
Group Nearest Compact POI Set Queries in Road Networks

Sen Zhao
Emory University
Atlanta, GA, USA

zhaoseneasy@outlook.com

Li Xiong
Emory University
Atlanta, GA, USA
lxiong@emory.edu

Abstract—Identifying a set of points of interest (POIs) is an
important problem that finds applications in Location-Based
Services (LBS). In this paper, we study a new spatial keyword
query motivated by the scenario where a group of users staying
at different places wishes to find a compact set of POIs (such
as a restaurant and two museums) that is close to all users. We
define the problem of group nearest compact POI set (GNCS)
query in road networks and show that this problem is NP-hard.
To solve the problem, we design query processing algorithms
including a first feasible result search algorithm based on the
perspective of each individual user, and an exact algorithm
with optimizations based on the heuristic of first minimizing
the aggregate distance between the POI set and the user group.
Extensive performance studies using two real datasets confirm
the efficiency and accuracy of our proposed algorithms.

Keywords-group, POI set query, road networks, approxima-
tion algorithms

I. INTRODUCTION

Spatial keyword queries are receiving increasing attention
due to the prevalence of Location-Based Services (LBS)
such as Google Maps1 and Foursquare2. Such queries exploit
both location and textual descriptions of spatial objects. We
can classify existing queries in the literature into several
main categories with respect to the query user (single user
vs. a user group) and query object (single object vs. an object
set) (shown in Table I). At the same time, Location-Based
Social Networks (LBSN) such as Facebook3, Google+4, and
Meetup5 enable a group of friends to remain connected from
virtually anywhere at any time via location-aware mobile
devices. New location-based services need to consider the
social aspect and target not only individual users but also
user groups.

Most of the spatial keyword queries optimize the distance
between the query object(s) and the query user(s) given
the keyword requirement. In this paper, we study a spatial
keyword query that returns a set of POIs for a user group
with additional consideration of the compactness of the
POI set motivated by the following scenario. A group of
friends, living at different places, may want to find a set of

1www.google.com/maps
2https://foursquare.com/
3www.facebook.com
4https://plus.google.com/
5www.meetup.com

POIs containing a few museums and a restaurant to have a
relaxing weekend together. The set of POIs should ideally
satisfy the following: (1) it satisfies the users’ requirement,
e.g. a few museums and a restaurant; (2) it is close to all
users in the user group, such that none of them need to
travel a long distance; (3) the POI set is compact in terms
of number of POIs and the distances between the POIs such
that the users can visit all of them with minimal travel.

Motivated by this, we introduce a new type of query
called group nearest compact POI set (GNCS) query for
a user group who wishes to find nearest compact POI
set. Specifically, a GNCS query is defined over a road
network with POIs. The input of the query consists of four
parameters: 1) a road network graph, 2) a group of user
locations, 3) a set of query keywords, and 4) the required
number of POIs for each keyword. We note that a POI may
cover multiple different keywords (e.g. a dinner theater),
however, it can only cover a single keyword once and users
may wish to have more than one POI for the same keyword
(e.g. a few different museums). The query returns a POI set
that satisfies users’ required keywords, and minimizes the
cost for the users which consists of two components: 1) the
network distance between the POI set and the user group,
and 2) the compactness of the POI set determined by both
the maximum network distance between the POIs (diameter
of the POI set) and the number of POIs in the POI set.

Table I highlights the novelty of our proposed query in
comparison to different types of queries in the literature.
Existing queries that also aim to find a POI (object) set for
a user group [6] [16] mainly optimize the distance between
the POI set and the user group. In contrast, GNCS queries
emphasize the compactness of the POI set regarding both the
distances between the POIs and the number of POIs in order
to better address the social query needs, i.e. the users can
visit all of the POIs with minimal travel. In addition, GNCS
also generalizes the keyword requirements, i.e. a keyword
may need to be covered by one or more POIs. Because
of the consideration of the compactness of the POI set,
in particular, the number of POIs, existing approaches that
optimize the distance only will not yield optimal or efficient
solutions.

We show that the GNCS query problem is NP-hard. For
answering the GNCS query, a brute-force approach based on

Table I: A Summary of Different Types of Queries

query user
query object single object object set

distance only distance & compactness

single user top-k nearest keyword search,
e.g. [5] [7] [18] [8] [15] [10]

spatial group keyword queries,
e.g., [3] [12] [2] [4] [21]

user group group nearest neighbor queries,
e.g., [13] [14] [19] [11]

group nearest group queries,
e.g., [6] [16] GNCS (proposed)

enumerating all POI sets is computationally expensive, and a
simple greedy approach would not guarantee the optimality.
Existing approaches for optimizing distances only without
considering compactness of the POI set are not directly
applicable or will not yield optimal or efficient solutions.
To address above challenges, based on the features of road
network graph, we present efficient algorithms that exploit
properties related to both the distance and number of POIs.

Contributions. The key contributions of this paper are
summarized as follows:

1) We define a new type of spatial keyword query, group
nearest compact POI set (GNCS) query, to address
the social needs of a user group who wishes to find
a nearest and compact POI set satisfying a set of
keywords. We show that this problem is NP-hard.

2) We propose a set of pruning and refining rules for
pruning the search space and refining the current
candidate optimal solution efficiently by exploiting the
distances in both Euclidean space and road network,
and present efficient basic query operations.

3) We present two efficient algorithms that exploit prop-
erties related to both distance between the POIs and
users and number of POIs to solve the GNCS query.
They are: 1) a first feasible result search (FFS) algo-
rithm based on the perspective of each individual user
which can be used to significantly prune the search
space, and 2) an exact algorithm with optimization
(EAO) based on the heuristic of first minimizing the
aggregate distance cost.

4) Extensive experimental results on two real datasets
show that the proposed algorithms are efficient and
scalable with excellent utility.

Organization. The rest of paper is organized as follows.
Section II formalizes the GNCS query problem. Section
III proposes our query processing algorithms. Section IV
reports the empirical studies. Section V discusses the related
work and Section VI concludes this paper. For all the
lemmas and theorems we present in Section II and III, we
omit the proofs due to space limitations and refer readers to
our technical report [22] for full proofs.

II. PROBLEM STATEMENT
In this section, we first present the definitions of road

network graph and distance metrics. Then, we define the
problem of group nearest compact POI set (GNCS) query.
Finally, we show the hardness of this GNCS problem.

Definition 1: Road Network Graph. A road network
with POIs is modeled as a road network graph R =
(V,E,DS) , where V is a set of nodes and each v ∈ V
represents an intersection node in the road network or a POI
node with keywords v.T , E is a set of weighted edges and
each e ∈ E represents a road segment with a weight e.w
in the road network, DS is the two-dimensional Euclidean
space in which each node in V is located in.

Definition 2: Euclidean/Network Distance between a
Pair of Nodes. Given a road network graph R =
(V,E,DS), for two nodes vi located at (xi, yi) and vj
located at (xj , yj) in Euclidean space DS , the Euclidean
distance between them is

DistS(vi, vj) =
√

(xi − xj)2 + (yi − yj)2.
The network distance between vi and vj is defined as

the shortest distance between vi and vj in network graph.
Assume that (e1, e2, · · · , en) is the shortest route between
vi and vj , the network distance between them is

Dist(vi, vj) =

n∑
k=1

ek.w.

Lemma 1: (Pruning Rule) The Euclidean distance com-
puted can be used as a lower bound of the network distance,
i.e., Dist(vi, vj) ≥ DistS(vi, vj).

Definition 3: Cost of a POI Set. Given a road network
graph R = (V,E,DS), for a user group U and a POI set
S, the cost of S, denoted by cost(S), is computed as the
linear combination of the distance between U and S and the
compactness of S. That is,

cost(S) = α ·Dist(U,S) + (1− α) · |S| ·Diameter(S) (1)

where Dist(U ,S) = min{Dist(U , ∫i) | ∫i ∈ S},
DistS(U , ∫) = max{DistS(ui, ∫) | ui ∈ U},
Diameter(S) = max{Dist(∫i, ∫j) | ∫i, ∫j ∈ S, ∫i ̸= ∫j},
and α ∈ [0, 1] is a user specified parameter to trade off the
aggregate distance against the compactness of the POI set.

Problem Definition. Based on these definitions, we formally
define the group nearest POI set (GNCS) query as follows:

Definition 4: GNCS Query. The GNCS query Q =
⟨U ,Ψ,K,R⟩ aims to find a POI set S in R (if such POI set
exists) such that

S = argS min cost(S),
subject to

Ψ ⊆
∪
∫∈S
∫ .T, (2)

∀ψ∈ΨK.ψ ≤
∑

∫∈S,ψ⊆∫ .T

1, (3)

where U is the group of user-location nodes, Ψ is the set
of required keywords, K.ψ ∈ K is the required number of
POIs for keyword ψ ∈ Ψ, and R is a road network graph.

In order to present the rest of this paper clearly, the
parameter α in the cost function is omitted. However, when
α is enabled, the proposed algorithms remain applicable.

Lemma 2: (Upper and lower bound of POI set size) For
a GNCS query Q = ⟨U ,Ψ,K,R⟩, given a feasible POI set
S, the upper bound of the number of POIs in S is computed
as Ku =

∑
ψ∈ΨK.ψ, and the lower bound is computed as

Kl = maxψ∈ΨK.ψ.
The GNCS query problem is NP-hard and can be reduced

from the problem in [16] by omitting the number of POIs
|S| in the cost function. It can be then further proved by
a reduction from 3-satisfiability (3-SAT) [17]. The proof is
similar to [16] and thus omitted.

III. ALGORITHMS FOR GNCS QUERY

For GNCS query, a brute-force algorithm is to enumerate
all feasible POI sets that satisfy the users’ requirements
(Ψ,K), and then search the POI set with the smallest
cost as the final result. The time complexity of the brute-
force algorithm is O(

∏
ψ∈Ψ

(|Vψ|
K.ψ

)
), where |Vψ| denotes the

number of nodes with keyword ψ ∈ Ψ in R, which leads
to a prohibitive cost in practice. Hence, in this section, we
propose efficient algorithms for answering the GNCS query.
The algorithms are based on two indexes we built in the
Euclidean space and network graph and a set of pruning
rules in the two spaces respectively (please see [22]). First,
we propose an algorithm FFS, which can search a first
feasible POI set efficiently but gives a {4 ·Ku + 3}-factor
approximation. Then, we present an exact algorithm with
optimizations EAO that utilizes pruning based on properties
related to both the distance between the POI set and the user
group and the POI set size.

A. Basic Query Operations

We first present three basic query operations which can
be used as building blocks for our GNCS query.

Operation 1: Pair Distance. Dist(vs, vt,R) computes the
network distance between a pair of nodes vs and vt in
the road network graph R. We adopt A* algorithm [20]
to compute the exact network distance between a pair of
nodes.

Operation 2: Range of Grid Cells. RG(U ,Ψ,△,R) returns
the range of grid cells that should be considered for nodes
covering any keyword in Ψ with network distances to U no
more than △ in R.

Operation 3: Nearest Keyword Nodes. NK(v, ψ, k,R)
returns the top-k nearest nodes to a node v in the road
network graph R containing keyword ψ. The general idea
is to first obtain k nodes containing the keyword as the first
feasible result and then refine the solution by pruning the

search space based on grid distance, Euclidean distance and
network distance sequentially.

Due to space limitation, the details of above basic query
operations are shown in our technical report [22].

B. First Feasible POI Set Search Algorithm

We now propose an efficient first feasible POI set search
algorithm FFS. The idea is to construct a feasible POI set
based on each user in the user group separately and then
select the best set among them. The details are shown in
Algorithm 1. In particular, We first initialize two node sets
SFF and Ŝ, to store the current best POI set and the current
candidate feasible result, and two variable CFF and CŜ to
store the costs of SFF and Ŝ respectively (lines 1-4). The
constructions of the feasible sets are shown in lines 5-13.
For each user node u ∈ U , we first search the nearest node
vn to u with any keyword ψ′ ∈ Ψ, then search other nearest
POI nodes to vn, to construct a feasible POI set (by calling
Operation 3). After that, we can obtain |U| feasible POI sets.
Finally, we take the POI set with the best cost as the first
feasible result. The following example illustrates how this
technique works.

Algorithm 1: FFS(U ,Ψ, k,R)
Input: U,Ψ, k,R.
Output: SFF : the first feasible POI set.

1 SFF ← ∅;
2 CFF ← +∞;
3 Ŝ ← ∅;
4 CŜ ← +∞;
5 for each user-location node u ∈ U do
6 search the nearest node vn with any ψ′ ∈ Ψ to u;
7 search top-{K.ψ′ − 1} nearest node with ψ′ and top-{K.ψ} nearest

node with other keyword ψ ∈ Ψ to vn; // by Calling Operation 3

8 put these POI nodes into Ŝ;
9 CŜ ← cost(Ŝ);

10 if CŜ < CFF then
11 SFF ← Ŝ;
12 CFF ← CŜ ;

13 return SFF ;

Complexity. Since the time complexity of Operation 3 is
O(|Vc|), the time complexity of FFS is O(|U| · |Ψ| · |Vc|).

Theoretical Analysis.
Theorem 1: FFS gives an {4 ·Ku+3}-factor approxima-

tion for the GNCS query.

C. Optimized Exact Algorithm

Since the time complexity of the brute-force algorithm
is prohibitive, we now present an exact algorithm with
optimizations (EAO). We can use the FFS algorithm above
to obtain the first feasible POI set and then prune the
search space. The basic idea is to: 1) find the meeting node
(aggregator node) which determines the distance between the
POI set and the user group, 2) find the diameter nodes which
determine the diameter and the compactness of the POI set,
and 3) find the remaining nodes of the POI set. The pruning
utilizes both the distances between an aggregator node and

the user group, and the size of a POI set. Recall that Ku

and Kl are the upper and lower bound of the POI set size
as defined in Lemma 2.

Algorithm 2: EAO(U , Ψ, K, R)
Input: U , Ψ, K, R.
Output: Sopt: the optimal POI set.

1 Sopt ← FFS(U,Ψ,K,R); // Obtain the current best result by Calling
Algorithm 1

2 Copt ← cost(Sopt);
3 Ŝ ← ∅;
4 CŜ ← +∞;
5 Initialize two grid cell queues Qa and Qr ; // all grid cells in Qa are

sorted in ascending order of their grid distances to U; all grid cells in
Qr are sorted in ascending order of their grid distances to aggregator node
va

6 Initialize a grid cell set Gr ;
7 Qa ← RG(U,Ψ, Copt,R); // Pruned by Lemma 3

8 flaga = 0;
9 while Qa is not empty do

10 select the nearest grid cell ga in Qa;
11 Qa ← Qa − {ga};
12 for each node va ∈ ga with any keyword in Ψ sorted in ascending

order of its Euclidean distance to U do
13 if DistS(va,U) ≥ Copt then // Pruned by Lemma 1 and 4

14 break;
15 else
16 if uDist(va,U) < Copt then // Refined by Lemma 11 and 4

17 flaga ← 1;
18 else
19 if lDist(va,U) ≥ Copt then // Pruned by Lemma 11

and 4
20 continue;
21 else
22 compute Dist(va,U);
23 if Dist(va,U) < Copt then
24 flaga ← 1;

25 if flag == 1 then
26 Ŝ takes va as the aggregator node;
27 Qr ← RG({va},Ψ,

Copt−Dist(U,va)

max(|Ŝ|,Kl)
,R); // Pruned by

Lemma 5
28 for each pair of nodes vr1 and vr2 with rest keyword which

can meet the constraints in Lemma 6 in ascending order of
Dist(vr1 , vr2) in Qr do // Refined/Pruned by Lemma 1, 11,
12 and 6

29 Gr ←∩
v∈{va,vr1 ,vr2} RG(v,Ψ, Dist(vr1 , vr2),R);

// Pruned by Lemma 7
30 if the remaining nodes which cover the rest keyword and

satisfy the constraints in Lemma 8 can be found in Gr
then // Refined/Pruned by Lemma 1, 11, 12 and 8

31 put vr1 , vr2 and remaining nodes into Ŝ;
32 if cost(Ŝ) < cost(Sopt) then
33 Sopt ← Ŝ;
34 Copt ← CŜ ;
35 Qa ← Qa ∩ RG(U,Ψ, Copt,R);

36 Ŝ ← ∅;
37 flaga ← 0;
38 break;

39 Ŝ ← ∅;
40 flaga ← 0;

41 return Sopt;

Aggregator node search. Given a GNCS query Q =
⟨U ,Ψ,K,R⟩, let Sc be a candidate POI set. The lower bound
of cost(Sc) can be determined by the aggregate distance
(which is a part of the cost function). The aggregate distance
can be determined by the node in Sc with the minimal
network distance to U , which we refer to as aggregator node.
Hence, to avoid constructing some unnecessary candidate
POI sets, we can prune the search space for aggregator nodes
using the following rules.

Lemma 3: (Pruning Rule) Given a GNCS query Q =
⟨U ,Ψ,K,R⟩, assume that Sopt is a current best result and

ropt = cost(Sopt). Then, if there exists a feasible POI set
with cost smaller than ropt, the search space for the aggre-
gator node of that POI set is limited to RG(U ,Ψ, ropt,R).

Lemma 4: (Pruning Rule) Given a GNCS query Q =
⟨U ,Ψ,K,R⟩, assume that Sopt is the current best POI set
and ropt = cost(Sopt). Then, if there exists a candidate POI
set whose aggregator node has a larger cost than ropt to U ,
we can prune it immediately.

The above Lemma 3 limits the “most” grid cells we
need to consider during the aggregator node search. Thus,
when we obtain a current best POI set Sopt, we only need
to consider the candidate results whose aggregator node is
inside RG(U ,Ψ, cost(Sopt),R).

Diameter node search. After we have found the aggregator
node va, we can determine the aggregate distance (i.e.,
Dist(U , va)) of the current intermediate result Ŝ. Based on
the cost of the current best result Sopt, if Ŝ has a better cost
than Sopt, it must have a diameter < cost(Sopt)−Dist(U,va)

max(|Ŝ|,Kl)
,

where |Ŝ| is the current number of POIs in Ŝ. It is obvious
that the diameter of a candidate result can be determined
by two nodes which are farthest to each other, which we
refer to as diameter nodes. Based on above observations,
we can prune the search space for the diameter nodes using
the following rules.

Lemma 5: (Pruning Rule) Given a GNCS query Q =
⟨U ,Ψ,K,R⟩, assume Sopt is the current best POI set and
ropt = cost(Sopt). Then, if there exists a better result with
aggregator node va, the largest grid cell space for diameter
nodes search is limited to RG(va,Ψ,

ropt−Dist(U,va)
max(|Ŝ|,Kl)

, R).
Lemma 6: (Pruning Rule) Given a GNCS query Q =

⟨U ,Ψ,K,R⟩, assume that Sopt is the current best POI
set and ropt = cost(Sopt). If there exists a better
POI set Ŝ with aggregator node va, the diameter n-
odes vr1 and vr2 of Ŝ must satisfy three constraints:
(1) Dist(U , vr1) ≥ Dist(U , va) and Dist(U , vr2) ≥
Dist(U , va); (2) Dist(va, vr1) <

ropt−Dist(U,va)
max(|Ŝ|,Kl)

and

Dist(va, vr2) <
ropt−Dist(U,va)

max(|Ŝ|,Kl)
; (3) Dist(vr1 , vr2) <

ropt−Dist(U,va)
max(|Ŝ|,Kl)

.

Remaining node search. After the aggregator node and the
diameter nodes of a possible better POI set have been found,
we can search for the remaining nodes with the required
keyword to construct this result. In the intermediate result,
va is the aggregator node which determines the distance,
vr1 and vr2 are the two diameter nodes which determines
the diameter. Hence the search space for the remaining nodes
can be pruned by the following rules.

Lemma 7: (Pruning Rule) Given a GNCS query Q =
⟨U ,Ψ,K,R⟩, if there exists a better POI set with aggregator
node va and diameter nodes vr1 and vr2 , the grid cell search
space for the remaining nodes of the POI set is limited to∩
v∈{va,vr1 ,vr2}

RG(v,Ψ, Dist(vr1 , vr2), R).

Lemma 8: (Pruning Rule) Given Q = ⟨U ,Ψ,K,R⟩, if
there exists a better POI set S ′ with aggregator node va and
diameter nodes vr1 and vr2 , each node v′ in the remaining
nodes of S ′ must satisfy two constraints: (1) Dist(U , v′) ≥
Dist(U , va); (2)

∧
v∈S′ Dist(v′, v) ≤ Dist(vr1 , vr2).

Due to space limitation, the details of Lemma 11 used for
refining and Lemma 12 used for pruning are shown in our
technical report [22].

The complete algorithm. Based on above pruning rules,
we propose a complete search strategy for the GNCS query
which is shown in Algorithm 2. Due to space limitation,
the details of this search strategy are shown in our technical
report [22].

Complexity. In the worst case, the time complexity of EAO
is as high as that of brute-force algorithm. However, the
pruning based optimization techniques (such as Lemma 4
and Lemma 6) adopted in EAO can significantly prune the
search space.

Correctness.
Theorem 2: EAO returns a feasible POI set with the

smallest cost for the GNCS query.

IV. EXPERIMENTAL STUDY

In this section, we present a comprehensive experimental
evaluation. First, we introduce the dataset and experiment
settings. Then, we present the results evaluating the effi-
ciency and accuracy of proposed algorithms.

 0

 50

 100

 150

 200

 250

5 10 15 20 25

R
u

n
ti
m

e
(m

s
)

Ku

FFS
EAO
EX

(a) Flickr

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

5 10 15 20 25

R
u

n
ti
m

e
(m

s
)

Ku

FFS
EAO
EX

(b) Florida
Figure 1: Runtime (total number of required keywords Ku)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

5 10 15 20 25

R
u

n
ti
m

e
(m

s
)

|U|

FFS
EAO
EX

(a) Flickr

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

5 10 15 20 25

R
u

n
ti
m

e
(m

s
)

|U|

FFS
EAO
EX

(b) Florida

Figure 2: Runtime (the number of user-location nodes |U|)

A. Experimental Settings

Datasets. We use two datasets, Flickr generated from Flickr6

and Florida generated from the Florida road network7 fol-

6https://www.flickr.com/
7http://www.dis.uniroma1.it/challenge9/download.shtml

lowing the work [1]. Due to space limitation, the details of
above two datasets are shown in our technical report [22].

Queries. For the GNCS query Q = ⟨U ,Ψ,K,R⟩ used in our
experimental study, the user-location nodes U are randomly
selected in the road network R. To evaluate the impact of
each parameter, we vary the number of users in the user
group |U | (5, 10, 15, 20 and 25, default 16), the diameter
of the user group Diameter(U) in kilometers (10, 20, 30,
40, 50 with default 25 for Flicker dataset; and 20, 40, 60,
80, 100 with default 50 for Florida dataset), and the total
number of required keywords Ku (5, 10, 12, 15, 20 and 25,
default 12).

 0

 50

 100

 150

 200

 250

10 20 30 40 50

R
u

n
ti
m

e
(m

s
)

Diameter(U) (kilometers)

FFS
EAO
EX

(a) Flickr

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

20 40 60 80 100

R
u

n
ti
m

e
(m

s
)

Diameter(U) (kilometers)

FFS
EAO
EX

(b) Florida

Figure 3: Runtime (the Diameter of user-location nodes)

Algorithms. We study the performance of our proposed
algorithms: the first feasible POI set search algorithm FFS
(Algorithm 1) and the exact algorithm EAO (Algorithm 2).
To make a comparison, we simply revise the exact algorithm
EXA in [16] based on our cost function and employ our
three basic query operations, and we refer to it as EX.
All algorithms were implemented in C and run on Intel(R)
Core(TM) i7-6700K CPU@ 4.00GHz with 64 GB RAM.
The parameter α in the cost function is set as 0.5.

B. Experimental Results

 1

 2

 3

 4

 5

 6

 7

 8

5 10 15 20 25

A
p

p
ro

x
im

a
ti
o

n
 R

a
ti
o

Ku

FFS

Figure 4: Appro. Ratio (Ku)

 1

 2

 3

 4

 5

 6

 7

 8

5 10 15 20 25

A
p

p
ro

x
im

a
ti
o

n
 R

a
ti
o

|U|

FFS

Figure 5: Appro. Ratio |U|)

 1

 2

 3

 4

 5

 6

 7

 8

20 40 60 80 100

A
p

p
ro

x
im

a
ti
o

n
 R

a
ti
o

Diameter(U) (kilometers)

FFS

Figure 6: Appro. Ratio (Diameter(U))

1) Efficiency and Impact of Query Parameters: We now
evaluate the efficiency of the proposed algorithms with
different query parameters including: 1) the number of
user-location nodes |U|, 2) the total number of required

keywords Ku, and 3) the diameter of user-location nodes
Diameter(U). The average runtime over five runs is re-
ported on Flickr and Florida datasets respectively.

From Figure 1, 2, 3, we observe that our proposed
algorithms scale well with these three input parameters. We
also observe that the exact algorithm EAO achieves fairly
good efficiency thanks to the pruning/refining techniques.

2) Approximation Ratio of the First Feasible POI Set
Search Algorithm: In this set of experiments, we report
the average approximation ratio of the FFS algorithm over
the query sets compared to the exact algorithm EAO. The
Florida dataset is employed for the evaluation.

From Figure 4, 5 and 6, we observe that the approximation
ratio of FFS scales well with all the parameters.

V. RELATED WORK

Keyword search on spatial database has been intensively
studied in recent years. Table I shows a categorization of
the main related work. Specifically, top-k nearest keyword
search has been studied based on DIR-tree [5], IR2-tree [7]
and W-IR-Tree [18] respectively, which focuses on single
object query for single user. The collective spatial keyword
query problem has been solved well by [3], [12] and [2],
which focuses on an object set query for single user.

As the Euclidean distance can be an inaccurate approx-
imation of the road network distance, keyword search on
graphs or networks has drawn increasing interest. Specifical-
ly, top-k nearest keyword queries have been studied based on
bi-level index structure [8], distance oracle and shortest-path
tree [15], and FS and FBS [10], which focus on single object
query for single user. The length-constrained maximum-sum
region query [4] and popularity-aware collective keyword
query [21] have been studied well, which focus on an object
set query for single user. In summary, these works are not
directly applicable to our problem due to the consideration
of a single or no query user.

Existing works also considered user group in spatial
keyword queries. The group nearest neighbor queries which
focus on single object for a user group has been solved
well based on the cost function of SUM-distance [13] [14]
[19] and MAXIMUM-distance [11] respectively. Group trip
planning queries focus on a route query for a user group
[9] [23] and aim to schedule optimal routes for a group
of users based on their requirements. Most relevant to our
work are those that also aim to find a POI set for a user
group [6] [16]. The main difference is that GNCS queries
emphasize the compactness of the POI set. Our search
strategies specifically exploited the bound on POI set size
(such as Lemma 2, 5, and 6) in addition to pruning strategies
in both Euclidean and road network space to answer GNCS
query efficiently.

VI. CONCLUSIONS

In this paper, we studied the problem of group nearest
compact POI set query (GNCS). We showed this problem
is NP-hard and presented efficient algorithms to solve this
problem. Extensive experimental results on two real datasets
demonstrated the efficiency and accuracy of the proposed
algorithms. In our future work, we plan to propose enhanced
approxmiation algorithms for better accuracy and efficiency
tradeoff.

REFERENCES
[1] X. Cao, L. Chen, G. Cong, and X. Xiao. Keyword-aware

optimal route search. PVLDB, 5(11):1136–1147, 2012.
[2] X. Cao, G. Cong, T. Guo, C. S. Jensen, and B. C. Ooi.

Efficient processing of spatial group keyword queries. ACM
Trans. Database Syst., 40(2):13, 2015.

[3] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective
spatial keyword querying. In SIGMOD, pages 373–384, 2011.

[4] X. Cao, G. Cong, C. S. Jensen, and M. L. Yiu. Retrieving
regions of interest for user exploration. PVLDB, 7(9):733–
744, 2014.

[5] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the
top-k most relevant spatial web objects. PVLDB, 2(1):337–
348, 2009.

[6] K. Deng, S. W. Sadiq, X. Zhou, H. Xu, G. P. C. Fung, and
Y. Lu. On group nearest group query processing. IEEE Trans.
Knowl. Data Eng., 24(2):295–308, 2012.

[7] I. D. Felipe, V. Hristidis, and N. Rishe. Keyword search on
spatial databases. In ICDE, pages 656–665, 2008.

[8] H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: ranked
keyword searches on graphs. In SIGMOD, pages 305–316,
2007.

[9] R. Jahan, T. Hashem, and S. Barua. Group trip scheduling
(GTS) queries in spatial databases. In EDBT, pages 390–401,
2017.

[10] M. Jiang, A. W. Fu, and R. C. Wong. Exact top-k nearest
keyword search in large networks. In SIGMOD, pages 393–
404, 2015.

[11] F. Li, B. Yao, and P. Kumar. Group enclosing queries. IEEE
Trans. Knowl. Data Eng., 23(10):1526–1540, 2011.

[12] C. Long, R. C. Wong, K. Wang, and A. W. Fu. Collective
spatial keyword queries: a distance owner-driven approach.
In SIGMOD, pages 689–700, 2013.

[13] D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis. Group
nearest neighbor queries. In ICDE, pages 301–312, 2004.

[14] D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui. Aggregate
nearest neighbor queries in spatial databases. ACM Trans.
Database Syst., 30(2):529–576, 2005.

[15] M. Qiao, L. Qin, H. Cheng, J. X. Yu, and W. Tian. Top-k
nearest keyword search on large graphs. PVLDB, 6(10):901–
912, 2013.

[16] S. Su, S. Zhao, X. Cheng, R. Bi, X. Cao, and J. Wang. Group-
based collective keyword querying in road networks. Inf.
Process. Lett., 118:83–90, 2017.

[17] C. A. Tovey. A simplified np-complete satisfiability problem.
Discrete Applied Mathematics, 8(1):85–89, 1984.

[18] D. Wu, M. L. Yiu, G. Cong, and C. S. Jensen. Joint top-k
spatial keyword query processing. IEEE Trans. Knowl. Data
Eng., 24(10):1889–1903, 2012.

[19] M. L. Yiu, N. Mamoulis, and D. Papadias. Aggregate nearest
neighbor queries in road networks. IEEE Trans. Knowl. Data
Eng., 17(6):820–833, 2005.

[20] W. Zeng and R. L. Church. Finding shortest paths on real
road networks: the case for A. International Journal of
Geographical Information Science, 23(4):531–543, 2009.

[21] S. Zhao, X. Cheng, S. Su, and K. Shuang. Popularity-aware
collective keyword queries in road networks. GeoInformatica,
21(3):485–518, 2017.

[22] S. Zhao and L. xiong. Technical report. http://www.mathcs.
emory.edu/aims/pub/gncs18.pdf.

[23] S. Zhao, L. Zhao, S. Su, X. Cheng, and L. Xiong. Group-
based keyword-aware route querying in road networks. Inf.
Sci., 450:343–360, 2018.

