
Technical Report

TR-2007-002

Block preconditioning for saddle point systems with indefinite (1,1) block

by

Michele Benzi, Jia Liu

Mathematics and Computer Science

EMORY UNIVERSITY



International Journal of Computer Mathematics

Vol. 00, No. 05, May 2007, 1–16

Block preconditioning for saddle point systems

with indefinite (1, 1) block

MICHELE BENZI∗† AND JIA LIU‡

†Department of Mathematics and Computer Science,

Emory University, Atlanta, GA 30322, USA

‡Department of Mathematics and Statistics,

University of West Florida, Pensacola, FL 32514, USA
(Received 00 Month 200x; In final form 00 Month 200x)

We investigate the solution of linear systems of saddle point type with an indefinite (1, 1) block
by preconditioned iterative methods. Our main focus is on block matrices arising from eigenvalue
problems in incompressible fluid dynamics. A block triangular preconditioner based on an augmented
Lagrangian formulation is shown to result in fast convergence of the GMRES iteration for a wide
range of problem and algorithm parameters. Some theoretical estimates for the eigenvalues of the
preconditioned matrices are given. Inexact variants of the preconditioner are also considered.

1 Introduction

In this paper we begin a study of preconditioning techniques for generalized
saddle point systems of the form

(

A − βM BT

B O

) (

x

y

)

=

(

c

d

)

, or Ax = b , (1)

where A,M ∈ R
n×n and B ∈ R

m×n with m ≤ n and β ∈ R. We make the
following assumptions on A, M , B and A:

• A is positive real; that is, the matrix H = 1
2(A + AT ), the symmetric part

of A, is positive definite.

• M is symmetric positive definite (it can be thought of as a mass matrix, or
in same cases as the n × n identity matrix).

• B has full row rank.
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• A − βM is indefinite, in the sense that it has eigenvalues on either side of
the imaginary axis (this implies β > 0 and “sufficiently large”).

• A − βM and A are both invertible.

We note that the matrix A may itself be symmetric in some applications.
However, in this paper we do not assume A = AT . Linear systems of the type
(1) will be referred to as (generalized) “saddle point systems with indefinite
(1, 1) block.” Such linear systems arise in various areas of scientific computing,
including the solution of eigenvalue problems in fluid mechanics [8,13] and elec-
tromagnetics [2] by shift-and-invert algorithms, and in certain time-harmonic
wave propagation problems [12,15]. We emphasize that while numerous effec-
tive solution algorithms exist for the case of a positive definite or semidefinite
(1, 1) block (corresponding to either β ≤ 0 or β > 0 but smaller than the
real part of the eigenvalue of A of smallest magnitude), see [3, 7, 9], relatively
little has been done for the case where the (1, 1) block is indefinite. Generally
speaking, this is a rather challenging problem, which gets harder as the matrix
A − βM becomes more indefinite.

It should be noted that for linear systems arising in the solution of the
generalized eigenvalue problem

(

A BT

B O

) (

x

y

)

= λ

(

M O

O O

) (

x

y

)

, (2)

the parameter β in (1) approximates a generalized eigenvalue λ (that is, β ≈

λ), making the coefficient matrix A close to singular and therefore highly ill-
conditioned. In most cases β will be an approximation to an eigenvalue of A
close to the imaginary axis (in other words, to one of the eigenvalues of A

with smaller real part), making the (1, 1) block only mildly indefinite. When β

approximates eigenvalues of A that are closer to the middle of the spectrum,
however, the (1, 1) block becomes more indefinite and problem (1) becomes
harder to solve.

In this paper we experiment with a block triangular preconditioner based
on an augmented Lagrangian formulation of (1), focusing on matrices arising
from the discretization of incompressible fluid flow problems. Our experiments
show that the preconditioner results in fast convergence of the preconditioned
GMRES method for a wide range of problem parameters including the vis-
cosity, the mesh size, and the value of the shift β. As the exact application
of the preconditioner can be expensive we also experiment with the inexact
case, in which the preconditioner solves are performed iteratively and termi-
nated when some prescribed accuracy is reached. Our tests indicate that for
most cases no significant degradation of the rate of convergence results from
the inexact application of the preconditioner, and that the robustness with
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respect to problem parameters is generally preserved. The question of how to
approximately apply the preconditioning operator in an efficient and robust
manner, however, remains open and necessitates further study.

The remainder of the paper is organized as follows. In section 2 we introduce
the augmented Lagrangian formulation and the corresponding block triangular
preconditioner. In section 3 we provide some theoretical analysis of the exact
variant of the preconditioner. Numerical experiments (for both the exact and
inexact form of the preconditioner) are presented in section 4, and conclusions
are given in section 5.

2 The augmented Lagrangian preconditioner

Let us define Aβ := A − βM . The original linear system (1) is equivalent to
the following augmented Lagrangian formulation [11]:

(

Aβ + γBT B BT

−B O

) (

x

y

)

=

(

c + γBT d

−d

)

, or Aγx = bγ , (3)

where γ is a positive scalar. The minus sign that now appears in the second
block row is not essential, but it will be used henceforth. Note that for β ≤ 0
or β > 0 and sufficiently small, the spectrum of the coefficient matrix of (3)
is entirely contained in the right half-plane; see, e.g., [3, 6].

For the case β = 0, it was shown in [5] that a block triangular preconditioner
of the type

Pγ =

(

Aβ + γBT B BT

O 1
γ
I

)

(4)

(with Aβ = A0 = A) results in very fast convergence of preconditioned Krylov
iterations applied to linear systems of the form (3) arising from stable finite
element discretizations of the Oseen problem (linearized Navier–Stokes equa-
tions). The preconditioner was shown to be very robust with respect to both
the mesh size h and the viscosity ν. Moreover, the quality of the preconditioner
was not significantly affected when linear solves with the (1, 1) block of (4)
were performed inexactly via a single W-cycle of a specially developed multi-
grid method. It was also shown in [5] that γ ≈ 1 gave sufficiently good results in
many cases, although in a few situations the best overall results were obtained
using smaller values of γ (up to about γ ≈ 0.02). We note that in the Oseen
problem, the matrix A is nonsymmetric. Similar ideas have been independently
investigated by other researchers in order to develop block preconditioners for
symmetric problems in other application areas; see, e.g., [12,15].
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In this paper, we study the performance of a similar augmented block tri-
angular preconditioner on the indefinite system (3) for nonzero values of β.
The case β < 0 arises in the solution of unsteady problems: in this case the
block triangular preconditioner performs extremely well, even when applied
inexactly. Since this is a relatively easy case, here we focus instead on the
more challenging case where β > 0, and sufficiently large so as to make Aβ

indefinite.
It follows from the identity

P−1
γ =

(

(Aβ + γBT B)−1 O

O Im

) (

In BT

O −Im

) (

In O

O −γIm

)

(5)

that the action of the preconditioner on a given vector requires one application
of (Aβ +γBT B)−1 and one sparse matrix-vector product with BT . Clearly, the
main issue is how to solve linear systems with coefficient matrix Aβ + γBT B.
For large problems these have to be solved by an inner iterative method. Even
though the inner solves need not be performed to high accuracy, developing a
robust and efficient iterative method for such problems is a non-trivial task.
Note that in the case of incompressible flow problems (discretized Stokes and
Oseen equations), the introduction of the additional term γBT B in the (1, 1)
block of the saddle point matrix results in a coupling between the compo-
nents of the velocity vector. For the definite case β = 0, an effective multigrid
methods has been developed in [5]. The applicability of such method in the
indefinite case β > 0 is questionable, unless β is sufficiently small. We will
further discuss the issue of inexact solves in the section on numerical experi-
ments.

To conclude this section, note that the augmented Lagrangian formulation
(3) with γ taken sufficiently large makes the (1, 1) block Aβ + γBT B less
asymmetric and indefinite; indeed, in the limit as γ → ∞ the symmetric
positive semidefinite contribution γBT B will dominate the (1, 1) block. We
will also show in the next section that convergence of preconditioned Krylov
iterations can be expected to be fast for large values of γ, since in this case
all the eigenvalues of the preconditioned matrix AγP

−1
γ are tightly clustered

around 1. On the other hand, a very large value of γ is likely to make the
block Aβ + γBT B very ill-conditioned and therefore difficult to invert; see the
discussion in [11, Remark 2.4]. Hence, the choice of the algorithmic parameter
γ involves a trade-off.
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3 Spectral properties of the preconditioned matrices

Characterizing the rate of convergence of nonsymmetric preconditioned itera-
tions can be a difficult task. In particular, eigenvalue information alone may
not be sufficient to give meaningful estimates of the convergence rate of a
method like preconditioned GMRES. The situation is even more complicated
for a method like BiCGStab, for which virtually no convergence theory ex-
ists. Nevertheless, experience shows that for many linear systems arising in
practice, a well-clustered spectrum (away from zero) usually results in rapid
convergence of the preconditioned iteration.

Here we develop some estimates for the eigenvalues of the preconditioned
matrix AγP

−1
γ , assuming exact solves for the (1, 1) block. We show that for

this “ideal” version of the preconditioner, under some fairly mild assumptions
the eigenvalues of the preconditioned matrix become tightly clustered around
1 as γ → ∞. Our analysis makes use of the following simple Lemma, which is
a straightforward consequence of [10, Exercise 12.12]; see also [5, 14].

Lemma 3.1 Let the matrices BA−1
β BT and B(Aβ + γBT B)−1BT be well-

defined and invertible. Then

[

B(Aβ + γBT B)−1BT
]−1

=
(

BA−1
β BT

)

−1
+ γIm . (6)

It is worth noting that because the matrix Aβ is not in general positive
real, the invertibility of the various Schur complements must be assumed. In
practical computations, however, the invertibility of the relevant matrices was
never an issue.

A straightforward calculation shows that

Aγ P
−1
γ =

(

In O

−B(Aβ + γBT B)−1 γSγ

)

, (7)

where Sγ = B(Aβ + γBT B)−1BT . Hence, the preconditioned matrix has the
eigenvalue 1 of multiplicity n and, by Lemma 3.1, the remaining m eigenvalues
λi (1 ≤ i ≤ m) are of the form λi = γ

µ−1

i +γ
where µi ∈ C is the ith eigenvalue

of BA−1
β BT . Since the µi’s are independent of γ, it follows that the non-unit

eigenvalues of AγP
−1
γ tend to 1 for γ → ∞. Notice that this requires that

γ 6= −µi, for 1 ≤ i ≤ m, however, this condition is automatically satisfied
under the assumptions of Lemma 3.1. Thus, we have the following result.

Proposition 3.2 Under the assumptions of Lemma 3.1 the spectrum of the

preconditioned matrix AγP
−1
γ consists of the eigenvalue 1 with multiplicity n,

with the remaining m eigenvalues satisfying λi(γ) → 1 for γ → ∞. Therefore,
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the spectrum of AγP
−1
γ is tightly clustered around 1 for large values of γ.

In practice, as already mentioned, it is desirable to use only moderately large
values of γ. From the expression λi = γ

µ−1

i +γ
we see that if an eigenvalue µi of

BA−1
β BT is large in absolute value, the corresponding eigenvalue λi of AγP

−1
γ

is close to 1 even for small values of γ; on the other hand, if µi ≈ 0 then γ

must be taken large in order to have λi ≈ 1. Thus, it would be useful to have
some idea of when the matrix BA−1

β BT is likely to have small eigenvalues.
Some insight for the case of the Stokes problem, corresponding to ν = 1

and w = 0 in equation (9) below, can be gained as follows. For a stable
discretization of a 2D problem we can write

A =

(

L O

O L

)

and B =
(

B1 B2

)

where L is a discrete (scalar) Laplacian, B1 represents discretization of ∂x, and
B2 represents discretization of ∂y. If we assume that L, B1 and B2 are pairwise
commuting matrices and that L = B1B

T
1 + B2B

T
2 we have, for M = I:

B(A − βI)−1BT = B1(L − βI)−1BT
1 + B2(L − βI)−1BT

2 = L(L − βI)−1.

Therefore, the eigenvalues of BA−1
β BT = B(A − βI)−1BT are given by µi =

ζi

ζi−β
where the ζi’s are the eigenvalues of the discrete negative Laplacian.

It is easy to see that the smallest value (in magnitude) is achieved for ζi =
ζmin, since by hypothesis β > ζmin. For the Dirichlet Laplacian on the unit
square, the smallest eigenvalue is given by ζmin ≈ 2π2 ≈ 19.74. This yields the
expression

λ =
γ

2π2
−β

2π2 + γ
. (8)

For instance, plugging β = 300 and γ = 100 in (8) yields the value λ ≈ 1.17.
Hence, taking γ = 100 results in the entire spectrum of the preconditioned
matrix AγP

−1
γ being clustered near 1.

The foregoing argument is of course not entirely rigorous, since in practice
the discrete operators A, B1 and B2 do not commute except in very special
situations; see the discussion in [9, Section 8.2]. Nevertheless, the results of
our numerical experiments in the following section suggest that the argument
is not completely without heuristic value.
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4 Numerical experiments

In this section we present the results of numerical tests using the augmented
Lagrangian-based block triangular preconditioner. The block matrices used for
the experiments arise from discretizations of incompressible fluid flow prob-
lems using the Marker-and-Cell (MAC) scheme. Both exact and inexact pre-
conditioner solves are considered, using GMRES [19] and FGMRES [18] as
the respective accelerators. Similar results have been observed using different
(LBB-stable) discretizations and Krylov subspace solvers.

The matrices arise from consideration of the following model problem. Let
Ω ⊂ R

d (d = 2, 3) be a bounded domain with a Lipschitz boundary ∂Ω. We
consider the steady Oseen-type problem

−ν∆u + w × u + ∇p = f in Ω (9)

divu = 0 in Ω (10)

u = g on ∂Ω (11)

arising from Picard linearization of the rotation form of the steady-state
Navier–Stokes equations. Here u represents the velocity field, p the Bernoulli
pressure, ν > 0 the kinematic viscosity coefficient, f an external force field, and
w a known coefficient computed from the curl of the velocity field obtained
from the previous Picard iteration; see, e.g., [4,17] and the references therein.
For w = 0 we have as a special case the Stokes problem. In this case we can
rescale p and f and let ν = 1. For the Oseen problem this rescaling is not
useful, and the viscosity parameter ν controls the difficulty of the problem:
the smaller ν, the harder the problem.

Discretization of problem (9)-(11) by MAC or any LBB-stable finite element
method leads to the solution of linear systems in saddle point form; see, e.g.,
[3, 5, 9, 11, 13, 16]. The diagonal blocks of the n × n matrix A consist of d

discrete Laplace operators. These blocks are coupled through the components
of the vector field w; for the Stokes problem, w = 0 and the diagonal blocks
are uncoupled. The m× n matrix B represents a discrete divergence operator
and its transpose, BT , the discrete (negative) gradient. We note that usually
B has rank m − 1 since the kernel of BT contains the constant vectors. This
makes the saddle point system singular; while it is possible to remove this
singularity by including an additional condition on the pressure, in practice
the (simple) eigenvalue λ = 0 does not cause any problem to the convergence of
preconditioned Krylov methods and there is no need for additional conditions;
see [9, Section 2.3].

Investigation of the stability of steady flows, on the other hand, leads to gen-
eralized eigenproblems of the form (2), where M is the velocity mass matrix;
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see, e.g., [8, 13]. Solution of (2) by shift-and-invert methods, in turn, requires
the repeated solution of linear systems of the form (1) for several different
values of β and different right-hand sides. Here we experiment with linear sys-
tems of such type. Equations (9)-(11) are discretized with MAC on a uniform
grid. We use the augmented Lagrangian formulation (3) together with the
preconditioner Pγ given by (4). The use of MAC as the discretization scheme
leads to M = In in (1) for a suitable scaling of the discrete equations. Both
symmetric (Stokes-type) and nonsymmetric (Oseen-type) problems are con-
sidered. In all cases we impose homogeneous Dirichlet boundary conditions on
the velocity (g = 0 in (11)). For the Oseen-type problem (in dimension d = 2)
we use the coefficient w = (8x(x− 1)(1− 2y), 8(2x− 1)y(y− 1)). Experiments
with different wind functions and with 3D problems resulted in very similar
conclusions to those reported here.

We first study the effectiveness of the preconditioner with “exact” solves: i.e.,
linear systems with coefficient matrix Aβ +γBT B are solved by a direct sparse
LU factorization in combination with appropriate sparsity-preserving order-
ings. We also investigate the effect of inexact preconditioner solves, obtained
by an inner preconditioned Krylov iteration carried out to some prescribed
accuracy. As the Krylov method of choice we use GMRES for the exact case,
and FGMRES for the inexact case. For the inner iterations we use again GM-
RES preconditioned by incomplete LU factorizations. For the initial guess we
always start from the zero vector. The (outer) iteration is stopped when the
2-norm of the initial residual has been reduced by at least six orders of mag-
nitude. All results were computed in Matlab 7.1.0 on one processor of an
AMD Opteron with 32 GB of memory.

4.1 Exact solves

In the first set of experiments with the block triangular preconditioner (4) we
generate linear systems corresponding to MAC discretizations of the Stokes
problem on grids of different sizes. Our aim is to assess the dependence of the
preconditioner Pγ on the mesh size h, for different values of γ. The experiments
are repeated for different values of β. In the case of the Stokes problem on the
unit square Ω = [0, 1]× [0, 1], the smallest eigenvalue of A is λmin(A) ≈ 2π2 ≈

19.74 and the largest one is λmax(A) ≈ 8h−2. Therefore, β must be taken
between these two values for the (1, 1) block of (1) to be indefinite.

Iteration counts (in terms of matrix-vector products) for full GMRES are
given in Tables 1-3. The first conclusion to be drawn from this tables is that
for the Stokes-type problem, the rate of convergence of the preconditioned
iteration is, for fixed γ and β, independent of the mesh size h. Furthermore,
the rate of convergence rapidly improves as γ goes from small to large (for
β fixed), and tends to slowly deteriorate as β increases (for γ large). These
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Table 1. Iteration counts of preconditioned GMRES for the 2D Stokes problem, β = 100, exact solves.

grid γ = 100 γ = 10 γ = 2 γ = 1 γ = 0.2 γ = 0.1
16 × 16 3 6 12 14 22 23
32 × 32 3 6 12 15 23 24
64 × 64 3 6 13 15 24 25

128 × 128 3 6 13 15 25 26

Table 2. Iteration counts of preconditioned GMRES for the 2D Stokes problem, β = 300, exact solves.

grid γ = 100 γ = 10 γ = 2 γ = 1 γ = 0.2 γ = 0.1
16 × 16 4 12 25 32 51 55
32 × 32 4 10 23 31 48 52
64 × 64 4 11 23 33 49 53

128 × 128 4 11 23 33 50 53

Table 3. Iteration counts of preconditioned GMRES for the 2D Stokes problem, β = 1000, exact solves.

grid γ = 100 γ = 10 γ = 2 γ = 1 γ = 0.2 γ = 0.1
16 × 16 8 26 69 100 182 199
32 × 32 6 21 59 88 142 154
64 × 64 6 23 60 84 138 149

128 × 128 6 24 60 82 135 141

results are not surprising in view of the theoretical analysis in section 3.
Next, we fix γ = 100 and vary the mesh size and the parameter β, using

values between 20 and 300. The underlying problem is again a Stokes-type
problem on the unit square. We note that the matrix Aβ = A − βIn corre-
sponding to the 32×32 grid (for which n = 1984) has two negative eigenvalues
for β = 20, six for β = 50, twelve for β = 100, and thirty-eight for β = 300.
For these test runs we also provide some CPU timings. Results are shown in
Table 4 for meshes up to size 256 × 256. The total number of unknowns for
the finest grid is n + m = 196, 096. We report the number of GMRES iter-
ations (under ‘Its’), the time for the sparse LU factorization of Aβ + γBT B

(under ‘Time LU’), the time for the iterative solve phase (under ‘Time its’),
and the total time. Prior to factorization, an approximate minimum degree
ordering [1] was applied: the time to compute the permutation is negligible
compared to overall solution time. Because we are using a direct solver, the
time scales superlinearly in the problem size; note that at each refinement of
the mesh the number of unknowns grows by a factor of four.

In Table 5 we present a few results on a 3D Stokes-like problem on the unit
cube Ω = [0, 1] × [0, 1] × [0, 1]. Note that halving the mesh size now increases
the total number of unknowns by a factor of eight.
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Table 4. Iterations and CPU times for preconditioned GMRES; 2D Stokes problem, γ = 100, exact solves.

grid β Its Time LU Time its Total time
16 × 16 20 3 0.01 0.01 0.01

50 3 0.01 0.01 0.01
100 3 0.01 0.01 0.01
300 4 0.01 0.01 0.02

32 × 32 20 3 0.05 0.01 0.06
50 3 0.04 0.03 0.07
100 3 0.04 0.04 0.08
300 4 0.04 0.04 0.08

64 × 64 20 3 0.34 0.09 0.43
50 3 0.33 0.09 0.42
100 3 0.35 0.17 0.52
300 4 0.33 0.25 0.58

128 × 128 20 3 2.68 0.47 3.15
50 3 2.68 0.46 3.14
100 3 2.67 0.89 3.56
300 5 2.80 1.56 4.36

256 × 256 20 3 22.23 2.12 24.35
50 3 22.59 2.12 24.71
100 3 22.57 4.56 27.13
300 5 22.66 7.75 30.41

Table 5. Iterations and CPU times for preconditioned GMRES; 3D Stokes problem, γ = 100, exact solves.

grid β Its Time LU Time its Total time
8 × 8 20 3 0.05 0.08 0.13

50 4 0.03 0.21 0.24
100 4 0.03 0.20 0.23
300 7 0.12 0.32 0.44

16 × 16 20 3 0.59 1.06 1.65
50 4 0.59 2.85 3.44
100 4 0.60 2.79 3.39
300 6 7.00 3.83 10.83

32 × 32 20 3 15.01 20.75 35.76
50 4 15.88 45.12 61.00
100 4 15.02 44.95 59.97
300 6 16.78 59.91 76.69

The next set of experiments is concerned with nonsymmetric (Oseen-type)
problems on the unit square. Now we have an additional parameter, namely,



Block preconditioning for indefinite saddle point systems 11

−100 −50 0 50 100 150
−8

−6

−4

−2

0

2

4

6

8

−0.5 0 0.5 1 1.5 2 2.5

x 10
5

−6

−4

−2

0

2

4

6

(a) Indefinite system. (b) Augmented Lagrangian system.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−8

−6

−4

−2

0

2

4

6

8
x 10

−14

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−8

−6

−4

−2

0

2

4

6

8
x 10

−4

(c) Case β = 20. (d) Case β = 100.

Figure 1. Eigenvalue distribution for the 2D Oseen-type problem with ν = 10−2.

the viscosity ν. We found again that γ = 100 results in fast convergence of
the preconditioned iteration, therefore we use this value for all the remaining
experiments. Results for a sequence of grids (from 8 × 8 to 256 × 256) with
values of ν ranging from 10−1 down to 10−6 show that the number of GMRES
iterations is independent of both h and the viscosity ν. The rate of convergence
is also independent of the parameter β, at least for values of β between 20 and
300. Similar results were obtained on 3D problems. Hence, the exact version
of the preconditioner Pγ with γ = 100 is extremely robust with respect to
all characteristic problem parameters. Figs. 1(a)-(b) display the eigenvalues
of the systems (1) and (3), respectively, for the discrete Oseen-type operator
on the unit square on a 16 × 16 grid, for ν = 10−2 and β = 100. Note the
different scaling of the horizontal axis in the two figures. Fig. 1(c) displays the
eigenvalues of the preconditioned matrix when β = 20, γ = 100 and Fig. 1(d)
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Table 6. Iterations and CPU times for preconditioned GMRES; 2D Oseen problem, γ = 100, exact solves.

grid ν β Its Time LU Time its Total time
64 × 64 10−1 20 3 1.12 0.47 1.59

10−2 20 3 1.14 0.73 1.87
10−3 20 3 1.43 0.90 2.33

64 × 64 10−1 50 4 1.15 0.68 1.83
10−2 50 3 1.18 0.79 1.97
10−3 50 3 1.42 0.83 2.25

64 × 64 10−1 100 4 1.16 0.79 1.95
10−2 100 4 1.29 1.08 2.37
10−3 100 4 1.38 1.06 2.44

64 × 64 10−1 300 5 1.17 1.10 2.27
10−2 300 4 1.40 1.09 2.49
10−3 300 4 1.30 1.07 2.37

128 × 128 10−1 20 3 15.36 3.41 18.77
10−2 20 3 15.49 5.15 20.64
10−3 20 3 16.48 6.66 23.14

128 × 128 10−1 50 4 15.33 4.81 20.14
10−2 50 3 15.51 5.90 21.41
10−3 50 3 19.71 7.41 27.12

128 × 128 10−1 100 4 15.34 5.55 20.89
10−2 100 4 15.57 7.69 23.26
10−3 100 4 20.36 9.17 29.53

128 × 128 10−1 300 4 15.49 7.00 22.49
10−2 300 4 18.68 8.98 27.66
10−3 300 4 18.58 8.47 27.05

256 × 256 10−1 20 3 244.35 27.20 271.55
10−2 20 3 243.87 36.64 280.51
10−3 20 3 246.02 50.11 296.13

256 × 256 10−1 50 4 243.93 37.56 281.49
10−2 50 3 244.11 44.87 288.98
10−3 50 3 249.78 52.68 302.46

256 × 256 10−1 100 4 244.15 41.31 285.46
10−2 100 4 244.62 60.13 304.75
10−3 100 4 267.94 71.58 339.52

256 × 256 10−1 300 4 244.08 50.82 294.90
10−2 300 4 245.96 63.00 308.96
10−3 300 4 312.89 78.45 391.34
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Table 7. Iteration count for preconditioned FGMRES, Stokes problem, γ = 100, inexact solves, τ = 10−5.

grid 8 × 8 16 × 16 32 × 32 64 × 64
β outer/inner outer/inner outer/inner outer/inner
20 4/4 5/5 5/16 15/109
50 5/6 6/10 8/22 19/152
100 4/4 5/7 6/26 15/128
300 4/4 8/10 8/19 16/183

displays the eigenvalues of the preconditioned system when β = γ = 100. Both
spectra are tightly clustered around 1.

Computational results, including timings, are shown in Table 6 for the three
finest grids and three values of ν. In these experiments, the (nonsymmetric)
matrix Aβ + γBT B was reordered with a reverse Cuthill–McKee ordering, as
the approximate minimum degree ordering occasionally resulted in very high
fill-in in the LU factors. As it can be seen, the cost of the LU factorization
dominates the total solution time.

4.2 Inexact solves

In practice, using exact solves in the application of the preconditioner may
be too expensive, especially for three-dimensional problems. Here we consider
replacing the exact solves with inexact ones, obtained via an inner precondi-
tioned GMRES iteration. In this paper we explore the use of drop tolerance-
based incomplete LU as the preconditioner for the inner iteration. Since the
inner solves are based on a non-stationary method, we use flexible GMRES
(FGMRES) for the outer iteration.

In the first set of experiments we consider the 2D Stokes-type problem.
As before, we take γ = 100. The matrix Aβ + γBT B is reordered with the
approximate minimum degree algorithm. We compute an incomplete LU fac-
torization with a fixed value τ = 10−5 for the drop tolerance, and we stop
the inner GMRES iteration when the corresponding (relative) residual norm
has been reduced below tol = 10−2, the residual norm tolerance for the outer
FGMRES iteration being kept at 10−6. The results are shown in Table 7 for
different values of β and different grids. Under ‘outer/inner’ we report, respec-
tively, the number of outer FGMRES iterations and the total number of inner
GMRES iterations.

It is clear from these results that the quality of the inexact preconditioner
deteriorates as the mesh is refined; only the behavior with respect to β is
completely satisfactory. The problem stems from the fact that using a constant
value of the drop tolerance does not work well, as the matrix entries actually
grow unboundedly as h → 0.
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Table 8. Iteration count for preconditioned FGMRES, Stokes problem, γ = 100, inexact solves, τ = 10−p.

grid 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128
β outer/inner outer/inner outer/inner outer/inner outer/inner
20 8/9 10/12 8/15 13/18 11/17
50 12/22 10/16 10/15 12/17 14/28
100 9/11 11/16 11/23 12/22 13/30
300 11/19 14/19 9/10 9/10 11/12

In the next set of experiments we used an adaptive drop tolerance, namely,
τ = 10−p where h = 2−p. Thus, for the 128 × 128 grid, we used τ = 10−7. We
set the inner stopping criterion at tol = 10−1; the results are shown in Table
8. Now the dependency of the convergence rate on h is rather mild and the
average number of inner iterations is always less than three per outer itera-
tion. The fact that the number of outer iterations is sometimes smaller than
in the previous set of experiments (see the results for the 64× 64 grid) can be
explained by observing that with the adaptive drop tolerance now used, the
actual inner residual is sometimes rather small after the last inner iteration.
Unfortunately, the cost of the inexact preconditioner still scales superlinearly,
due to the need to compute the incomplete factorization with smaller and
smaller drop tolerances. As is well known, this is an inherent limitation of in-
complete factorizations in PDE-type problems; better scalings may be possible
if multilevel methods are used for the approximate inner solves.

Finally, we performed some experiments with inexact solves for Oseen-type
problems for different values of the viscosity ν. In this case we found that
reordering the matrix Aβ +γBT B can cause the incomplete factorization pro-
cess to break down; therefore, no reordering was applied. Again, we found that
using an adaptive drop tolerance is necessary in order to keep the number of
iterations stable with respect to h and ν. Some results are shown in Table 9.

Although the total number of inner iterations is now quite reasonable, the
cost of the incomplete LU factorization with adaptively chosen drop tolerance
scales superlinearly, and the total computing times are generally no better
than those obtained with the complete LU factorization. It should be kept
in mind that the incomplete factorizations and inner iterations used are not
very efficient. For the complete factorizations, the Matlab code makes use of
highly optimized sparse direct solvers. In contrast, the implementations of the
incomplete LU factorization function in Matlab is not very efficient. Because
of this, the incomplete factors may actually be more expensive to compute
than the complete factors, and the additional costs induced by the (few) inner
Krylov subspace iterations needed to satisfy the convergence criteria for the
inexact solves lead to increased overall solution costs compared to the case of
exact solves. Clearly, better inner solution strategies need to be developed.
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Table 9. Iteration count for FGMRES, Oseen-type problem, γ = 100, inexact solves, τ = 10−p−1.

grid 8 × 8 16 × 16 32 × 32 64 × 64
ν β outer/inner outer/inner outer/inner outer/inner

10−1 20 11/14 12/21 10/15 8/11
50 7/8 6/6 7/8 6/7
100 5/5 9/9 6/6 6/6
300 6/6 6/6 8/9 7/7

10−2 20 5/5 7/7 9/9 8/8
50 5/5 4/4 8/9 9/10
100 5/5 4/4 5/5 6/6
300 5/5 5/5 5/5 6/6

10−3 20 5/5 4/4 5/5 18/26
50 4/4 4/4 4/4 4/4
100 4/4 5/5 4/4 4/4
300 5/5 5/5 5/5 5/5

5 Conclusions

In this paper we have investigated the use of an augmented Lagrangian-based
block triangular preconditioner for certain saddle point systems with an indef-
inite (1, 1) block. Our numerical experiments on block matrices arising from
incompressible fluid dynamics problems indicate that the preconditioner re-
sults in fast convergence independently of mesh size and viscosity. For large
problems, the efficient implementation of the proposed method demands the
use of inexact preconditioner solves. We have shown experimentally that fast
convergence of the outer preconditioned flexible iteration is often observed
even when the preconditioner solves are performed to a prescribed accuracy
using an inner preconditioned Krylov iteration. However, we have found that
for some of the more difficult problems even reaching a modest level of ac-
curacy in the preconditioner solves may require considerable computational
effort. Therefore, how to best perform the inexact inner solves for such prob-
lems remains an open question.
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[12] Gantner, A., Hoppe, R. H. W., Köster, D., Siebert, K. and Wixforth, A., 2007, Numerical

simulation of piezoelectrically agitated surface acoustic waves on microfluidic biochips. Computing
and Visualization in Science, to appear.

[13] Glowinski, R., 2003, Finite element methods for incompressible viscous flow. Handbook of Numer-
ical Analysis. Volume IX, Numerical Methods for Fluids (Part 3), (Amsterdam: North-Holland).

[14] Golub, G. H. and Greif, C., 2003, On solving block structured indefinite linear systems. SIAM
Journal on Scientific Computing, 24, 1076–2092.
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