
Technical Report

TR-2004-009

Quasi-Newton Methods for Image Restoration

by

James Nagy, Katrina Palmer

Mathematics and Computer Science

EMORY UNIVERSITY

Quasi-Newton Methods for Image Restoration

James G. Nagy∗ Katrina Palmer†

Abstract

Many iterative methods that are used to solve Ax = b can be derived as quasi-Newton
methods for minimizing the quadratic function 1

2
xT AT Ax−xT AT b. In this paper, several such

methods are considered, including conjugate gradient least squares (CGLS), Barzilai-Borwein
(BB), residual norm steepest descent (RNSD) and Landweber (LW). Regularization properties of
these methods are studied by analyzing the so-called ”filter factors”. The algorithm proposed by
Barzilai and Borwein is shown to have very favorable regularization and convergence properties.
Secondly, we find that preconditioning can result in much better convergence properties for
these iterative methods.

1 Introduction

We consider linear systems that arise from discretization of ill-posed problems,

b = Ax + n , (1)

where A is an ill-conditioned n× n matrix, whose singular values decay to zero. The vector b and
matrix A are assumed known, and the vector n, which represents perturbations and/or noise in the
data, is assumed unknown. The aim is to compute an approximation of the unknown vector, x.
Following the terminology of Hansen [11], we call such a linear system a discrete ill-posed problem.
If n is small, it is tempting to ignore it, and use standard approaches to compute the inverse

solution, x = A−1b. However, due to the ill-posedness of the problem, this naive approach is likely
to compute solutions that are horribly corrupted with noise. Techniques known as regularization

methods have been developed to deal with this ill-posedness. In this paper we consider iterative
methods that can be used to compute a regularized solution. More specifically, we show that
a general quasi-Newton approach to solve Ax = b can be formulated as a filtering method for
computing solutions of discrete ill-posed problems (1). We give an explicit formula for computing
the quasi-Newton filter factors, and we show that the semi-convergent behavior of specific iterative
methods (i.e., special cases of the general quasi-Newton method) is related to their corresponding
filter factors.

We present the quasi-Newton method and several popular iterative methods derived from it in
Section 2. In Section 3 we analyze the regularization properties of the methods described in Section
2. Section 4 will briefly describe the preconditioner we use for image restoration problems. Finally,
Section 5 compares the filter factors of the four methods on two examples from image restoration.
Convergence comparisons of the various methods (both with and without preconditioning) are also
included.

∗Math & CS Department, Emory University, Atlanta, GA 30322, USA. nagy@mathcs.emory.edu
†Department of Mathematical Sciences, Appalachian State University, Boone, NC 28608. kmp@cs.appstate.edu

1

2 Quasi-Newton Methods

Most iterative methods assume that the coefficient matrix is symmetric and positive definite. Be-
cause in our applications of interest A is not guaranteed to be symmetric, we consider approaches
that solve the normal equations,

AT Ax = ATb . (2)

To compute a solution to (2), we can solve the minimization problem

minf(x) =
1

2
xT AT Ax− xT ATb . (3)

For this quadratic function, we have

• gradient: g(x) = 5f(x) = AT (Ax− b)

• residual: r = AT (b−Ax) = −g(x)

• Hessian: H(x) = 52f(x) = AT A

To solve the minimization problem given in (3) we might consider using Newton’s method [5].
This is derived using a second order Taylor series approximation of f(x) near xk :

f(x) = f(xk) +5f(xk)
T (x− xk) +

1

2
(x− xk)

T 52 f(xk)(x− xk) . (4)

The right hand side of equation (4) is minimized at

x = xk − [52f(xk)]
−1 5 f(xk)

= xk −H(xk)
−1g(xk) .

This produces the basic Newton iteration :

xk+1 = xk −H(xk)
−1g(xk) . (5)

Notice that in the case when f(x) is quadratic (assuming A is nonsingular), we obtain

xk+1 = xk − (AT A)−1AT (Axk − b) = A−1b. (6)

So Newton’s method converges to A−1b in one iteration no matter what we choose for an initial
guess, x0. However, we do not want to use Newton’s method for two reasons. First, A−1b is too
corrupted with noise when solving b = Ax + n. For ill-posed problems we would instead prefer to
have xk converge to A†

rb, a regularized solution. We use the notation A†
rb to denote the operator

that maps b to a regularized solution, and therefore we may think of it as a regularized pseudo-
inverse of A. We discuss how to reduce the effects of the noise when we talk about regularization in
Section 3. Secondly, the point of using iterative methods is to avoid computing A−1, or even some
factorization of A . To address this problem we consider a quasi-Newton approach defined by:

xk+1 = xk − αkMkgk = xk + αkMkrk (7)

where gk = g(xk), rk = AT (b−Axk), and αkMk ≈ A†
r.

2

There are many different quasi-Newton methods but they are all based on approximating the
inverse Hessian by another matrix, αkMk that is found at a lower cost. Some common examples
include the following.
Example 1: If we let αk = α and Mk = I be fixed with 0 ≤ α ≤ 2

σ1
then this leads to Landweber’s

iteration or Richardson’s method [11]. Landweber’s method (LW) is not used much in practice
because the convergence rate is often very slow [11]. LW is a classic approach for ill-posed problems
and its convergence properties are fairly easy to analyze.
Example 2: If we let Mk = I be fixed, and choose αk = minα>0f(xk + αrk) then we get the
residual norm steepest descent method (RNSD) [17]. Note that RNSD is just steepest descent on
the normal equations. Steepest descent minimizes the AT A-norm of the error so RNSD minimizes
||x− xk||AT A = ||A(x− xk)||2 = ||b− Axk||2. Like LW, RNSD is typically not recommended due
to its slow convergence. However, we show in Section 5 (see also [15]) that in some cases, with
proper preconditioning, RNSD is competitive and exhibits a more stable convergence behavior than
conjugate gradient least squares (CGLS).
Example 3: If we let Mk = I be fixed, and choose αk = minα>0f(xk−1 + αrk) then we get
the Barzilai-Borwein (BB) method [1]. Notice that the BB method is the same as RNSD except
that BB uses the previous steepest descent step length. The algorithm exhibits some interesting
convergence behavior. Specifically, BB (without preconditioning) tends to converge more quickly
than RNSD. In Section 5, we show that this situation is similar for ill-posed problems, but that
there is some unusual behavior in the convergence of BB that is not present in RNSD.

Example 4: If we take M0 = I and define Mk+1 = I −
sky

T

k

y
T

k
sk

where sk = xk+1 − xk and yk =

gk+1 − gk and choose αk = minα>0f(xk + αrk) then we get the CGLS iterates [7]. Since CGLS is
the conjugate gradient algorithm performed on the normal equations and the conjugate gradient
algorithm minimizes the A-norm of the error at each iteration, CGLS minimizes the residual at
each iteration. CGLS is usually considered superior to the other methods because it converges
much faster, however, for ill-posed problems, this also means that the noise tends to corrupt the
iterates much more quickly than the other methods. Note that other quasi-Newton methods, such
as the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method and the Davidon-
Fletcher-Powell method (DFP), when applied to the quadratic minimization problem, also produce
the conjugate gradient iterates [14].

3 Regularization

It was stated in Section 1 that because A is ill-conditioned, and because there is noise in b, it is
very difficult to compute accurate approximations of x. To see why this is the case, suppose we
naively assume the noise is small enough to ignore, and compute

xnaive = A−1b .

Let A = UΣV T be the singular value decomposition (SVD) of A, where U and V are n × n
orthogonal matrices, and Σ =diag(σ1, σ2, . . . , σn), σ1 ≥ σ2 ≥ · · · ≥ σn. If we denote the columns of
U and V as ui and vi, respectively, then

xnaive = V Σ−1UTb =
n

∑

i=1

uT
i b

σi
vi =

n
∑

i=1

(

ξi +
ηi

σi

)

vi , (8)

where x =
∑

i ξivi and n =
∑

i ηiui.

3

For a continuous (infinite dimensional) ill-posed problem, the Picard condition [20]

∞
∑

i=1

|(b,ui)|
2

σ2
i

< ∞ ,

where (b,ui) denotes inner product, must hold in order for a solution to exist. This implies that for
the discrete problem that the coefficients |uT

i b| must decay, on average, faster that σi. However,
for discrete ill-posed problems the discrete Picard condition is not necessarily met since for our
problems the right hand side is contaminated with noise. In other words, the coefficients |(b,ui)|
do not necessarily decay faster than the corresponding singular values. Discrete ill-posed problems
have the property that the singular values decay to, and cluster at 0. Thus, division by small
singular values, σi’s, magnifies the corresponding noise components, ηi as seen in (8). In addition,
most discrete ill-posed problems have the additional property that the singular vectors, vi, tend to
oscillate more for smaller singular values. Thus, the naive solution is horribly corrupted by large
oscillating components. These properties of ill-posed problems, as well as the above explanation
using the SVD, are well known; see, for example, [8, 11, 21] for more details.

Regularization methods replace the original matrix by a better-conditioned but related one
in order to diminish the effects of noise in the data and produce a regularized solution to the
original problem. There are several types of regularization methods. Some well known methods are
Tikhonov, truncated singular value decomposition (TSVD), and iterative regularization [21]. This
paper focuses on iterative regularization.

A general regularization approach to compute an accurate approximation of x can be formulated
as a modification of the naive solution (8) [11]; specifically,

xfilt =
n

∑

i=1

φi
uT

i b

σi
vi , (9)

where the filter factors, φi, satisfy φi ≈ 1 for large σi, and φi ≈ 0 for small σi. That is, the large
singular value components of the solution are reconstructed, while the components corresponding
to the small singular values are filtered out. Different choices of filter factors lead to different
methods. For example, the truncated SVD (TSVD) solution is given by (9), where

φi =

{

1 if i ≤ r
0 if i > r

.

If Σ†r = diag(1

σ1
, . . . , 1

σr
, 0, . . . , 0), then the TSVD solution can be written as

xtsvd = A†
rb = V Σ†rU

Tb =

r
∑

i=1

uT
i b

σi
vi . (10)

The truncation index, r, is called a regularization parameter, whose specific value is problem de-
pendent. It is nontrivial to choose an “optimal” regularization parameter, though good values
can be estimated using the discrepancy principle [21], the Picard condition [10], the L-curve [13],
generalized cross validation (GCV) [9] or some other scheme [8, 11, 21].

The quasi-Newton methods discussed in the previous section belong to a class of iterative
regularization methods [8, 21]. Such iterative algorithms exhibit a semi-convergent behavior with
respect to the relative error, ||xk−x||/||x||, where xk is the approximate solution at the kth iteration.
That is, the relative error begins to decrease and, after some “optimal” iteration, begins to rise.

4

By stopping the iteration when the error is low, we obtain a good (regularized) approximation
of the solution. The iteration index (rather, its reciprocal 1

k
) plays the role of the regularization

parameter. As with other regularization methods, it is a nontrivial matter to choose an “optimal”
stopping iteration. If chosen too large, the corresponding solution will be too corrupted with noise,
and it will be impossible to compute a good solution. If chosen too small, too much information
about the solution is lost, and thus it is impossible to compute a good solution. For large image
restoration problems, the discrepancy principle and the L-curve can be used efficiently to estimate
the stopping iteration. GCV is not practical because there is a division by the trace of I−A†

r which
can only be approximated. The Picard condition is also not a feasible choice because the spectral
coefficients are needed.

3.1 Quasi-Newton Filter Factors

Like many regularization methods, quasi-Newton methods can be thought of as filter methods,
however, their filter factors are a bit complicated. From Section 2 we know that the quasi-Newton
iteration is xk+1 = xk + αkMkrk. Substituting ATb−AT Axk for rk, we have

xk+1 = xk + αkMk(A
Tb−AT Axk) . (11)

Assuming, without loss of generality, x0 = 0, and using (11), we see that

xk+1 = Pk(A
T A)ATb , (12)

where the polynomial Pk is defined as

Pk(λ) = Pk−1(λ) + αkMk(1− λPk−1(λ)) , P−1(λ) = 0 . (13)

Substituting A = UΣV T into (12), we obtain

xk+1 =
n

∑

i=1

σ2
i Pk(σ

2
i)

uT
i b

σi
vi . (14)

Comparing (14) to (9) we see that the quasi-Newton filter factors are

σ2
i Pk(σ

2
i). (15)

One of the first approaches to be studied for its iterative regularization properties is the Landwe-
ber (LW) method [8, 11, 21]. We noted in Section 2 that the LW iteration is a quasi-Newton method
with αkMk = αI.

Combining equations 13 and 15 with αkMk = αI, we see that the Landweber filter factors
simplify to

1− (1− ασ2)k. (16)

Unfortunately, the RNSD, BB and CGLS filter factors do not simplify as nicely as the LW filter
factors. Recall from Section 2 that RNSD and BB are quasi-Newton methods with αkMk = αkI
where αk is chosen to minimize the residual at each iteration for RNSD while αk is the previous
RNSD step length for BB. From equation (13) we can see that the filter factors for RNSD and BB
are σ2

i Pk(σ
2
i) where

Pk(λ) = Pk−1(λ) + αk(1− λPk−1(λ)) , P−1(λ) = 0 . (17)

5

The filter factors for CGLS are derived in the same way as the quasi-Newton filter factors (see
[22, 11]). Specifically, they are σ2

i Pk(σ
2
i) where the polynomial Pk is defined as

Pk(λ) =

(

1− αkλ +
αkβk−1

αk−1

)

Pk−1(λ)−
αkβk−1

αk−1

Pk−2 + αk , (18)

where P−1(λ) = 0 and P0(λ) = α0, αk = ||rk−1||
2
2/||Adk−1||

2
2, βk = ||rk||

2
2/||rk−1||

2
2, d is the step

direction, and r is the residual, AT (b−Ax).
From equation (16) it is easy to see that the LW filter factors are approximately 1 for large

singular values and approximately 0 for small singular values, however, it is difficult to see analyt-
ically how the filter factors for RNSD, BB and CGLS compare since Pk(λ) are defined recursively.
We can, however, make such a comparison experimentally. This will be done in Section 5, but first
we consider the important problem of preconditioning.

4 Preconditioning

Preconditioning is used with iterative methods to accelerate the rate of convergence; that is, to
reduce the number of iterations needed to compute a good approximation of the solution. The
standard approach to preconditioning, when solving Ax = b, is to construct a matrix, P , such
that the singular values of P−1A are clustered around a point which is bounded away from zero,
such as 1. More singular values clustered around a point, as well as tighter clusters, implies faster
convergence.

At each iteration of a preconditioned method, a linear system of the form Pz = w is solved. If P
is a good approximation to a severely ill-conditioned A, then P will also be very ill-conditioned, and
thus inaccuracies in the data will be highly amplified when Pz = w is solved in the first iteration.
Further iterations do not improve the situation, and, in general, there is no hope of recovering a
good approximation of the solution. Thus, the standard approach to preconditioning cannot be
used when solving ill-posed problems.

An approach for preconditioning ill-posed problems, first proposed in [10], is to construct a ma-
trix P that clusters the large singular values around one, but leaves the small singular values alone.
We can argue why this approach can be effective by constructing an “ideal” TSVD preconditioner1

as follows. Let A = UΣV T be the SVD of A, where Σ =diag(σ1, σ2, . . . , σn). Define Pk as

Pk = UΣkV
T , (19)

where Σk =diag(σ1, . . . , σk, 1, . . . , 1), and k is the truncation index for the TSVD solution (10).
Then the preconditioned system has the form P−1A = V ∆V T , where ∆ =diag(1, . . . , 1, σk+1, . . . , σn).
Thus the large singular values are perfectly clustered at one, and are well separated from the small
singular values. Regularization properties of the iterative methods imply that it takes only one
iteration to compute a regularized solution. Though it is not practical to compute an SVD to
use as an ideal preconditioner, it is possible in some applications to use an approximate SVD, or
spectral decomposition.

For spatially invariant image restoration problems involving n×n images, A is an n2×n2 block
Toeplitz matrix with Toeplitz blocks (BTTB). Matrix vector multiplications with A can be done
using O(n2 log n) arithmetic operations using fast Fourier transforms (FFT). Preconditioning such
structured matrices has been thoroughly investigated in the literature; see the survey paper [3] and

1By “ideal” we mean a preconditioner constructed from the SVD of A.

6

the references therein. Moreover, many of these approaches have been applied to image restoration
[10].

Although a variety of approaches to preconditioning have been proposed, the most popular is
to use circulant approximations. The approximation we use is

min ||A− P ||F

where, for two dimensional image restoration problems, the minimization is done over all matrices
that are block circulant with circulant blocks (BCCB). These preconditioners can be constructed
efficiently; see [3] for more details.

An important and useful property of BCCB matrices is that they can be diagonalized efficiently
using FFTs. That is, every BCCB matrix can be written as P = F∗ΛF , where Λ is a diagonal
matrix containing the eigenvalues of P , F is the unitary (two dimensional) discrete Fourier trans-
form matrix, and F∗ is the complex conjugate transpose of F [6]. Thus, a BCCB approximation
of A provides an approximate spectral decomposition, which can be used in an analogous manner
as outlined above for the ideal SVD preconditioner. That is, we determine a reasonable truncation
index, and construct the preconditioner

P = F∗ΛkF .

In a realistic problem, we must use a parameter-choice method, such as the discrepancy principal,
generalized cross validation (GCV), L-curve, or some other method [8, 11, 21]. In our computations
we use GCV, such as would be done for TSVD regularization. That is, assuming A is n2 × n2, we
find the index k that minimizes

G(k) =

∑n2

j=k+1
|b̂j |

2

(n2 − k)2
, (20)

where b̂ = Fb.
We remark that for computational purposes, the matrix F does not need to be constructed

explicitly, since multiplying a vector by F is equivalent to applying an FFT to that vector, and
multiplication by F∗ is equivalent to applying an inverse FFT. Moreover, the eigenvalues of the
BCCB matrix can be obtained by computing an FFT of its first column [6]. For an n × n image
(thus an n2×n2 matrix A), it requires only O(n2 log n) arithmetic operations to compute an FFT.

5 Numerical Experiments

In this section we observe the results from two different examples. The first is an image restoration
test problem2 that was developed at the US Air Force Phillips Laboratory, Lasers and Imaging
Directorate, Kirtland Air Force Base, New Mexico. The image is a computer simulation of a field
experiment showing a satellite as taken from a ground based telescope, and therefore represents an
example of atmospheric blurring. The true and blurred, noisy images have 256 × 256 pixels, and
are shown in Figure 1. The matrix A is an ill-conditioned 65, 536 × 65, 536 block Toeplitz matrix
with Toeplitz blocks (BTTB). This data has been widely used in the literature for testing image
restoration algorithms.

In the second example, we use the enamel test image (enamel.tif) from Matlab’s Image Pro-
cessing toolbox, artificially blur it using a cubic phase filter point spread function, and add .5%
noise. The true and degraded images are shown in Figure 2.

2This data is included in the image restoration package, RestoreTools, which can be obtained from
http://www.mathcs.emory.edu/∼nagy/RestoreTools. Examples showing how to use the data in iterative methods
may be found in an associated manuscript [16].

7

Our numerical tests were done using Matlab 6.1. Efficient implementations were done using
RestoreTools, a Matlab package for image restoration [16].

(a) True image. (b) Blurred image.

Figure 1: satellite image data.

(a) True image. (b) Blurred image.

Figure 2: enamel image data.

In Figures 3 and 4, we show the filter factors at various iterations. The top row shows plots
of the CGLS filter factors, the second row shows the BB filter factors, the third row shows the
RNSD filter factors, and the bottom row shows the LW filter factors. Recall that we would like
the filter factors to start off at 1, and eventually decay to 0. We observe that the filter factors for
CGLS begin to oscillate, and this oscillation increases as the iterations proceed. This property of
the CGLS filter factors was observed by Vogel [22]. In comparison, the filter factors for BB, RNSD
and LW behave much more stably.

We also compared the relative error plots of the four methods on both satellite and enamel

(see Figure 5). It is clear that RNSD and LW converge too slowly compared to CGLS and BB. BB
doesn’t converge as fast as CGLS, however the relative errors don’t bounce back up as quickly as
CGLS, making BB a nice alternative to CGLS when a good preconditioner is not available. Figure
6 compares the four preconditioned methods using the preconditioner described in Section 4. PLW
(with ω = 0.05) converges the slowest. PBB converges almost exactly the same as PRNSD. PBB

8

200 400
−1

0

1

2
 k = 1

200 400
−1

0

1

2
 k = 7

200 400
−1

0

1

2
 k = 15

200 400
−1

0

1

2
 k = 30

200 400
−1

0

1

2

200 400
−1

0

1

2

200 400
−1

0

1

2

200 400
−1

0

1

2

200 400
−1

0

1

2

200 400
−1

0

1

2

200 400
−1

0

1

2

200 400
−1

0

1

2

200 400
−1

0

1

2

200 400
−1

0

1

2

200 400
−1

0

1

2

200 400
−1

0

1

2

Figure 3: Filter factors for satellite at a few selected iterations of CGLS, BB, RNSD and LW.

9

1000 2000 3000
−1

0

1

2
 k = 1

1000 2000 3000
−1

0

1

2
 k = 5

1000 2000 3000
−1

0

1

2
 k = 25

1000 2000 3000
−1

0

1

2
 k = 50

1000 2000 3000
−1

0

1

2

1000 2000 3000
−1

0

1

2

1000 2000 3000
−1

0

1

2

1000 2000 3000
−1

0

1

2

1000 2000 3000
−1

0

1

2

1000 2000 3000
−1

0

1

2

1000 2000 3000
−1

0

1

2

1000 2000 3000
−1

0

1

2

1000 2000 3000
−1

0

1

2

1000 2000 3000
−1

0

1

2

1000 2000 3000
−1

0

1

2

1000 2000 3000
−1

0

1

2

Figure 4: Filter factors for enamel at a few selected iterations of CGLS, BB, RNSD and LW.

10

jumps sharply after the first iteration on satellite, but then corrects itself. PCGLS converges
then bounces back up for satellite. For the enamel test image, the results are similar, except
that the convergence behavior for PCGLS is worse than using no preconditioning. The problem
is that the preconditioner is too ill-conditioned for use in PCGLS. It may be possible to improve
the convergence behavior by increasing the truncation index, but our experience is that if PCGLS
exhibits such erratic convergence behavior, it is very difficult to find a good truncation index for
the preconditioner. In such cases it is probably best to use no preconditioning with CGLS.

0 50 100 150
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

re
la

tiv
e

er
ro

r

CGLS
BB
RNSD
LW

0 20 40 60 80 100 120

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

re
la

tiv
e

er
ro

r

CGLS
BB
RNSD
LW

(a) satellite. (b) enamel.

Figure 5: Relative Error plots for CGLS, BB, RNSD, and LW

0 10 20 30 40 50 60 70 80
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

re
la

tiv
e

er
ro

r

PCGLS
PBB
PRNSD
PLW

0 10 20 30 40 50 60 70 80
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

re
la

tiv
e

er
ro

r

PCGLS
PBB
PRNSD
PLW

(a) satellite. (b) enamel.

Figure 6: Relative Error plots for PCGLS, PBB, PRNSD, and PLW

6 Concluding Remarks

In this paper we demonstrated that while CGLS is considered superior on well-posed problems due
to its fast convergence, RNSD is a nice alternative when a good preconditioner is available and BB
may be a nice alternative when a good preconditioner is not available. When we use PRNSD or
BB, the relative error is reduced quickly in the early iterations, but it does not increase quickly
after reaching an optimal level, as it does with CGLS. This kind of convergence behavior may

11

be preferable for applications where it is difficult to find an adequate stopping criteria. We also
showed that the filter factors for BB, RNSD and LW are all much more stable than the filter factors
for CGLS. The semi-convergent behavior for CGLS and PCGLS is much more prominent than for
the other six methods implying a relationship between the stability of the filter factors and the
semi-convergent behavior.

References

[1] J. Barzilai and J. Borwein, Two-point step size gradient methods, IMA Journal of Numerical

Analysis, V. 8, pp. 141–148, 1988.

[2] T. F. Chan, An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Stat.

Comp., V. 9, pp. 766–771, 1988.

[3] R. H. Chan and M. K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Review,
V. 38, pp. 427–482, 1996.

[4] T. F. Chan and J. A. Olkin, Preconditioners for Toeplitz-block matrices, Numer. Algo., V. 6,
pp. 89–101, 1993.

[5] W. Cheney and D. Kincaid, Numerical Analysis, Second Edition, Brooks/Cole Publishing
Company, 1996.

[6] P. J. Davis, Circulant Matrices, Wiley, New York, 1979.

[7] J. E. Dennis, Jr. and J. J. Moré, Quasi-Newton methods, motivation and theory, SIAM Review,
V. 19, No. 1, pp. 46–89, January 1977.

[8] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic
Publishers, Dordrecht, 2000.

[9] G. Golub, M. Heath and G. Whaba, Generalized cross-validation as a method for choosing a
good ridge parameter, Technometrics, V.21, pp 215–223, 1979.

[10] M. Hanke, J. Nagy and R. Plemmons, Preconditioned iterative regularization, in Numerical

Linear Algebra, de Gruyter, Berlin, L. Reichel, A. Ruttan and R. S. Varga, eds., pp. 141–163,
1993.

[11] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, SIAM, Philadelphia, PA, 1997.

[12] P. C. Hansen. Regularization tools: A Matlab package for the analysis and solution of discrete
ill-posed problems, Numerical Algorithms, V. 6, pp. 1–35, 1994.

[13] P. C. Hansen and D. P. O’Leary, The use of the L-curve in the regularization of discrete
ill-posed problems, SIAM J. Sci. Stat. Comput, V. 14, pp. 1487–1503, 1993.

[14] T. G. Kolda, D. P. O’Leary, and L. Nazareth, BFGS with update skipping and varying memory,
SIAM J. Optim., V. 8, pp. 1060–1083, 1998.

[15] J. G. Nagy and K. M. Palmer, Steepest descent, CG, and iterative regularization of ill-posed
problems, BIT, V. 43, pp. 1003–1017, 2004.

12

[16] J. G. Nagy, K. M. Palmer and L. C. Perrone, Iterative methods for image restoration: A
Matlab object oriented approach, to appear in Numerical Algorithms, 2004.

[17] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston,
1996.

[18] G. Strang, A proposal for Toeplitz matrix calculations, Studies in Appl. Math., V. 74, pp.
171–176, 1986.

[19] H. J. Trussell, Convergence criteria for iterative restoration methods, IEEE Trans. Acoust.

Speech Signal Process., V. 31, pp. 129–136, 1983.

[20] J. M. Varah, A practical examination of some numerical methods for linear discrete ill-posed
problems, SIAM Review, V. 21, pp. 100–111, January 1979.

[21] C. R. Vogel, Computational Methods for Inverse Problems. SIAM, Philadelphia, PA, 2002.

[22] C. R. Vogel, Solving ill-conditioned linear systems using the conjugate gradient method. Tech-
nical Report, Department of Mathematical Sciences, Montana State University, 1987.

13

