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Abstract—Human mobility data is useful for various applica-
tions in urban planning, transportation, and public health, but
collecting and sharing real-world trajectories can be challenging
due to privacy and data quality issues. To address these problems,
recent research focuses on generating synthetic trajectories,
mainly using generative adversarial networks (GANs) trained
by real-world trajectories. In this paper, we hypothesize that
by explicitly capturing the modality of transportation (e.g.,
walking, biking, driving), we can generate not only more diverse
and representative trajectories for different modalities but also
more realistic trajectories that preserve the geographical density,
trajectory, and transition level properties by capturing both
cross-modality and modality-specific patterns. Towards this end,
we propose a Clustering-based Sequence Generative Adversarial
Network (CSGAN) that simultaneously clusters the trajectories
based on their modalities and learns the essential properties of
real-world trajectories to generate realistic and representative
synthetic trajectories. To measure the effectiveness of generated
trajectories, in addition to typical metrics that measure how well
the trajectories preserve density and trajectory level statistics,
we define several new metrics for a comprehensive evaluation,
including modality distribution and transition probabilities both
globally and within each modality. Our extensive experiments
with real-world datasets show the superiority of our model in
various metrics over state-of-the-art models.

Index Terms—Generative Adversarial Networks, Clustering,
Reinforcement Learning, Synthetic Trajectory Generation

I. INTRODUCTION

The recent growth in location-based technology, such as
mobile devices and sensors equipped with GPS, has led to
an unprecedented increase in the analysis and management
of human mobility data. This data, often represented as
a series of ordered points, reflects the physical–behavioral
trace of an individual’s movement. Understanding the mo-
bility patterns of a population has significant implications
for a wide range of applications, including transportation,
epidemiological modeling, and public health [1]. For instance,
pandemic risk evaluation via mobility data during COVID-19
can help understand, estimate, and mitigate the disease spread
[2]. In addition, analyzing individual movements can provide
insight into traffic or public transportation systems and help
address traffic congestion and urban planning. Recommen-
dation systems also rely on population flow data to identify
effective advertising locations. Despite the value of mobility
data, obtaining and sharing large-scale real-world trajectories

can be challenging due to privacy and commercial concerns
[3]. As a result, generating synthetic, realistic trajectories has
become a valuable and important research problem to either
scale up or protect the privacy of the original trajectory data
so that they can be used for downstream tasks.

To address the synthetic trajectory generation task, existing
methods can be mainly categorized into 1) earlier Markov-
based models [4], which rely on simplified mobility assump-
tions; 2) deep predictive models [5], which can learn more
complex sequential patterns; and 3) more recent state-of-the-
art generative adversarial network (GAN)-based models [6]
which can generate more realistic trajectories based on the
generator-discriminator adversarial game. To better generate
trajectories that are represented as discrete location sequences
in contrast to grid-based data such as images, [6] proposes
a recurrent neural network (RNN)-based sequence GAN and
leverages reinforcement learning (policy gradient) and Monte
Carlo search to generate discrete sequences. Followup works
such as [7] extend sequence GAN and attempt to capture the
mobility regularity via incorporating the urban structure.

While these GAN-based models generate sequences that
preserve the spatiotemporal statistics of the original trajecto-
ries to some level (e.g., global density statistics such as the vis-
iting probability of a location or trajectory-level statistics such
as average daily travel distance per trajectory), they do not
consider important semantic information such as the modality
of the trajectories. Real-world trajectories always consist of
various modalities, including transportation modalities, such
as walking, biking, or driving, or more implicit moving
purposes, e.g., shopping, going to work, or sightseeing. While
there are common mobility regularity and transition patterns
shared across these modalities, there are also modality-specific
characteristics and patterns. For example, trajectories of dif-
ferent transportation modalities may have different average
speeds, accumulative distances, number of distinct visits, and
sequential transition patterns (e.g., transitions on pedestrian-
only streets for walking trajectories). Without considering this
information explicitly, the resulting trajectories 1) may not
capture the modality distributions and may not be diverse
and representative of the different modalities, and 2) may not
capture the modality-specific characteristics and may generate
unrealistic trajectories that do not correspond to the real-world



modality or moving behaviors.

Fig. 1: Proposed CSGAN framework

Contributions. Towards this end, we hypothesize that by ex-
plicitly capturing the modality in the trajectories (e.g., walking,
biking, driving) and learning from both cross-modality and
modality-specific patterns, we can generate 1) more diverse
and representative trajectories and 2) more realistic trajectories
across all modalities. Existing approaches that do not consider
modality only learn global patterns but not modality-specific
patterns. A naive approach that trains an independent GAN for
each modality will also not work well since it will miss the
cross-modality patterns. Thus, we propose a Clustering-based
Sequence Generative Adversarial Network (CSGAN) that si-
multaneously clusters the trajectories based on their modal-
ities and learns both cross-modality and modality-specific
properties to generate realistic and representative synthetic
trajectories. The key contributions are summarized as follows:

1) We propose a novel modality-aware Clustering-based
Sequence Generative Adversarial Network (CSGAN) to
generate realistic human mobility data. As shown in
Figure 1, we first cluster the real (training) trajectories
into k clusters based on a variety of features that capture
their modality. A sequence GAN is then trained where
the generator generates synthetic trajectories, and the
discriminator is inspired by the semi-supervised GAN
and trained to classify a real trajectory into one of the
k clusters (modalities) and a generated trajectory into
the (k + 1)-st ("fake") class. A reinforcement learning
framework is used to train the network where we design
a reward function to reward the generator for generating
a trajectory that can be classified into any one of the k
modalities (real classes).

2) To have a comprehensive evaluation of the generated
trajectories, we propose three metrics to measure how
well the synthetic trajectories capture the modality dis-
tribution of the real trajectories. In addition to the typical
metrics that measure how well the trajectories preserve
density and trajectory-level statistics, we also introduce
a transition probability metric by building the transition
matrix to measure how well the synthetic trajectories
capture transitional information.

3) We conduct comprehensive experimental analysis on
two real-world datasets with different mobility character-

istics to validate the effectiveness of the proposed model.
Our results show that CSGAN achieves superior results
compared to state-of-the-art methods in preserving the
statistical properties of the original trajectories both
globally and within each modality. It also outperforms
existing methods for downstream predictive tasks using
the generator.

The rest of the paper is organized as follows. We first review
the related work in Section 2. Then, we formulate the problem
of synthetic trajectory generation in Section 3. Next, we
present the proposed CSGAN framework in Section 4 and
report the experimental evaluation in Section 5. Finally, we
conclude the paper in Section 6.

II. RELATED WORK

A. Synthetic Trajectory Generation

The generation of realistic human trajectories, under the
category of sequence data, has been a long-standing research
problem. Markov models are widely used in synthetic trajec-
tory generation, including first-order MC [4], which constructs
a transitional matrix to capture the first-order transition prob-
ability from one location to another; HMM [8], which utilizes
the discrete emission probability; and IO-HMM [9], which
combines transition and emission models to maximize the
likelihood of observed sequences. Compared with the Markov
model-based methods with simplifying assumptions, recent
research resorts to model-free or deep learning methods to bet-
ter capture the underlying correlations among sequence data.
Deep predictive models are utilized for trajectory generation,
which treat the problem as a next location prediction task given
historically visited locations. For example, [5] applies Gated
Recurrent Units to predict the next location given historically
visited locations.

More recently, Generative Adversarial Networks (GAN)-
based methods are being used and show superior performance
than deep predictive models thanks to their dual generator-
discriminator architecture. [10] proposes a generative model
for location trajectories that can capture high-order geographic
and semantic features of human mobility, such as density
statistics. It uses location-based representation instead of tem-
poral representation of trajectories, and the generator and the
discriminator use Convolutional Neural Networks (CNNs),
hence can not sufficiently model the sequential transitions of
the trajectories. [11] presents an end-to-end LSTM-TrajGAN
model to generate synthetic trajectory data, which captures the
sequential information via LSTM. To better learn the sequence
information for trajectories represented as discrete sequences,
SeqGAN [6] proposes a reinforcement learning framework
that treats the output of the discriminator as a reward sent
back to the generator. [7] extends SeqGAN by leveraging
the self-attention networks as the backbone of the generator
and incorporating prior knowledge of human mobility pat-
terns via the urban structure (derived from both the original
training trajectories and external information such as Points
of Interest (POIs)) during the generation process. Instead



of generating a discrete sequence of visits for regular time
intervals, DeltaGAN [12] further extends SeqGAN to generate
continuous time points and time-conditioned locations to better
capture temporal irregularity in human mobility by leveraging
spatiotemporal point process. While these works preserve the
spatiotemporal statistics to some level, none of them consider
modality information in real-life trajectories explicitly.

We focus on generating location sequences for regular time
intervals in this paper and propose a novel framework that
explicitly models the modality in trajectories. We show that it
outperforms the state-of-the-art methods [6] [7] for generating
sequences of locations, and the generated trajectories are
both more representative in modalities and more realistic by
capturing both cross-modality and modality-specific patterns.
We note that our clustering-based framework is general and
can be integrated with the extended frameworks that incorpo-
rate additional external data and generate irregular sequences,
which will be interesting for future work.

B. Trajectory Clustering

Trajectory clustering is an effective method for analyzing
trajectory data to detect groups of similar trajectories, e.g.,
consistently moving together or having similar transportation
modalities or moving purposes. Existing trajectory clustering
methods can be classified as: unsupervised, supervised, and
semi-supervised [13]. Unsupervised methods aim to derive
the hidden correlation among unlabeled trajectory data and
include traditional methods such as density clustering [14],
hierarchical clustering [15], and spectral clustering [16], and
more recent deep learning or auto-encoder based methods
[17]. Our framework uses clustering to cluster the training
trajectories into different modalities and can leverage any ex-
isting clustering methods. In this paper, we experimented with
several basic clustering methods based on different features
derived from the trajectories to demonstrate the feasibility and
advantage of our proposed framework; it would be interesting
for future work to incorporate more advanced mobility be-
havior clustering methods with additional context information
such as POIs.

III. PRELIMINARIES

A. Problem Definition

Definition 1: Individual spatiotemporal trajectory. It is de-
fined as a list of visiting records Y = [y1, y2, y3, ..., yi, ..., yn],
where yi denotes the i-th visit of the trajectory, which is a tuple
(ti, xi), ti denotes the timestamp of the i-th visit, xi denotes
the user’s location of the i-th visit, which can be a geographical
coordinate (lat, lon) or a region identification (ID).

Based on the above notation, the synthetic trajectory gener-
ation process with regular time intervals is defined as follows:

Definition 2: Synthetic trajectory generation. Given that
each visit of the trajectory lasts for a regular time interval, the
generation of each synthetic trajectory with a θ-parameterized

generator can be expressed as the continuous generation of the
location of each visit:

pθ(Ŷ ) =

n∏
i=1

pθ(x̂i|x̂1, x̂2, x̂3, ..., x̂i−1) (1)

where pθ denotes the probability distribution of the generator,
x̂i denotes the generated user’s location of the i-th visit, Ŷ
denotes the generated trajectory with regular time intervals.

B. Preliminaries

Generative Adversarial Network. It consists of θ-
parameterized generator Gθ and a ϕ-parameterized discrimi-
nator Dϕ to play a "Two Player Game": the generator Gθ and
discriminator Dϕ are trained together. The generator generates
a batch of trajectories, and these, along with real trajectories,
are provided to the discriminator and classified as real or
fake. The generator is trained to fool the discriminator in
terms of being unable to distinguish the generated trajectories
from the real ones (minimizing the classification accuracy of
the discriminator). In contrast, the discriminator is trained to
classify the real trajectories as real and generated trajectories
as fake (maximizing classification accuracy). Formally, the
min-max optimization objective can be expressed as:

min
Gθ

max
Dϕ

EY∼pd(Y )[log(Dϕ(Y ))]+EŶ∼Gθ(Ŷ )[log(1−Dϕ(Ŷ ))]

(2)
where pd denotes the probability distribution of the real
trajectories.

IV. PROPOSED FRAMEWORK

A. Overview

Our proposed CSGAN framework, as illustrated in Figure
1, comprises three main components: a clustering component
(Section IV-B), a generator (Section IV-C), and a discriminator
(Section IV-D). The clustering component groups the real
(training) trajectories into k clusters based on their modalities.
The generator generates synthetic trajectories, which are as-
signed as the {k+1}-st fake class. The discriminator functions
as a multi-class classifier, taking all the real-life and synthetic
trajectories from the generator as input. The discriminator is
trained to classify a real trajectory into its associated cluster
(one of the k real classes or modalities) and a generated
trajectory into the (k+ 1)-st ("fake") class. The output of the
discriminator goes through a semi-supervised reward function
and is sent back to optimize the generator so that the generator
is rewarded for generating a trajectory that is classified into
any one of the k real classes. We explain each component in
detail in the following subsections.

B. Modality-based Clustering

To capture the different transportation modalities in real-life
trajectories, we leverage clustering to group similar trajectories
together and assign them to one of the k real classes based
on their cluster membership. We can leverage a variety of
clustering methods based on different features such as 1)
the raw location sequences, 2) derived features, 3) explicit



annotations, and 4) additional context information such as
POIs associated with the locations. We present and evaluate
two clustering methods based on derived features and explicit
annotations in this paper as a demonstration of transportation
modality. When POI information is available, we can leverage
more advanced methods to cluster the trajectories into different
moving behaviors or purposes.
Derived feature-based clustering. Intuitively, the most deter-
mining feature of transportation modality is the moving speed.
Hence, we first cluster the trajectories based on their average
moving speed directly computed from the trajectories based on
consecutive locations and time elapsed. We then incorporate
additional derived features, such as accumulative daily travel
distance and the number of distinct visits, which may further
help recognize the modality. Given the derived features, we
apply the K-means Clustering algorithm [18] using Euclidean
distance metric.
Explicit annotations-based clustering. For some collected
trajectories (such as the PeopleFlow dataset collected in
Japan), there may be explicit annotations for the transportation
mode for each visit (e.g., walking, running, car). For an indi-
vidual trajectory Y = [y1, y2, y3, ..., yi, ..., yn] as a sequence of
visits, we have an annotation or explicit feature at each visit yi.
In this way, trajectory Y can be represented as a feature vector
[f1, f2, f3, ..., fi, ..., fn] with fi denoting the modality of the
i-th visit. We use the Jaccard distance as the distance metric,
as each element in the feature vector represents a categorical
modality, to conduct clustering.

C. Generator

We leverage Recurrent Neural networks (RNNs) as the
backbone of our generator Gθ to generate synthetic trajectories
while capturing the sequential transition patterns. Assuming
that the location visits have regular time intervals (the con-
secutive locations can be the same, indicating the person
is not moving in that interval), Gθ is tasked to generate
a sequence of location visits. It first generates the starting
location by randomly selecting from the entire probability
distribution of the locations. Then, the selection of the next
location x̂i is based on the previously generated locations
x̂1, x̂2, x̂3, ..., x̂i−1. Gθ consists of an embedding function
e(·) to map the sequence of previously generated locations
into embedding representations, a mapping function g(·) to
map the embedded sequence into hidden states, and finally,
a predicting function z(·) to map the hidden states to the
probability distribution of locations, which can be written as:

p(x̂i|x̂1, x̂2, x̂3, ..., x̂i−1) = Gθ(x̂1, x̂2, x̂3, ..., x̂i−1)

= z(g(e(x̂1, x̂2, x̂3, ..., x̂i−1)))
(3)

After obtaining the embedding representations, the proposed
function g(·), which is the Gated Recurrent Unit (GRU), maps
the embedding representations of the previously generated
locations to a sequence of hidden states h1, h2, h3, ..., hi−1, hi,
which can be written as:

hi = g(hi−1, e(x̂i−1)) (4)

Finally, the predicting function z(·) maps the hi into the
output probability distribution of locations with a softmax
output later to determine the most probable next location,
which can be expressed as:

p(x̂i|x̂1, x̂2, x̂3, ..., x̂i−1) = z(hi) (5)

D. Discriminator

Given that we obtain the cluster label for each real trajectory
by splitting the entire real trajectories into k clusters, each
trajectory is assigned a distinct modality corresponding to one
of the k real classes. For the synthetic trajectories from the
generator, we assign them the (k+1)-st label denoting the fake
class. Our proposed discriminator Dϕ functions as a multi-
class classifier that aims to distinguish 1) whether a trajectory
is real or fake and 2) given it is real, the specific class out
of the k real classes it belongs to. More specifically, given a
trajectory generated from the generator, Dϕ aims to classify
it into the (k + 1)-st fake cluster; given a trajectory from the
real ones, Dϕ aims to classify it into the specific modality it
belongs to among the k real classes.

To capture the complete sequence information, we first
leverage bidirectional Recurrent Neural Networks (RNNs)
to comprehensively evaluate the input trajectory, and then
followed by dense layers to output the probability of being
classified into each class, which can be written as:

pD(Y ) = Dϕ(Y ) = zd(gd(ed(Y ))) (6)

where pD(Y ) denotes the output probability distribution of
k+1 classes corresponding to input trajectory Y , ed(·) denotes
an embedding function, gd(·) denotes a mapping function, and
zd(·) denotes a predicting function.

Given an input trajectory, similar to our proposed generator
Gθ, our discriminator Dϕ first consists of an embedding func-
tion ed(·), which takes the locations of the input trajectory Y
and outputs the embedded representations. Then, Dϕ leverages
a function gd(·), a bidirectional GRU, to map the embedding
representations of the locations to the hidden state. Finally,
the predicting function z(·), which consists of a stack of
fully connected layers, maps the hidden state into the output
probability distribution of the k + 1 classes to determine the
most probable class.

E. Model Training

Reinforcement Learning-based Training for Diverse
Modality. The traditional training algorithm of GANs via gra-
dient back-propagation does not perform well due to the dis-
crete nature of the generator’s output [7]. Thus, we adopt the
reinforcement learning approach [6] to address this issue. More
specifically, we treat our proposed generator as the agent, the
group of currently generated locations as the state, generating
the next location based on the previously generated locations
as the action, and the probability of "fooling" the discriminator
as the reward. Our generator Gθ(x̂i|x̂1, x̂2, x̂3, ..., x̂i−1) aims
to maximize its expected end reward.



To support the generation of diverse trajectories of different
modalities, we propose a novel reward function based on the
output of the discriminator. According to Equation 6, the
output of the discriminator is the probability distribution of
k+1 classes (k real class and the (k+1)-st fake class) given
an input trajectory Y . Thus, the summation of the probability
for a generated trajectory Ŷ corresponding to the k real classes
represents the probability of "fooling" the discriminator and
thus should be treated as the reward, which can be written as:

RD(Ŷ ) =
∑
c∈Cr

pcD(Ŷ ) (7)

where RD(Ŷ ) denotes the reward gained from the generated
trajectory Ŷ based on the output of the discriminator, Cr

denotes the group of k real classes, and pcD(Ŷ ) denotes the
probability of the trajectory Ŷ being classified into class c
by the discriminator. In other words, the generator is being
rewarded not for a particular modality but being rewarded
as long as it generates a trajectory that looks like any real
modalities. Alternatively, we can also create a conditioned
generator where we can input a desired modality and then
use the output probability corresponding to the desired class
(modality) by the discriminator as the reward if we need to
generate trajectories corresponding to specific modalities.

For the discriminator, since the objective is to minimize the
multi-class classification loss by classifying the real trajecto-
ries into one of the k real classes and generated trajectories
as fake, we have:

minϕ −EY∼pd(Y )[log(p
ct
D(Y ))]− EŶ∼Gθ(Ŷ )[log(1−

∑
c∈Cr

pcD(Ŷ ))]

(8)
where pctD(Y ) denotes the probability of the discriminator to
classify the trajectory Y into its associated class ct given a
real trajectory, Cr denotes the group of k real clusters, and
pcD(Ŷ ) denotes the probability of the discriminator to classify
the generated trajectory Ŷ into cluster c.

Model Pre-training. Due to the complicated nature of human
mobility data, training a powerful generator with a large num-
ber of parameters is time-consuming. Thus, to accelerate the
training process and improve the overall model’s performance,
we perform model pre-training on both the generator and the
discriminator following the previous work [7]. We pre-train
the generator with a part of the real trajectories via maximum
likelihood estimation (MLE) by minimizing the negative log-
likelihood loss between the generated and real ones. To pre-
train the discriminator, we equally mix the real trajectories
with the generated trajectories and minimize the negative
log-likelihood loss between the predicted cluster labels and
the ground-truth cluster labels (one of the k clusters for the
real trajectory and the (k + 1)-st cluster for the generated
trajectory). Our entire CSGAN algorithm is illustrated in
Algorithm 1.

V. EVALUATION

We conduct comprehensive experiments utilizing real-world
datasets and aim to answer the following questions:

Algorithm 1: CSGAN for Modality-Aware Synthetic
Trajectory Generation

Data: Real set of trajectories Y, noise distribution PZ,
number of clusters (modalities) k, batch size b, total
number of iterations T , number of iterations TG to
train the generator, number of iterations TD to train
the discriminator

Initialize parameters of the generator Gθ and the
discriminator Dϕ;
Perform clustering on Y and obtain k centroids;
Pre-train Gθ via MLE using a subset of Y;
Pre-train Dϕ via minimizing the negative log-likelihood loss;
for t = 1 : T do

for t = 1 : TG do
Use Gθ to generate b synthetic trajectories
{Gθ(zi)}bi=1 from PZ;

Assign them to "fake" (the (k + 1)− st class);
Compute the reward of the b generated trajectories

via Equation 7 and update θ via policy gradient;
end
for t = 1 : TD do

Sample b real trajectories {Yi}bi=1 from Y;
Obtain their cluster labels w.r.t to the k centroids;
Use Gθ to generate b synthetic trajectories
{Gθ(zi)}bi=1 from PZ and assign them the fake
label;

Update Dϕ w.r.t the NLL via Equation 8
end

end

RQ1. With the modality-aware clustering-based generation,
how effective is our CSGAN model in generating realistic
synthetic trajectories compared with the state-of-the-art ap-
proaches?
RQ2. How do different clustering strategies impact our pro-
posed CSGAN framework?
RQ3. How does CSGAN perform on the downstream task,
e.g., next location prediction, compared to the state-of-the-art
approaches?

A. Experimental Setup

Data. We experiment on two real-world datasets with different
characteristics (open GeoLife Dataset [19] and semi-open
PeopleFlow Dataset [20]) to verify the effectiveness of our
proposed model.

• GeoLife Dataset: This GPS trajectory dataset was col-
lected in the (Microsoft Research Asia) Geolife project
by 182 users over three years (from April 2007 to August
2012). We select a portion of the entire GeoLife data for
evaluation (2756 daily trajectories in 2008 from 6:00 am
to 8:00 pm with 15 minutes as the time interval, i.e., each
trajectory has 56 visiting locations)

• PeopleFlow Dataset: This data is based on 2008
Tokyo Metropolitan Area PT Data (provided by Tokyo
Metropolitan Circle Transportation Planning Council) and
is lent by the University of Tokyo CSIS. We select a por-
tion of the entire PeopleFlow data via the same processing
technique as GeoLife, resulting in 6183 trajectories.



(a) Average speed (b) Accumulative distance (c) Number of distinct visit

Fig. 2: Dataset comparison (GeoLife and Peopleflow)

TABLE I: GeoLife and PeopleFlow datasets

Characteristics GeoLife PeopleFlow
Number of Trajectories 2756 6183
Period 1 year (2008) 1 year (2008)
Visit Interval every 15 minutes every 15 minutes
Average Speed (km/h) 5.324±5.744 13.592±8.303
Average Accumulated Distance (km) 8.401±9.340 27.662±26.494
Average Distinct Visits 7.713±4.558 7.123±3.895

We show the dataset characteristics in Table I, and a de-
tailed view of the distribution of average speed, accumulative
distance, and the number of distinct visits per trajectory in
each dataset in Figure 2.
Comparison Methods. We compare CSGAN with the state-
of-the-art methods SeqGAN and MoveSim as well as a base-
line Cluster-wise SeqGAN.

• SeqGAN [6]: it utilizes reinforcement learning and Monte
Carlo search to generate discrete sequences of trajecto-
ries.

• MoveSim [7]: it extends SeqGAN, utilizes self-attention
networks as the generator, and incorporates additional
urban structures to regularize the generation via mobility
regularity. We note that the original work includes three
kinds of urban structures: the physical distance between
all location pairs, functional similarity between locations
based on the correlation between the POI distribution,
and historical transitions between locations. The first and
the third can be directly computed from the training
trajectories, while the second POI information is an
ancillary attribute unavailable from the datasets. Thus, we
implement MoveSim without the second urban structure
for a fair comparison.

• Cluster-wise SeqGAN: we also implement a baseline
cluster-wise SeqGAN to consider modality, which con-
ducts clustering on the real trajectories and then trains
an individual SeqGAN model on each cluster. While
the above two represent the approaches that learn global
patterns without considering modality, this represents the
approaches that learn only modality-specific patterns.

For all the methods, we also perform clustering on the
original and generated trajectories and evaluate how the cluster
(modality) distributions match (see Evaluation Metrics later in
this section). We experiment with different clustering strategies

using different sets of features, including 1) a single derived
feature of average speed (dubbed with "-S"), 2) multiple
derived features including average speed, travel distance, and
distinct visits (dubbed with "-M") for the GeoLife dataset, and
3) explicit per-visit annotations of transportation modes that
are available for the PeopleFlow dataset (dubbed with "-E").

Implementation Details. Our CSGAN model leverages clus-
tering to divide real trajectories into k categories. To determine
the optimal k for each dataset, we leverage an extended
elbow method [21]. For clustering based on the single feature
average speed, we set k = 4 for the GeoLife Dataset (likely
corresponding to walking, biking, bus, and car) and k = 6 for
PeopleFlow Dataset (due to mixed transportation modes, e.g.,
walking and bus). For clustering based on multiple derived
features, we set k = 7 for the GeoLife Dataset. Finally, for
clustering based on the explicit annotations, we set k = 4 for
the PeopleFlow Dataset.

The generator and discriminator are configured with the
embedding size and hidden dimension of 32 and 64, respec-
tively. The generator is pre-trained for 150 epochs, and the
discriminator is pre-trained for 75 epochs. A dropout of 0.2
is applied, and adversarial training lasts for 75 epochs, with a
learning rate of 1e−2 and batch size of 32.

Evaluation Metrics. We evaluate the quality of the synthetic
trajectories by verifying whether the various statistical prop-
erties at the geographical, individual trajectory, transition, and
modality levels are preserved.

1) Geographical density-based statistics:

• P (r): Probability of a trajectory visiting location r.
• P (r, t): Probability of a trajectory visiting location r at

time t.

2) Individual trajectory level statistics:

• P (d): Probability of the accumulated distance of a tra-
jectory being d.

• P (v): Probability of the number of distinct visits of a
trajectory being v.

Following previous work, we compute the Jensen-Shannon
Divergence between the probability distribution of the real
trajectories and that of generated trajectories for each of the



above distributions, which can be written as:

JSD(Pre||Pgen) = H(
Pre + Pgen

2
)− H(Pre) +H(Pgen)

2
(9)

where Pre and Pgen are the two probability distributions for
real and generated trajectories, respectively, and H is the
Shannon information. The lower the divergence, the better the
generated trajectories preserving the original distributions.

3) Transition statistics:
• P (r1, r2): Probability of a trajectory transitioning from

location r1 to location r2. While a main goal of the
synthetic trajectory generation is to learn and preserve the
sequential information, most existing works do not evalu-
ate how the sequential transition probability is preserved.
Given the entire Q regions, we build the transitional
matrix P ∈ RQ∗Q for both real and synthetic trajectories,
where the element corresponding to row r1 and column
r2 of the matrix denotes the transition probability from
location r1 to location r2. Then we take the Frobenius
norm of the difference between the two transition matri-
ces:

||Pr − Pg||F =

√√√√ Q∑
r1=1

Q∑
r2=1

|Pr(r1, r2)− Pg(r1, r2)|2

(10)
where Pr and Pg denote the transition matrix of the real
and generated trajectories, respectively. The lower the
norm, the better the transition is preserved.

4) Modality level statistics:
• P (c0i ): Proportion of trajectories within each modality

(cluster ci) with respect to the centroids from the real
trajectories. In other words, for generated trajectories, we
assign each of them to the nearest centroid from the real
trajectories. Then, we compute the JSD between the two
distributions.

• P (c1i ): The difference between this one and the above
is that we perform clustering on the generated trajec-
tories separately and find a set of synthetic centroids
(which might be different from those from the real
trajectories). P (c1i ) denotes the proportion of trajectories
within each modality using the corresponding centroid in
real and synthetic trajectories, respectively. The centroids
are matched and ordered as explained below. We also
compute the JSD between the two distributions.

• C: Cluster centroids or modality representatives. Given
the vector of k centroids from real trajectories and
generated trajectories, we compute the minimum accumu-
lated pair-wise distance among all permutations (closest
match). The lower the value, the better the generated
trajectories preserve the modality representatives.

B. RQ1: Effectiveness Comparison with the Baselines

Global Comparison. We show the evaluation metrics for
different methods for the overall dataset in Table II. We
first dive into the results with clustering based on average

speed. Our proposed model CSGAN performs consistently the
best over all the metrics on both datasets. More specifically,
on GeoLife data, for geographical and trajectory statistics,
CSGAN exceeds the baselines on average 33% in P (r), 19%
in P (r, t), 25% in P (d), and 15% in P (v); for transitional
probability, CSGAN outperforms the baselines on average
53% in P (r1, r2); for modality patterns, CSGAN excels over
the baselines on average 49% in P (c0i ), 76% in P (c1i ), and
53% in C. Similarly, on PeopleFlow data, CSGAN excels over
the baselines on average 20% in P (r), 9% in P (r, t), 48% in
P (d), and 46% in P (v); 49% in P (r1, r2); 56% in P (c0i ),
59% in P (c1i ), and 53% in C.

As expected, the highest performance gain is observed for
the modality-level metrics, which demonstrates the power of
our method in capturing and representing the modalities in the
generated trajectories. Moreover, we also observe a significant
performance gain on the transitional probability metrics. The
explanation is intuitive: given a trajectory with a specific
modality, e.g., walking, a user cannot travel a large distance,
and thus, there is a limited number of potential destinations. By
our modality-aware generation, the modality-specific transition
can be better learned and preserved.

Modality-specific Comparison. In addition to the overall
comparison, we also show the comparison for each modality
for both datasets to verify whether the trajectories within each
modality are realistic. Table III shows the results. On both
GeoLife and PeopleFlow data, CSGAN consistently outper-
forms the baselines over all the metrics for each modality.
For instance, in cluster 2 of GeoLife, CSGAN excels over
the baselines on average 29% in P (r), 16% in P (r, t), 57%
in P (d), 44% in P (v), and 62% in P (r1, r2). In cluster
1 of PeopleFlow, CSGAN shows improvements of 19% in
P (r), 15% in P (r, t), 36% in P (d), 25% in P (v), and
30% in P (r1, r2). This verifies that CSGAN learns not only
global patterns but also modality-specific patterns across all
modalities.

Baseline Comparison. Comparing the baseline approaches
with each other, SeqGAN outperforms MoveSim for most
metrics. This can be due to two reasons: 1) most of the
performance gain of MoveSim, as reported in the original
work, may be due to the auxiliary POI information (which
we did not use for a fair comparison), 2) MoveSim may
require a large training dataset due to its more complex
model architecture and the training data in our experiments
is smaller than that used in the original MoveSim work (1
year vs. 5 years). Cluster-wise SeqGAN, while achieving the
best performance for preserving the distinctive visits P (v),
does not perform as well as SeqGAN in general because it
only learns from each modality without learning from the
patterns shared among different modalities. In summary, this
verifies that by capturing both the global and modality-specific
patterns, CSGAN is able to generate trajectories that are both
1) more diverse and representative as reflected in the modality
metrics and 2) more realistic as reflected in the trajectory and
transitional metrics.



TABLE II: Global comparison with baselines on GeoLife and PeopleFlow data with different clustering techniques. The table
shows the average statistics of 5 experiments. The best performance is in boldface. The second-best is underlined.

GeoLife
Geographical density-based statistics Individual trajectory level statistics Transition statistics Modality level statistics

Methods P(r) P(r,t) P(d) P(v) P(r1, r2) P(c0i ) P(c1i ) C
SeqGAN-S 0.407 0.478 0.208 0.288 0.100 0.162 0.220 18.682
Cluster-wise SeqGAN-S 0.506 0.562 0.313 0.234 0.082 0.402 0.298 83.441
Movesim-S 0.522 0.579 0.263 0.390 0.116 0.303 0.209 7.934
CSGAN-S 0.319 0.439 0.195 0.258 0.047 0.147 0.058 17.128
SeqGAN-M 0.407 0.478 0.208 0.288 0.100 0.678 0.111 48.384
Movesim-M 0.522 0.579 0.263 0.390 0.116 0.341 0.134 59.993
CSGAN-M 0.289 0.354 0.098 0.120 0.032 0.197 0.065 41.055

PeopleFlow
SeqGAN-S 0.378 0.437 0.368 0.275 0.092 0.406 0.167 29.694
Cluster-wise SeqGAN-S 0.344 0.406 0.363 0.317 0.105 0.311 0.194 31.046
Movesim-S 0.344 0.396 0.524 0.602 0.100 0.289 0.151 23.420
CSGAN-S 0.284 0.376 0.218 0.215 0.050 0.146 0.070 13.136
SeqGAN-E 0.378 0.437 0.368 0.275 0.092 0.117 0.250 5.000
Movesim-E 0.344 0.396 0.524 0.602 0.100 0.338 0.401 3.000
CSGAN-E 0.288 0.380 0.244 0.216 0.040 0.083 0.144 3.000

TABLE III: Modality-specific comparison with baselines on GeoLife and PeopleFlow data with clustering based on the derived
global feature average speed. The table shows the average statistics of 5 experiments. The best performance is in boldface.
The second-best is underlined.

GeoLife
Geographical density-based statistics Individual trajectory level statistics Transition statistics

Cluster Centroid Speed Proportion Method P(r) P(r,t) P(d) P(v) P(r1, r2)
Cluster_1 2.498 55% SeqGAN-S 0.505 0.555 0.297 0.432 0.191

Cluster-wise SeqGAN-S 0.607 0.633 0.496 0.276 0.135
CSGAN-S 0.403 0.487 0.237 0.402 0.058

Cluster_2 7.314 34% SeqGAN-S 0.507 0.589 0.225 0.169 0.075
Cluster-wise SeqGAN-S 0.563 0.626 0.336 0.252 0.140
CSGAN-S 0.382 0.509 0.120 0.118 0.041

Cluster_3 14.784 10% SeqGAN-S 0.540 0.597 0.293 0.210 0.097
Cluster-wise SeqGAN-S 0.700 0.721 0.477 0.335 0.248
CSGAN-S 0.507 0.586 0.319 0.229 0.092

Cluster_4 30.747 1% SeqGAN-S 0.650 0.672 0.459 0.358 0.358
Cluster-wise SeqGAN-S 0.487 0.560 0.705 0.423 0.335
CSGAN-S 0.632 0.660 0.446 0.333 0.328

PeopleFlow
Cluster_1 4.497 27% SeqGAN-S 0.460 0.482 0.576 0.597 0.160

Cluster-wise SeqGAN-S 0.364 0.408 0.548 0.407 0.104
CSGAN-S 0.334 0.379 0.360 0.374 0.092

Cluster_2 9.141 21% SeqGAN-S 0.512 0.558 0.411 0.347 0.155
Cluster-wise SeqGAN-S 0.424 0.475 0.454 0.339 0.093
CSGAN-S 0.361 0.438 0.243 0.215 0.080

Cluster_3 14.590 20% SeqGAN-S 0.553 0.614 0.382 0.251 0.109
Cluster-wise SeqGAN-S 0.492 0.557 0.492 0.368 0.124
CSGAN-S 0.433 0.521 0.264 0.162 0.072

Cluster_4 19.924 17% SeqGAN-S 0.585 0.648 0.460 0.338 0.165
Cluster-wise SeqGAN-S 0.511 0.586 0.442 0.265 0.129
CSGAN-S 0.451 0.556 0.258 0.146 0.073

Cluster_5 25.868 11% SeqGAN-S 0.564 0.639 0.432 0.273 0.122
Cluster-wise SeqGAN-S 0.540 0.622 0.546 0.321 0.135
CSGAN-S 0.471 0.587 0.325 0.181 0.087

Cluster_6 34.627 4% SeqGAN-S 0.576 0.654 0.461 0.220 0.114
Cluster-wise SeqGAN-S 0.628 0.673 0.716 0.396 0.267
CSGAN-S 0.553 0.646 0.455 0.184 0.093

TABLE IV: Comparison with baselines on GeoLife and PeopleFlow data on the task of next location prediction. The best
performance is in boldface.

GeoLife
Model Accuracy@1 Accuracy@2 Accuracy@3 Accuracy@4 Accuracy@5 Accuracy@6 Accuracy@7 Accuracy@8
SeqGAN 0.842 0.913 0.934 0.944 0.951 0.956 0.959 0.963
Movesim 0.612 0.641 0.653 0.662 0.665 0.670 0.673 0.678
CSGAN 0.880 0.930 0.944 0.954 0.960 0.964 0.967 0.970

Peopleflow
SeqGAN 0.831 0.882 0.905 0.916 0.927 0.932 0.937 0.941
Movesim 0.815 0.822 0.826 0.831 0.835 0.839 0.841 0.843
CSGAN 0.888 0.912 0.921 0.927 0.933 0.936 0.940 0.942



(a) Real (Geolife) (b) CSGAN (Geolife) (c) SeqGAN (Geolife) (d) Movesim (Geolife)

(e) Real (PeopleFlow) (f) CSGAN (PeopleFlow) (g) SeqGAN (PeopleFlow) (h) Movesim (PeopleFlow)
Fig. 3: Population density (GeoLife and Peopleflow)

Fig. 4: Absolute distance to origin (GeoLife (left) and People-
Flow (right))

Dataset Comparison. Comparing the GeoLife and People-
Flow Datasets, GeoLife is less diverse in modality compared to
PeopleFlow, as shown in Figure 2. This difference contributes
to the different orders of performance in Table II and Table
III. For Geolife, SeqGAN outperforms Cluster-wise SeqGAN
since the modality is less diverse, and hence it is more
important to learn from the global patterns. In contrast, for
PeopleFlow, which is more diverse in modality, SeqGAN tends
to perform less satisfying and is surpassed by the Cluster-wise
SeqGAN, which explicitly learns modality-specific patterns
within each cluster.

C. RQ1: Visualization

We show several visualizations to illustrate how the methods
compare with each other in preserving the patterns in the
original trajectories.

Population Density. We plot the population density (the
aggregate density from 6:00 am to 8:00 pm) for GeoLife
and PeopleFlow data. Figure 3 shows the density on the map
(divided into grids) using real and generated trajectories for
both datasets. We can see that CSGAN best mimics the real
data by capturing both the overall distribution and the outliers.
Places with high density and low density are both captured by
our model. In contrast, the baseline models fail to capture
such information and tend to lose both the overall distribution
(GeoLife) and outliers (PeopleFlow).

Absolute Distance to Origin. We plot the absolute distance
to the starting point from 6:00 am to 8:00 pm for every 15
minutes using the real and synthetic trajectories in Figure
4. We can see that CSGAN can better capture the moving
behaviors: for GeoLife data, people tend to be far away from
their starting location till 1:00 pm and then stay around the
same region till 8:00 pm. For PeopleFlow data, people tend
to be away from the starting point from 6:00 am to 4:00 pm
and then return to the origin (typically their home), which is
reflected by the downward trend of the blue curve. In both
cases, CSGAN (red) closely follows the trend of the real data
(blue), while both SeqGAN and MoveSim deviate from the
trends.

D. RQ2: Impact of Different Clustering Methods

Next, we explore the impact of different clustering tech-
niques on the performance of CSGAN against baselines. In
Table II, methods with "-S" denotes clustering based on a
single feature (average speed); methods with "-M" denotes
clustering based on multiple features (average speed, accu-
mulative distance, the number of distinct visits); and methods
with "-E" denotes clustering based on explicit annotations for
each visit (transportation mode) provided by the PeopleFlow
dataset. Figure 5 shows the proportion of trajectories within
each cluster via these clustering methods, respectively. For
example, PeopleFlow demonstrates several clusters of both
single and mixed modalities: (Walking, bus, subway), Car,
Bicycle, (Walking, subway).

Table II shows that CSGAN with different clustering meth-
ods consistently outperforms the baselines. Moreover, we find
that with more sophisticated clustering techniques or features,
as shown by switching from a single feature (average speed)
to multiple features, CSGAN tends to be more powerful. For
the PeopleFlow dataset, the explicit annotation offers some
performance gain in some metrics, at the same time, also
verifies that clustering based on the trajectories alone without
the annotations indeed captures the modality well.



(a) Single feature (GeoLife) (b) Single feature (PeopleFlow) (c) Multiple features (GeoLife) (d) Explicit features (PeopleFlow)
Fig. 5: The proportion of trajectories in each cluster. The x-axis denotes the proportion of trajectories, and the y-axis denotes
the feature of each cluster’s centroid. (a) and (b) are based on clustering via average speed. (c) is based on average speed,
accumulative distance, and number of distinct visits (from left to right), and (d) is based on transportation modes vector.

E. RQ3: Next Location Prediction

To further verify the utility of our CSGAN model, we study
the next location prediction as a downstream task using the
trained generator from CSGAN and baseline methods. We
leverage the metric: accuracy@k, which denotes whether the
ground-truth next location exists in top k predicted locations
given the predicted probability distribution of the entire Q
locations from the generator. We set k from 1 (the ground-
truth location is exactly the predicted next location) to 8. The
test data is selected from the real trajectories.

We report the next location prediction results in Table IV.
CSGAN consistently outperforms SeqGAN and MoveSim on
both datasets, exceeding the best baseline by 5% on GeoLife
and 7% on PeopleFlow when k = 1. More importantly,
as k gets smaller, our model’s advantage is more obvious.
This further verifies the advantage of CSGAN in learning the
sequential patterns from the data by capturing the modality.

VI. CONCLUSION

We proposed a novel and general framework, the modality-
aware Clustering-based Sequence Generative Adversarial Net-
work (CSGAN), which can generate representative and re-
alistic synthetic trajectories by capturing real-world modali-
ties. CSGAN leverages clustering and adopts semi-supervised
losses to capture real-life modality patterns in a GAN setting
and a novel reward function for training the network via rein-
forcement learning. To comprehensively evaluate the quality
of the synthetic trajectories, we introduce several new metrics
to measure how the synthetic trajectories preserve transitional
and modality properties in addition to the typical density
and trajectory level properties. Experiments on two real-world
datasets demonstrate the consistent and superior performance
of CSGAN. Our future works include incorporating clustering
methods for moving behaviors, integrating the framework with
other methods that consider additional contextual information,
such as POIs and temporal irregularity of the trajectories, and
extending the framework to model co-movements via multi-
agent reinforcement learning.
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