 1 with τ = 1000n as the benchmark
Shapley value in the experiments.

Efficiency. We propose a time-based metric to verify the
efficiency of the proposed algorithms. Given benchmark Shap-
ley value MCSV+ and MCSV computed by Algorithm 1
with τ = 1000n and τ = 20n respectively, and estimated
Shapley value SV computed by the proposed algorithms, we
simulate the number of sampled permutations and its cor-
responding runtime to achieve |MSE(MCSV+,MCSV) −
MSE(MCSV+,SV)| < 0.2MSE(MCSV+,MCSV).

C. Adding A Data Point

10 50 100

number of original data points

10
-7

10
-6

10
-5

10
-4

10
-3

M
S

E

MC

Base

TMC

Pivot-d

Delta

KNN

KNN+

(a) MSEs.

10 50 100

number of original data points

10
-5

10
0

10
5

ti
m

e
(s

)

MC

Base

TMC

Pivot-d

Delta

KNN

KNN+

(b) Time cost.
Fig. 3: Adding a data point.

TABLE IV: MSEs for adding a data point.
MC Base TMC Pivot-d Delta KNN KNN+

2.48e-6 2.66e-6 5.47e-5 2.45e-7 1.53e-7 1.65e-6 1.46e-6

TABLE V: MSEs for adding a data point.
τLSV = 20n
τRSV = 20n

τLSV = 100n
τRSV = 20n

τLSV = 500n
τRSV = 20n

Pivot-s 2.18e-6 N/A N/A
Pivot-d 2.36e-6 5.86e-7 3.01e-7

Effectiveness. We first study the effectiveness of the proposed
algorithms for adding a data point on Iris dataset. We take
a sample of size 100 and add one data point further. In

order to make a fair comparison, we set τMC = τTMC =
τPivot−d = τDelta = 20n. Table IV presents the MSEs of
the proposed algorithms. We can observe that Pivot-d and
Delta outperform KNN and KNN+, and the MSE of Delta
is smaller than that of Pivot-d. KNN and KNN+ significantly
perform better than baseline algorithms, although they cannot
recover the new Shapley value as well as Pivot-d and Delta.
Figure 3(a) shows the MSEs on varying numbers of original
data points. We can find that the MSEs of Pivot-d and Delta
are always lower than baseline algorithms. We compare Pivot-s
and Pivot-d when sampling different numbers of permutations
to estimate LSV . Experimental results are shown in Table V.
When τLSV = τRSV , Pivot-s outperforms Pivot-d. When
τLSV ̸= τRSV , Pivot-s is not applicable since it requires the
same number of sampled permutations for LSV and RSV . As
τLSV increases, the MSE of Pivot-d gets smaller than Pivot-s.

Efficiency. We experimentally study the efficiency of the
proposed algorithms for adding a data point on Iris dataset.
Figure 3(b) shows the time cost of algorithms on varying
numbers of original data points. Base only needs to calculate
the average Shapley value of original data points. The MSEs
of results given by KNN, and KNN+ are not involved with
the number of sampled permutations. Thus, the time cost of
Base, KNN, and KNN+ is very low and their output cannot
guarantee the output quality. The time cost of Pivot-d and
Delta is consistently less than that of MC and TMC with the
number of data points, which verifies the efficiency of the
proposed algorithms.

D. Adding Multiple Data Points

10 50 100

number of original data points

10
-7

10
-6

10
-5

10
-4

10
-3

M
S

E

MC

Base

TMC

Pivot-d

Delta

KNN

KNN+

(a) MSEs.

10 50 100

number of original data points

10
-5

10
0

10
5

ti
m

e
(s

)

MC

Base

TMC

Pivot-d

Delta

KNN

KNN+

(b) Time cost.

2 4 6 8 10

number of added data points

0

50

100

150

200

ti
m

e
(s

)

MC

Delta

KNN

KNN+

(c) Time cost.
Fig. 4: Adding multiple data points.

TABLE VI: MSEs for adding two data points.
MC Base TMC Pivot-d Delta KNN KNN+

2.17e-6 3.17e-6 1.54e-5 1.39e-6 1.06e-7 2.36e-6 2.00e-6

TABLE VII: MSEs for adding two data points.
τLSV = 20n
τRSV = 20n

τLSV = 100n
τRSV = 20n

τLSV = 500n
τRSV = 20n

Pivot-s 5.98e-6 N/A N/A
Pivot-d 6.53e-6 6.07e-6 4.88e-6

Effectiveness. We study the effectiveness of the proposed
algorithms for adding multiple data points on Iris dataset. We
take a sample of size 100 and add two data points further.
In order to make a fair comparison, we set τMC = τTMC =
τPivot−d = τDelta = 20n. Table VI presents the MSEs of the
proposed algorithms. We can observe Delta owns the smallest
MSE, which means that it is closest to the benchmark Shapley
value. Pivot-d owns the second smallest MSE and is the second
best algorithm. Since the accuracy of the new round of LSV
is lower than that of the original Shapley value, Delta provides

the Shapley value with MSE lower than Pivot-d. Heuristic
algorithms, KNN and KNN+, have better performance than
Base and TMC. Figure 4(a) shows the MSEs on varying
numbers of original data points. We can find that the MSEs of
Pivot-d and Delta are always lower than baseline algorithms.
Table VII shows findings similar to adding a data point.

Efficiency. We experimentally study the efficiency of the
proposed algorithms for adding two data points on Iris dataset.
Figure 4(b) shows the time cost of algorithms on varying
numbers of original data points. The time cost of MC and
TMC is larger than Pivot-d and Delta as anticipated, which
further confirms the superiority of Pivot-d and Delta. For
adding more data points, we add 2-10 data points to the 100-
size dataset sampled from Iris dataset, respectively. As the
number of added data points increases, the loss of precision
in LSV makes Pivot-d less and less effective. The time cost is
shown in Figure 4(c). KNN and KNN+ can quickly compute
the new Shapley value, but not necessarily achieve the required
MSE. The time cost for MC and Delta to reach the same level
of MSE increases with the number of added data points and
Delta achieves greater efficiency.

E. Deleting A Data Point

10 50 100

number of original data points

10
-15

10
-10

10
-5

M
S

E

MC

TMC

YN-NN

Delta

KNN

KNN+

(a) MSEs.

10 50 100

number of original data points

10
-4

10
-2

10
0

10
2

10
4

ti
m

e
(s

)

MC

TMC

YN-NN

Delta

KNN

KNN+

(b) Time cost.
Fig. 5: Deleting a data point.

TABLE VIII: MSEs for deleting a data point.
MC TMC YN-NN Delta KNN KNN+

1.34e-6 1.71e-5 0 1.51e-7 1.52e-6 1.30e-6

TABLE IX: Memory consumption.
n 10 50 100

cost (MB) 0.014668 1.927675 15.25421

Effectiveness. We experimentally study the effectiveness of
the proposed algorithms for deleting a data point on Iris
dataset. We take a sample of size 100 and delete one data
point further. In order to make a fair comparison, we set
τMC = τTMC = τDelta = 20n. Table VIII presents the MSEs
of the proposed algorithms. YN-NN can recover the exact new
benchmark Shapley value. Delta gives the second best result,
while KNN and KNN+ perform worse than MC and TMC.
Figure 5(a) shows the MSEs on varying number of original
data points. We can find that the MSEs of YN-NN and Delta
are always lower than baseline algorithms.

Efficiency. We experimentally study the efficiency of the
proposed algorithms for deleting a data point on Iris dataset.
Figure 5(b) shows the time cost of algorithms on varying num-
bers of original data points. KNN and KNN+ have a low time
cost and cannot guarantee the output quality. Because YN-NN
only needs to scan Y N and NN once, the time cost is very

low. The time cost of MC and TMC is limited by the number
of sampled permutations but grows prohibitively high with
the number of data points. In contrast, Delta takes less time
than MC and TMC to achieve the satisfying Shapley value
approximation. Table IX shows the memory consumption of
YN-NN with the same experimental settings as Figure 5(b).

F. Deleting Multiple Data Points

10 50 100

number of original data points

10
-15

10
-10

10
-5

10
0

M
S

E

MC

TMC

YNN-NNN

Delta

KNN

KNN+

(a) MSEs.

10 50 100

number of original data points

10
-4

10
-2

10
0

10
2

10
4

ti
m

e
(s

)

MC

TMC

YNN-NNN

Delta

KNN

KNN+

(b) Time cost.

2 4 6 8 10

number of deleted data points

0

20

40

60

80

100

120

140

ti
m

e
(s

)

MC

Delta

KNN

KNN+

(c) Time cost.
Fig. 6: Deleting multiple data points.

TABLE X: MSEs for deleting two data points.
MC TMC YNN-NNN Delta KNN KNN+

1.83e-6 1.41e-5 0 1.93e-7 4.16e-6 2.10e-6

Effectiveness. We experimentally study the effectiveness of
the proposed algorithms for deleting multiple data points on
Iris dataset. We take a sample of size 100 and delete two
data points further. In order to make a fair comparison, we set
τMC = τTMC = τDelta = 20n. Table X presents the MSEs of
the proposed algorithms. YNN-NNN has the lowest MSE and
Delta performs better than MC and TMC, which agrees with
what is observed in the previous experiment. Moreover, we
can see that KNN and KNN+ have higher MSEs concerning
sampling-based algorithms. Figure 6(a) shows the MSEs on
varying numbers of original data points. We can find that the
MSEs of YNN-NNN and Delta are always lower than baseline
algorithms.

Efficiency. We experimentally study the efficiency of the
proposed algorithms for deleting two data points on Iris
dataset. Figure 6(b) shows the time cost of algorithms on
varying numbers of original data points. Because YNN-NNN
only needs to scan Y NN and NNN once, the time cost is
very low. The time cost of MC, TMC, and Delta grows with
the number of data points, but Delta still performs better than
MC and TMC. For deleting more data points, we delete 2-
10 data points from the 100-size dataset sampled from Iris
dataset, respectively. The time cost is shown in Figure 6(c).
KNN and KNN+ can compute new Shapley value quickly but
at the expense of accuracy. Since Delta processes deleted data
points sequentially, the time cost of Delta increases with the
number of deleted data points, while MC does the opposite.
Nevertheless, the time cost of Delta is always less than that of
MC when deleting a couple of data points, which implies that
Delta can be used for dynamic Shapley value computation.

G. Large Dataset

We compare the time cost of the proposed algorithms on a
dataset of size 10000 and 3 features constructed from the Adult
dataset. We set τMC = τTMC = τPivot−d = τDelta = 100
and τMC+ = 1000. It should be mentioned that MC, TMC,

Pivot-d, and Delta are parallelizable and the time cost can
become less using more machines in parallel with k threads
(here k = 48). In Tables XI, XII, XIII, and XIV, we
observe the time cost of algorithms for adding or deleting
data points and omit the MSE comparison as MC is not
converging under this small number of permutations. KNN
and KNN+ significantly outperform other algorithms due to
their simplicity. Pivot-d has the intermediate time cost. Delta
costs a high time because it needs to evaluate more utility
functions than MC with the same number of permutations.
However, as we have shown in previous results, even given
a much smaller number of permutations compared with other
algorithms, Delta can produce fairly accurate Shapley value.

TABLE XI: Time cost for adding one data point (s).
MC+ MC TMC Pivot-d Delta KNN KNN+

2.08e5 2.10e4 4.89e3 1.83e4 6.32e4 1.43e-3 15.25

TABLE XII: Time cost for adding two data points (s).
MC+ MC TMC Pivot-d Delta KNN KNN+

2.08e5 2.10e4 4.89e3 3.24e4 8.88e4 2.03e-3 14.92

TABLE XIII: Time cost for deleting one data point (s).
MC+ MC TMC YN-NN Delta KNN KNN+

2.08e5 2.10e4 4.89e3 3.27e2 4.27e4 1.44e-2 16.08

TABLE XIV: Time cost for deleting two data points (s).
MC+ MC TMC YNN-NNN Delta KNN KNN+

2.08e5 2.10e4 4.89e3 4.09e2 8.37e4 1.63e-2 30.11

VIII. CONCLUSION AND FUTURE WORK

In this paper, for the first time, we proposed the problem of
dynamic Shapley value computation and presented approaches
that are capable of deriving Shapley value on dynamic datasets.
In the case of adding data points, we proposed the pivot-based
algorithm and the delta-based algorithm. The pivot-based
algorithm focuses on reusing computation, while the delta-
based algorithm focuses on reducing the number of sampled
permutations. In the case of deleting data points, we defined
and proposed the YN-NN algorithm of polynomial complexity
achieving full accuracy. We then presented the delta-based
algorithm, based on Shapley value difference similar to adding
data points. Inspired by empirical observations, we proposed
similarity-based heuristic algorithms. Experiments on Iris and
Adult datasets verified the efficiency and effectiveness of our
proposed algorithms. When the datasets are from different
distribution, we expect that the KNN algorithm may not be
very effective given its assumption of the original data points
not change when new data points are added. However, we
expect other algorithms to work similarly. We will explore
this case in future work.

IX. ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their helpful comments. This work was supported in
part by NSFC grants (62102352), the National Key R&D
Program of China (2021YFB3101100, 2021YFB3101102),
NSF grants (CNS-2124104, CNS-2125530), and NIH grants
(R01ES033241, R01LM013712, UL1TR002378).

REFERENCES

[1] A. Agarwal, M. A. Dahleh, and T. Sarkar. A market-
place for data: An algorithmic solution. In A. Karlin,
N. Immorlica, and R. Johari, editors, Proceedings of the
2019 ACM Conference on Economics and Computation,
EC 2019, Phoenix, AZ, USA, June 24-28, 2019, pages
701–726. ACM, 2019.

[2] S. Agarwal, S. Dutta, and A. Bhattacharya. Chisel: Graph
similarity search using chi-squared statistics in large
probabilistic graphs. Proc. VLDB Endow., 13(10):1654–
1668, 2020.

[3] J. Castro, D. Gómez, and J. Tejada. Polynomial calcula-
tion of the shapley value based on sampling. Computers
& OR, 36(5):1726–1730, 2009.

[4] S. Chawla, S. Deep, P. Koutrisw, and Y. Teng. Revenue
maximization for query pricing. Proceedings of the
VLDB Endowment, 13(1):1–14, 2019.

[5] L. Chen, P. Koutris, and A. Kumar. Towards model-based
pricing for machine learning in a data marketplace. In
P. A. Boncz, S. Manegold, A. Ailamaki, A. Deshpande,
and T. Kraska, editors, SIGMOD, pages 1535–1552.
ACM, 2019.

[6] L. Chen, H. Wang, L. Chen, P. Koutris, and A. Ku-
mar. Demonstration of nimbus: Model-based pricing
for machine learning in a data marketplace. In P. A.
Boncz, S. Manegold, A. Ailamaki, A. Deshpande, and
T. Kraska, editors, Proceedings of the 2019 International
Conference on Management of Data, SIGMOD Confer-
ence 2019, Amsterdam, The Netherlands, June 30 - July
5, 2019, pages 1885–1888. ACM, 2019.

[7] S. B. Cohen, E. Ruppin, and G. Dror. Feature selection
based on the shapley value. In L. P. Kaelbling and A. Saf-
fiotti, editors, IJCAI-05, Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence,
Edinburgh, Scotland, UK, July 30 - August 5, 2005, pages
665–670. Professional Book Center, 2005.

[8] W. J. Conover. Practical nonparametric statistics, vol-
ume 350. john wiley & sons, 1999.

[9] R. D. Cook. Detection of influential observation in linear
regression. Technometrics, 42(1):65–68, 2000.

[10] S. Deep and P. Koutris. QIRANA: A framework for
scalable query pricing. In S. Salihoglu, W. Zhou,
R. Chirkova, J. Yang, and D. Suciu, editors, Proceedings
of the 2017 ACM International Conference on Manage-
ment of Data, SIGMOD Conference 2017, Chicago, IL,
USA, May 14-19, 2017, pages 699–713. ACM, 2017.

[11] S. Deep, P. Koutris, and Y. Bidasaria. QIRANA demon-
stration: Real time scalable query pricing. Proc. VLDB
Endow., 10(12):1949–1952, 2017.

[12] X. Deng and C. H. Papadimitriou. On the complexity
of cooperative solution concepts. Math. Oper. Res.,
19(2):257–266, 1994.

[13] D. Deutch, N. Frost, B. Kimelfeld, and M. Monet.
Computing the shapley value of facts in query answering.
In SIGMOD Conference 2022, 2022.

[14] D. Dua and C. Graff. UCI machine learning repository,
2017.

[15] E. Farchi, R. Narayanam, and L. Nagalapatti. Ranking
data slices for ML model validation: A shapley value
approach. In 37th IEEE International Conference on
Data Engineering, ICDE 2021, Chania, Greece, April
19-22, 2021, pages 1937–1942. IEEE, 2021.

[16] R. C. Fernandez, P. Subramaniam, and M. J. Franklin.
Data market platforms: Trading data assets to solve data
problems. Proc. VLDB Endow., 13(11):1933–1947, 2020.

[17] V. Fragnelli, I. Garcı́a-Jurado, H. Norde, F. Patrone, and
S. Tijs. How to share railways infrastructure costs? In
Game practice: contributions from applied game theory,
pages 91–101. Springer, 2000.

[18] A. Ghorbani, M. P. Kim, and J. Zou. A distributional
framework for data valuation. In Proceedings of the 37th
International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pages 3535–
3544. PMLR, 2020.

[19] A. Ghorbani and J. Y. Zou. Data shapley: Equitable
valuation of data for machine learning. In K. Chaudhuri
and R. Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA, vol-
ume 97 of Proceedings of Machine Learning Research,
pages 2242–2251. PMLR, 2019.

[20] L. J. Guibas and R. Sedgewick. A dichromatic frame-
work for balanced trees. In 19th Annual Symposium on
Foundations of Computer Science, Ann Arbor, Michigan,
USA, 16-18 October 1978, pages 8–21. IEEE Computer
Society, 1978.

[21] R. Jia, D. Dao, B. Wang, F. A. Hubis, N. M. Gurel,
B. Li, C. Zhang, C. Spanos, and D. Song. Efficient task-
specific data valuation for nearest neighbor algorithms.
Proceedings of the VLDB Endowment, 12(11):1610–
1623, 2019.

[22] R. Jia, D. Dao, B. Wang, F. A. Hubis, N. M. Gürel, B. Li,
C. Zhang, C. J. Spanos, and D. Song. Efficient task-
specific data valuation for nearest neighbor algorithms.
Proc. VLDB Endow., 12(11):1610–1623, 2019.

[23] R. Jia, D. Dao, B. Wang, F. A. Hubis, N. Hynes, N. M.
Gürel, B. Li, C. Zhang, D. Song, and C. J. Spanos.
Towards efficient data valuation based on the shapley
value. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 1167–1176. PMLR,
2019.

[24] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and
D. Suciu. Query-based data pricing. In PODS, pages
167–178. ACM, 2012.

[25] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe,
and D. Suciu. Toward practical query pricing with
querymarket. In SIGMOD, pages 613–624. ACM, 2013.

[26] A. B. Kurtulmus and K. Daniel. Trustless machine
learning contracts; evaluating and exchanging machine
learning models on the ethereum blockchain. CoRR,

abs/1802.10185, 2018.
[27] Y. Kwon, M. A. Rivas, and J. Zou. Efficient computation

and analysis of distributional shapley values. CoRR,
abs/2007.01357, 2020.

[28] C. Li, D. Y. Li, G. Miklau, and D. Suciu. A theory of
pricing private data. In W. Tan, G. Guerrini, B. Cata-
nia, and A. Gounaris, editors, Joint 2013 EDBT/ICDT
Conferences, ICDT ’13 Proceedings, Genoa, Italy, March
18-22, 2013, pages 33–44. ACM, 2013.

[29] C. Li, D. Y. Li, G. Miklau, and D. Suciu. A theory
of pricing private data. ACM Trans. Database Syst.,
39(4):34:1–34:28, 2014.

[30] C. Li, D. Y. Li, G. Miklau, and D. Suciu. A theory
of pricing private data. Commun. ACM, 60(12):79–86,
2017.

[31] Q. Lin, J. Zhang, J. Liu, K. Ren, J. Lou, J. Liu, L. Xiong,
J. Pei, and J. Sun. Demonstration of dealer: An end-to-
end model marketplace with differential privacy. Proc.
VLDB Endow., 14(12):2747–2750, 2021.

[32] R. Lindelauf, H. Hamers, and B. Husslage. Cooperative
game theoretic centrality analysis of terrorist networks:
The cases of jemaah islamiyah and al qaeda. Eur. J.
Oper. Res., 229(1):230–238, 2013.

[33] J. Liu, J. Lou, J. Liu, L. Xiong, J. Pei, and J. Sun. Dealer:
An end-to-end model marketplace with differential pri-
vacy. Proc. VLDB Endow., 14(6):957–969, 2021.

[34] J. Liu, J. Yang, L. Xiong, J. Pei, and J. Luo. Skyline
diagram: Finding the voronoi counterpart for skyline
queries. In 34th IEEE International Conference on Data
Engineering, ICDE 2018, Paris, France, April 16-19,
2018, pages 653–664. IEEE Computer Society, 2018.

[35] S. Maleki, L. Tran-Thanh, G. Hines, T. Rahwan, and
A. Rogers. Bounding the estimation error of sampling-

based shapley value approximation with/without stratify-
ing. CoRR, abs/1306.4265, 2013.

[36] T. P. Michalak, T. Rahwan, P. L. Szczepanski, O. Skibski,
R. Narayanam, N. R. Jennings, and M. J. Wooldridge.
Computational analysis of connectivity games with ap-
plications to the investigation of terrorist networks. In
F. Rossi, editor, IJCAI 2013, Proceedings of the 23rd
International Joint Conference on Artificial Intelligence,
Beijing, China, August 3-9, 2013, pages 293–301. IJ-
CAI/AAAI, 2013.

[37] J. Pei. A survey on data pricing: from economics to data
science. IEEE Trans. Knowl. Data Eng., 2021.

[38] L. S. Shapley. A value for n-person games. Contributions
to the Theory of Games, 2(28):307–317, 1953.

[39] T. Song, Y. Tong, and S. Wei. Profit allocation for
federated learning. In C. Baru, J. Huan, L. Khan, X. Hu,
R. Ak, Y. Tian, R. S. Barga, C. Zaniolo, K. Lee, and Y. F.
Ye, editors, 2019 IEEE International Conference on Big
Data (IEEE BigData), Los Angeles, CA, USA, December
9-12, 2019, pages 2577–2586. IEEE, 2019.

[40] Y. Tong, L. Wang, Z. Zhou, L. Chen, B. Du, and J. Ye.
Dynamic pricing in spatial crowdsourcing: A matching-
based approach. In G. Das, C. M. Jermaine, and P. A.
Bernstein, editors, Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Confer-
ence 2018, Houston, TX, USA, June 10-15, 2018, pages
773–788. ACM, 2018.

[41] P. Upadhyaya, M. Balazinska, and D. Suciu. Price-
optimal querying with data apis. Proc. VLDB Endow.,
9(14):1695–1706, Oct. 2016.

[42] J. Zhang, Q. Sun, J. Liu, L. Xiong, J. Pei, and K. Ren.
Efficient sampling approaches to shapley value approxi-
mation. In SIGMOD. ACM, 2023.

