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Abstract. We provide an exposition of the hypergraph models for parallel sparse matrix-vector
multiplies based on one-dimensional (1D) matrix partitioning. Our aim is to emphasize the expressive
power of the hypergraph models. We first set forth an elementary hypergraph model in which
vertices represent the data elements of a matrix-vector multiply operation and nets encode data
dependencies. We then apply a recently proposed hypergraph transformation operation to devise
models for 1D sparse matrix decomposition. The resulting 1D partitioning models are equivalent to
the previously proposed computational hypergraph models and are not meant to be replacements
for them. Nevertheless, the new models give us insights into the previous ones and help us explain
a subtle requirement, known as the consistency condition, of the hypergraph partitioning models.
We also demonstrate the flexibility of the elementary model on a few partitioning problems that are
hard to solve using the previously proposed models.
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1. Introduction. Computational hypergraph models for one-dimensional (1D)
sparse matrix decomposition proposed in [3, 4, 9] have gained widespread accep-
tance. These models can address partitionings of rectangular, unsymmetric square,
and symmetric square matrices. However, the expressive power of these models had
been acknowledged long after their introduction [1, 7, 11]. This is due to three rea-
sons. First, the works [3, 9] had limited distribution, and therefore, the models seem
to be introduced in [4]. Second, the paper [4] does not discuss rectangular matrices
explicitly. Third, perhaps the most probable one, is that the models introduced in [4]
address symmetric partitioning and require zero-free diagonals (consistency condition)
for establishing an exact correspondence between the total volume of communication
and the hypergraph partitioning objective. The consistency condition—the vertex vi

should be in the net ni —evokes square matrices.

In §3, we present an elementary hypergraph model for 1D sparse matrix de-
composition for parallel sparse matrix-vector multiplies. The model represents all
the operands of the sparse matrix-vector multiply operation y ← Ax with vertices.
Therefore, partitioning the proposed hypergraph model amounts to partitioning the
input vector x , the output vector y , and the rows or columns of A . We show
that this elementary model can be transformed into hypergraph models for obtain-
ing unsymmetric and symmetric partitionings. The resulting models are equivalent
to the previously proposed computational hypergraphs in modeling the total volume
of communication correctly. If symmetric partitioning is sought, the resulting model
becomes topologically identical to the previously proposed models [4]. However, there
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is a slight discrepancy between the significance of the nets in these two topologically
identical models. This discrepancy helps us automatically satisfy the consistency con-
dition even for matrices with missing diagonal entries without referring to or altering
the sparsity pattern of the matrix A .

Although the elementary model contributes a little in the standard 1D matrix
partitioning, it is useful in general. In §4, we show how to transform the elementary
model to address a few partitioning problems that are hard to tackle using the previous
models. We confine the discussion to the rowwise partitioning models, because the
columnwise partitioning models can be addressed similarly.

2. Background. A hypergraph H = (V ,N ) is defined as a set of vertices V
and a set of nets N . Every net is a subset of vertices. The vertices of a net are also
called its pins. The size of a net ni is equal to the number of its pins, i.e., |ni| . The
set of nets that contain vertex vj is denoted by Nets(vj). Weights can be associated
with vertices. We use w(j) to denote the weight of the vertex vj .

Π = {V1, . . . ,VK} is a K -way vertex partition of H = (V ,N ) if each part is
nonempty, parts are pairwise disjoint, and the union of parts gives V . In Π, a net is
said to connect a part if it has at least one pin in that part. The connectivity set Λ(i)
of a net ni is the set of parts connected by ni . The connectivity λ(i) = |Λ(i)| of a
net ni is the number of parts connected by ni . A net is said to be cut if it connects
more than one part and uncut otherwise. In Π, the weight of a part is the sum of the
weights of vertices in that part.

In the hypergraph partitioning problem, the objective is to minimize

cutsize(Π) =
∑

ni∈N

(λ(i)− 1) .(2.1)

This objective function is widely used in VLSI community [8] and in scientific comput-
ing community [1, 4, 11], and it is referred to as the connectivity−1 cutsize metric.
The partitioning constraint is to satisfy a balancing constraint on part weights:

Wmax −Wavg

Wavg

≤ ǫ .(2.2)

Here Wmax is the weight of the part with the maximum weight, Wavg is the average
part weight, and ǫ is a predetermined imbalance ratio. This problem is NP-hard [8].

We make use of the recently proposed vertex amalgamation operation [12]. This
operation combines two vertices into a single composite vertex. The nets of the
resulting composite vertex are set to the union of the nets of the constituent vertices,
e.g., amalgamating vertices vi and vj removes these two vertices from the hypergraph,
adds a new vertex vij , and sets Nets(vij) = Nets(vi) ∪Nets(vj).

3. Revisiting hypergraph models for 1D partitioning. Consider the com-
putations of the form y ← Ax under rowwise partitioning of the m × n matrix A .
Since we partition the rows of A , the entries of the input- and output-vectors x and
y , there should be three types of vertices in a hypergraph: row-vertices, x-vertices,
and y -vertices. The nets of the hypergraph should be defined to represent the depen-
dencies of the y -vertices on the row-vertices, and the dependencies of the row-vertices
on the x-vertices. We define the hypergraph H = (V ,N ) with |V| = 2m + n ver-
tices and |N | = m + n nets. The vertex set V = X ∪ Y ∪ R contains the vertices
X = {x1, . . . , xn} , Y = {y1, . . . , ym} , and R = {r1, . . . , rm} . Here xj corresponds to
the j th entry in the input-vector, yi corresponds to the ith entry in the output-vector,
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Fig. 3.1. (a) A general 1D partitioning model in which all operands of the matrix-vector
multiply operation are represented by vertices. (b) 1D unsymmetric partitioning model is obtained
by applying the vertex amalgamation operation on yi and ri to enforce the owner-computes rule.
(c) 1D symmetric partitioning model is obtained by applying the vertex amalgamation operation to
the composite vertex yi /ri and the vertex xi .

and ri corresponds to the ith row of A . The net set N = Nx ∪Ny contains the nets
Nx = {nx(j) : j = 1, . . . , n} where nx(j) = {ri : i = 1, . . . , m and aij 6= 0} ∪ {xj}
and the nets Ny = {ny(i) : i = 1, . . . , m} where ny(i) = {yi, ri} . In accordance with
the previous models [4], each row-vertex ri is associated with a weight to represent
the computational load associated with the ith row, e.g., wr(i) = |Nets(ri)| − 1.
Note that the weight wr(i) corresponds to the number of nonzeros in the ith row of
A as in [4]. Weights can be associated with the x- and y -vertices. For example, a
unit weight may be assigned to these vertices in order to maintain balance in linear
vector operations. Figure 3.1(a) shows a portion of the elementary hypergraph built
accordingly. In the figure, the ith row has two nonzeros: one in the j th column
and the other in the k th column. Hence the row-vertex ri is connected to the nets
ny(i), nx(j), and nx(k). The nets nx(i), nx(j), and nx(k) contain the respective
x-vertices and some row-vertices which are not shown for the sake of clarity.

Observe that in the above construction, each net contains a unique vertex that
is either a source or a target, e.g., yi or xi . This construction abides by the guide-
lines given in [4] and outlined in [7]. The elementary hypergraph model is the most
general model for 1D rowwise partitioning, since by partitioning the vertices of this
hypergraph we can obtain partitions on all operands of the matrix-vector multiply
operation.

Now, we show how to modify the elementary hypergraph by applying the ver-
tex amalgamation operation to devise 1D unsymmetric and symmetric partitionings.
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First, we can apply the owner-computes rule, i.e., yi should be computed by the pro-
cessor that owns ri . This requires amalgamating the vertices yi and ri for all i . A
portion of the resulting hypergraph is shown in Fig. 3.1(b). Since nets of size one do
not contribute to the partitioning cost, we can delete the net ny(i) from the model.
Partitioning the resulting hypergraph will produce nonsymmetric partitions. Suppose
we are seeking symmetric partitions, i.e., the processor which owns ri and yi should
own xi . This time, we have to amalgamate the vertices yi/ri and xi for all i . A
portion of the resulting hypergraph is shown in Fig. 3.1(c). Partitioning the resulting
hypergraph will produce symmetric partitions. Note that the hypergraph shown in
Fig. 3.1(c) is topologically identical to the column-net hypergraph model proposed
in [4]. However, there is a difference in the semantics. Here, the x-vector entries are
represented by the vertices, whereas in [4] they are represented by the nets. Since
the vertex amalgamation operation between the vertex yi/ri and xi connects the ith
vertex to the ith net, this difference guarantees the consistency condition without
referring to or altering the sparsity pattern of the matrix.

4. Examples. We cast three partitioning problems which are hard to solve using
the previous models. Each problem asks for a distinct hypergraph model whose
cutsize under a partition corresponds to the total volume of communication in parallel
computations with a proper algorithm.

Problem 1. Describe a hypergraph model which can be used to partition the

matrix A rowwise for the y ← Ax computations under given, possibly different,

partitions on the input- and output-vectors x and y .

A parallel algorithm that carries out the y ← Ax computations under given
partitions of x and y should have a communication phase on x , a computation
phase, and a communication phase on y . We take the elementary hypergraph model
given in Fig. 3.1(a) and then designate each xj and yi as fixed to a part according to
the given partitions on the vectors x and y . Invoking a hypergraph partitioning tool
which can handle the fix vertices (e.g., PaToH [5]) will solve the partitioning problem
stated above. For each nx(j), the connectivity−1 value, i.e., λx(j)− 1, corresponds
to the total volume of communication regarding xj . Similarly, for each ny(i), λy(i)−1
corresponds to the volume of communication regarding yi ; note λy(i)− 1 is either 0
(ri is assigned to the part to which yi is fixed) or 1 (otherwise).

Problem 2. Describe a hypergraph model to obtain the same partition on the

input- and output-vectors x and y which is different than the partition on the rows

of A for the y ← Ax computations.

The computations y ← Ax should be carried out by the algorithm given for
Problem 1. We take the elementary hypergraph model given in Fig. 3.1(a) and then
amalgamate the vertices yi and xi into a single vertex. The portion of the resulting
hypergraph is shown in Fig. 4.1. Here, the connectivity−1 values of the nets again
correspond to the volume of communication regarding the associated x- and y -vector
entries. The communications on xi are still represented by the net nx(i), and the
communications on yi are still represented by the net ny(i). Observe that a composite
vertex yi/xi can be in the same part with ri in which case there is no communication
on yi and λy(i)− 1 = 0.

Problem 3. Describe a hypergraph model to obtain different partitions on x and

on the rows of A , where y is partitioned conformably with the rows of A under the

owner-computes rule for computations of the form y ← Ax followed by x← x + y .

The computations xi + yi introduce new vertices for all i . The vertex xi + yi

depends on the vertices xi and yi . Therefore, it is connected to the nets nx(i) and
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Fig. 4.1. Hypergraph model for the partitioning problem 2.

ny(i). Furthermore, since xi is dependent on the vertex xi + yi , we connect xi to
the net nx+y(i). A portion of the hypergraph that encapsulates these dependencies is
shown in Fig. 4.2(a). First, we enforce the owner-computes rule for the computations
xi ← xi + yi . This can be achieved by amalgamating the vertices xi and xi + yi .
Since, the size of the net nx+y(i) becomes one, it can be excluded safely. The resulting
model is shown in Fig. 4.2(b). Next, we enforce the owner-computes rule for yi by
amalgamating vertices yi and ri (Fig. 4.2(c)). In order to carry out the computations
xi ← xi + yi , the yi values should be communicated after computing y ← Ax . Here,
if the composite vertex xi/xi + yi and the composite vertex ri/yi reside in different
processors, then we have to send yi . The communication volume of this send operation
is equal to λy(i) − 1 = 1. Since the nets in Nx are kept intact, they represent the
communications on the x-vector entries for the y ← Ax computations as before.

Consider a slightly different partitioning problem in which we do not need the
owner-computes rule for the y -vector entries. The hypergraph in Fig. 4.2(b) can be
used to address this partitioning problem. Here, if xi , yi , and ri reside in different
processors, then we will have two units of communication: the result of the inner
product 〈ri, x〉 will be sent to the processor that holds yi which will write yi and
send the value to the processor that holds xi . If, however, xi and ri reside in the
same processor, we will have one unit of communication: the result 〈ri, x〉 will be sent
to the processor that holds yi and the computation xi ← xi + yi will be performed
using the local data xi and 〈ri, x〉 .

5. Discussion. We provided an elementary hypergraph model to partition the
data of the y ← Ax computations. The model represents all operands of the matrix-
vector multiply operation as vertices. Therefore, partitioning the vertices of this
elementary model amounts to partitioning all operands of the multiply operation.
We showed how to transform the elementary model into hypergraph models that can
be used to address various 1D partitioning problems including the symmetric (same
partition on x and y ) and unsymmetric (different partitions on x and y ) partitioning
problems. Although the latter two problems are well studied, the models discussed
here shed light into the previous models.

We confined the discussion to rowwise partitioning problems for brevity. The
columnwise partitioning models can be constructed similarly. For example, the ele-
mentary model for the y ← Ax computations under columnwise partitioning of A
is given by HC = (V ,N ), where V = X ∪ Y ∪ C with X = {x1, . . . , xn} corre-
sponding to the input vector entries, Y = {y1, . . . , ym} corresponding to the output
vector entries, C = {c1, . . . , cn} corresponding to the columns of A ; N = Nx ∪ Ny
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Fig. 4.2. (a) Basic hypergraph model for the partitioning problem 3. (b) According to the owner-
computes rule for the computations xi ← xi + yi , the vertices xi and xi + yi are amalgamated. (c)
According to the owner-computes rule for yi , the vertices yi and ri are amalgamated.

with the nets Nx = {nx(j) : j = 1, . . . , n} where nx(j) = {xj, cj} , and the nets
Ny = {ny(i) : i = 1, . . . , m} where ny(i) = {cj : j = 1, . . . , n and aij 6= 0} ∪ {yi} .
Models for the other problems should follow easily by applying vertex amalgamation
operation.

The basic ideas can be carried over to two-dimensional, nonzero-based partitioning
model [6] as well. The elementary model for the y ← Ax computations under fine-
grain partitioning of A is given by H2D = (V ,N ). The vertex set V = X ∪ Y ∪ Z
contains the vertices X = {x1, . . . , xn} corresponding to the input vector entries,
Y = {y1, . . . , ym} corresponding to the output vector entries, and Z = {aij : 1 ≤ i ≤
m and 1 ≤ j ≤ n and aij 6= 0} corresponding to the nonzeros of A . The net set
N = Nx∪Ny contains the nets Nx = {nx(j) : j = 1, . . . , n} where nx(j) = {aij : 1 ≤
i ≤ m and aij 6= 0} ∪ {xj} , and Ny = {ny(i) : i = 1, . . . , m} where ny(i) = {aij : 1 ≤
j ≤ n and aij 6= 0}∪{yi} . Applying the vertex amalgamation operation to vertices xi

and yi for 1 ≤ i ≤ n (if the matrix is square) yields a model whose partitioning results
in symmetric partitioning on the input and output vectors of the y ← Ax multiply.
Notice the resulting model again satisfies the consistency condition. However, this
model is slightly different than the original fine-grain model [6]. In order to guarantee
the consistency condition, Çatalyürek and Aykanat [6] add a dummy vertex dii for
each diagonal entry aii that is originally zero in A . After the vertex amalgamation
operation, H2D contains n composite vertices of the form (xi, yi). If aii is zero in
A , then the vertex (xi, yi) can be said to be equivalent to the dummy vertex dii .
If, however, aii is nonzero in A , then the vertex (xi, yi) can be said to be a copy of
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the diagonal vertex aii . Having observed this discrepancy between the models, we
have done experiments with a number of matrices. We did not observe any significant
difference between the models in terms of cutsize (total volume).

We should mention that the owner-computes rule should be enforced unless other-
wise dictated by the problem. Because, it reduces the number of vertices and possible
nets leading to a reduction in model size and in the running time of the partitioning
algorithm. More importantly, it avoids a communication phase.

Current approach in the parallelization of a wide range of iterative solvers is to
enforce the same partition on the vectors that participate in a linear vector operation.
This approach avoids a reordering operation—which is bound to be communication
intensive—on the vectors. The models provided in this paper can be used to encapsu-
late the total volume of communication in the vector ordering operation. Therefore,
the models can be used to exploit the flexibility in partitioning disjoint phases of
computations.

Although the elementary model and subsequent models obtained from it help
partition all the operands of a matrix-vector multiply neatly, it conceals the freedom
in assigning vector entries to processors to optimize other cost metrics. For example,
vertex xi in Fig. 3.1(b) can be re-assigned to any processor in Λx(i) without changing
the load decomposition to reduce communication cost (see [2, 10, 11, 13]).
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[3] Ü. V. Çatalyürek and C. Aykanat, Decomposing irregularly sparse matrices for parallel
matrix-vector multiplications, Lecture Notes in Computer Science, 1117 (1996), pp. 75–86.

[4] , Hypergraph-partitioning based decomposition for parallel sparse-matrix vector multipli-
cation, IEEE Transactions Parallel and Distributed Systems, 10 (1999), pp. 673–693.

[5] , PaToH: A multilevel hypergraph partitioning tool, version 3.0, Tech. Rep. BU-CE-9915,
Computer Engineering Department, Bilkent University, 1999.

[6] , A fine-grain hypergraph model for 2d decomposition of sparse matrices, in Proceed-
ings of 15th International Parallel and Distributed Processing Symposium (IPDPS), San
Francisco, CA, April 2001.

[7] B. Hendrickson and T. G. Kolda, Graph partitioning models for parallel computing, Parallel
Computing, 26 (2000), pp. 1519–1534.

[8] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, Wiley–Teubner, Chich-
ester, U.K., 1990.
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