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Abstract

A hamiltonian cycle in a 3-uniform hypergraph is a cyclic ordering of the
vertices in which every three consecutive vertices form an edge. In this paper
we prove an approximate and asymptotic version of an analog of celebrated
Dirac’s theorem for graphs: For each v > 0 there exists ng such that every
3-uniform hypergraph on n > ng vertices, in which each pair of vertices belongs
to at least (1/2 + v)n edges, contains a hamiltonian cycle.

1 Introduction

A substantial amount of research in graph theory continues to concentrate on the
existence of hamiltonian cycles. A classic theorem of Dirac states that a sufficient
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condition for an n-vertex graph to be hamiltonian is that the minimum degree is at
least n/2, and there are obvious counterexamples showing that this is best possible.

The study of hamiltonian cycles in hypergraphs was initiated in [3] where, however,
a different definition than the one considered here was introduced. From now on, by
a hypergraph we will always mean a 3-uniform hypergraph.

Definition 1.1 A cycle of order k is a hypergraph C on k vertices and k edges,
whose vertices can be labeled vy, ..., v in such a way that for each i =1,...,k — 2,
{Vi, Vi1, Vize} € C as well as {vg_1,vk,v1} € C and {vg,v1,v2} € C (there are
2k such labelings). By a hamiltonian cycle in an n-vertex hypergraph we mean a
subhypergraph which is a cycle of order n. In other words, we say that a hypergraph
H with |V(H)| = n is hamiltonian if its vertices can be labeled vy,..., v, in such a
way that for each i = 1,...,n, {v;,vi11,vi12} € H as well as {v, 1,v,,v1} € H and
{vp,v1,v2} € H.

This notion and its generalizations have a potential to be applicable in many contexts
which still need to be explored. An application in the relational database theory can
be found in [4]. As observed in [8], the square of a (graph) hamiltonian cycle naturally
coincides with a hamiltonian cycle in a hypergraph built on top of the triangles of the
graph. More precisely, given a graph G, let Tr(G) be the set of triangles in G. Define
a hypergraph HT"(G) = (V(G),Tr(G)). Then there is a one-to-one correspondence
between hamiltonian cycles in HT"(G) and the squares of hamiltonian cycles in G.
For results about the existence of squares of hamiltonian cycles see, e.g., [9].

Example 1.1 Consider a robot walking through a tough terrain with the task to
visit n designated locations and return to the base (one may view these locations as
fuel providers). In order for the robot to move from one location to another, after
reaching any one of them it has to be able to “see” the next one. To optimize, we do
not want the robot to visit a location more than once. So far, this is just the standard
traveling salesman problem, but suppose that in order to speed up the motion, or to
smooth out the trajectory, we request that the robot “sees” the next two locations.
Then our problem becomes that of finding a hamiltonian cycle in HT"(G), where G
is the graph of those pairs of n locations which can “see” each other.

Of course, a reader with strong imaginary skills can replace the robotics terminology
with something else, like mountain hiking or the traveling salesman problem with an
option of skipping a town.

Our next example cannot be formulated in terms of H*"(G) for any graph G.



Example 1.2 Consider a patient taking 24 different pills on a daily basis, one at a
time every hour. Certain combinations of three pills can be deadly if taken within 2.5
hour. Let D be the set of deadly triplets of pills. Then any safe schedule corresponds
to a hamiltonian cycle in the hypergraph which is precisely the complement of D.

In [8] the authors gave a sufficient condition for a hypergraph to have a hamiltonian
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cycle. They proved that if every pair of vertices belongs to more than 3(n — 1) +1
edges, then the hypergraph contains a hamiltonian cycle. They also conjectured that,
in fact, a much stronger result is true, namely that %(n— 1)+1 can be replaced by n/2.
If true this would be in close analogy with Dirac’s degree condition for graphs. Some
support for this conjecture stems from a construction of an edge-maximal hypergraph
with each pair degree at least [n/2]| — 1, but not containing a hamiltonian cycle (see
[8], Theorem 3). In this paper we prove an approximate and asymptotic version of

this conjecture.

We say that a hypergraph H is an (n,~)-graph if H has n vertices and every pair of
vertices belongs to at least (1/2 + v)n edges.

Theorem 1.1 For eachy > 0 there exists ng such that every (n,y)-graph withn > ng
1s hamaltonian.

Remark 1.1 Note that an (n,y)-graph is also an (n,~')-graph for all v < y. There-
fore it is enough to prove Theorem 1.1 only for sufficiently small ~.

2 Preliminary lemmas

All statements in this section assume that 0 < v < 1 is sufficiently small (see Remark
1.1), n is sufficiently large and H is an (n,7)-graph on a vertex set V.

Definition 2.1 A k-path is a hypergraph P on k vertices and k — 2 edges, whose
vertices can be labeled vy,...,v; in such a way that for each ¢ = 1,...,k — 2,
{vi,viz1,vi12} € P (there are two such labelings). We say that P connects the
(ordered) pairs v;v) and vgvg_1, which will be referred to as the endpairs of P. Note
that by saying that ab is an endpair of a hyperpath, we always mean that a is the
first (or the last) vertex on the path, while b is the second (or penultimate). We will
often call a hyperpath, simply, a path.

For two paths P and @), let ab be an endpair of P and ba be an endpair of (}, and
assume further that V(P) N V(Q) = {a,b}. By P o @ we denote the path obtained
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(in a unique way) as a concatenation of P and @. This definition extends naturally
to more than two paths.

Lemma 2.1 (Connecting Lemma) For every two disjoint and ordered pairs of
vertices xy and cd there is a k-path in H, k < 4/7, which connects xy and cd.

Proof: ~ We construct sets Ay, A1, As,... and bipartite graphs Gi1,Gs, ..., where
V(G;) = A; 1 UA,;, as follows. Let Ay = {y} and A; = {z : zyz € H}, and
let G; be the star with y as the center and A; as the set of its leaves. Note that
|A1| > (1/2 + y)n. Further, let

= {w: 3z € A; such that yzw € H} and Gy, = {zw : 2 € A, w € A, yzw € H}.
Observe that for every edge zw € G with w # z the vertices zyzw form a 4-path in

H. Also, for each z € A;, we have degg;(z) > (1/2 +7)n.
Let AY = {w € A} : degg; (w) < y/n}, Ay = Ay \ A} and G, = Gj[A; U A,]. Note that

[A1](1/2 + 7)n < |Gyl < 1% + | Ag|| Ay

which implies that |As| > n/2.
Having constructed Ay, A1,...,A4; and Gy,...Gj, j > 2, consider, for every w € A;,

an auxiliary bipartite graph BJ between the neighbors of w in G; and all vertices
in V, where a pair zu, z € Ng,(w), u € V, is an edge of B}, if zwu € H. Define

Ay = {u: Jw € A; such that degg; (u) > n'/4}

and
11 = {wu : such that w € A; and degp; (u) > n'/*}.

Finally, let
]+1 {w € A degG'- (w) < \/ﬁ}a

AJ'+1— +1\ j+1

and
Gj+1 == G;+1[AJ U Aj+1].

Notice that some sets A; may intersect or even coincide (in fact, at some point
the construction starts to repeat itself forever). Nevertheless, for the sake of our
construction, we treat them as disjoint, cloning the vertices as much as necessary.
Let us call the entire structure, consisting of the sets Ag, A1, A>... and the graphs
G1,Gs ..., an zy-cascade.



We had to alter our construction for j > 3 and require degg; (u) > n'/* and not

just deggi (u) > 1, in order to be able to return from any edge of G; back to zy
by a legitimate hyperpath, on which all vertices must be distinct. With the above
definition, in any xy-cascade, there is always a hyperpath from any edge of G; going
backward all the way down to zy as long as j < n'/4. Indeed, when choosing a next
(backward) vertex, we can avoid any given set of vertices of size less than n'/4. In
particular, we can avoid all vertices which are already on the path, as well as z and
y. (In fact, we will need this property only to avoid sets of size O(1).)

A vertex u € A; is called heavy if degg, (u) > (1/2 +7/2)n.

Claim 2.1 There ezists an index j < jo = [1/v] + 1 such that A; contains at least
one heavy verter.

Proof: = We will first show that for j > 2 every vertex w € A; has in G, degree

at least (1/2 + y)n — n®“. Indeed, let s be the number of vertices u € V with
degp; (u) < n'/*. Then

snt/* + (n — 5)|Ng, (w)| > |B| > |Ng,(w)|(1/2 +7)n
which yields, using |Ng, (w)| = degg, (w) > v/n and s < n,
snl/4
[Ng; (w)| =

Note also that the total number of edges of G}, incident to the vertices of A? 4118
3/2

n—s>(1/24y)n - > (1/2 +7)n — n/*.

smaller than n

Now suppose that the claim is not true. Then, using the above estimates, for each
j = 2) e ,jO

[4j-11(1/2+ 7)n — 0™ = n®? < |G| < [44/(1/2 +7/2)n

and, consequently, since |A;| > (1/2 + v)n, we have

1—|—2’y 1429\ g
4> T2 s -0 > (T22) 2

> n,

a contradiction. (For the last inequality we used the fact that (1 — z)e* < 1 with
z =v/(1+ 2v) and assumed that (1+ 27)In2 < 2.) u

Given two disjoint, ordered pairs of vertices zy and cd, consider the zy-cascade
(Ag-l),G’;l)) and the cd-cascade (Ag-z),G’;z)). For i = 1,2, let b ¢ Agz()) be a heavy
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vertex, where 5@ < jo. Then, there exists a® e A;.i()i)il such that a®p®) € Gﬁ)) and
a®p@p(-) ¢ H. Moreover, by the definition of the zy-cascade, there is a (j() + 2)-
path P connecting zy and b6()a(?) and, by the definition of the cd-cascade, there is
a (j® + 2)-path P@, disjoint from P), connecting cd and 5®a(®. Hence, for some

k=" +2)+ (G® +2) <23 +2) <4/,

there is a k-path in H which connects zy and cd (for the last inequality we have
assumed that v < 1/4).

Lemma 2.2 (Absorbing Lemma) There is an l-path A in H with | = |V (A)| <
20y%n, such that for every subset U C V \ V(A) of size at most v°n there is a path
Ay in H with V(Ay) = V(A) U U and such that Ay has the same endpairs as A.

In other words, this lemma asserts that there is one not too long path such that every
not too large subset can be “absorbed” into this path by creating a longer path with
the same endpairs. Consequently, if this path happens to be a segment of a cycle C
of order at least (1 — v°)n then, setting U = V' \ V(C), the path Ay is hamiltonian.
We will use this fact at the end of our proof of Theorem 1.1.

Proof: Given a vertex v we say that a 4-tuple of vertices x,y,z,w absorbs v if
TYz, yzw, ryv,yvz,vzw € H. A 4-tuple is called absorbing if it absorbs a vertex.
This terminology reflects the fact that the path zyzw can be extended by inserting
(or absorbing) vertex v to create the path zyvzw. Note that both paths have the
same set of endpairs.

Claim 2.2 For every v € V there are at least 2y*n* /-tuples absorbing v.

Proof: Because H is an (n,7y)-graph, there are at least (n—1)(1/2+)n ordered pairs
yz such that vyz € H. For each such pair there are at least 2yn common neighbors
x of vy and yz, and at least 2yn — 1 common neighbors w of vz and yz, yielding
together at least

(n —1)(1/2 + y)n2yn(2yn — 1) > 2¢*n?
4-tuples absorbing v. [ |

For each v € V, let A, be the family of all 4-tuples absorbing v. The next claim is
obtained by the probabilistic method.

Claim 2.3 There exists a family F of at most 2v®n disjoint, absorbing 4-tuples of
vertices of H such that for everyv € V, | A, N F| > ¥°n.
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Proof: 'We first select a family F' of 4-tuples at random by including each of n(n —
1)(n — 2)(n — 3) ~ n* of them independently with probability v3n 3 (some of the
selected 4-tuples may not be absorbing at all). By Chernoff’s inequality (see, e.g.,
[7]), with probability 1 — o(1), as n — oo,

o |F'| < 293n, and

e foreach v € V, |A, N F'| > 34°n.

Moreover, the expected number of intersecting pairs of 4-tuples in F’ is at most
n* x 4 x 4 x n® x (v*n™%)? = 16+°n,
and so, by Markov’s inequality, with probability at least 1/17

e there are at most 177%n pairs of intersecting 4-tuples in F'.

Thus, with positive probability, a random family F' possesses all three properties
marked by the bullets above, and hence there exists at least one such family which,
with a little abuse of notation, we also denote by F'. After deleting from F' all
4-tuples intersecting other 4-tuples in F', as well as those which do not absorb any
vertex, we obtain a subfamily F of F' consisting of disjoint and absorbing 4-tuples
and such that for each v € V,

3
A, N F| > E'y‘r’n — 34751 > 4°n.

Set f = |F| and let Fi,..., Ff be the elements of F. For each ¢ = 1,...,f, F; is
absorbing and thus spans a 4-path in H. We will further denote these paths also by
F; and set F = U{Zl F;.

Our next task is to connect all these 4-paths into one, not too long path A. To this
end, we will repeatedly apply Lemma 2.1 and, for each i = 1,..., f — 1, connect the
endpairs of F; and Fj,; by a short path. Recall that the operation P o () has been
defined at the beginning of this section.

Claim 2.4 There exists a path A in H of the form
A:FloCl---OFf_lon_loFf

where the paths Ci,...,Cs_1 have each at most 8/ vertices.
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Proof: We will prove by induction on 7 that for each ¢ =1, ... f, there exists a path
A; in H of the form A; = F; and, for ¢ > 2,

Ai=Fio0Cy---0 z'—1OCi—1OFz',

where the paths Ci,...,C;_; have each at most 8/ vertices. Then A = Ay.

There is nothing to prove for ¢ = 1. Assume the statement is true for some 1 <7 <
f —1. Let ab be an endpair of A; and let cd be an endpair of F;,;. Denote by H; the
subhypergraph induced in H by the set of vertices V; = (V \ V(F U A4;))U{a,b,c,d}.
Since

[V(FUA)| < |F|(4+8/7) <10f/v < 20v*n,

H; is a (|Vi],y/2)-graph, where 0 < n — |V;| < 20y*n. By Lemma 2.1 applied to H;
and the pairs ba and dc, there is a path C; C H; of length at most 4/(y/2) = 8/7,
connecting these pairs. Note that V(C;) \ {a, b, ¢, d} is disjoint from V(F U A4;), and
thus,
Aiy1 = Ai0Cio Fiyy

is the desired path. [ |
Claim 2.4 states that we may connect all 4-paths in F into one path A of length at
most f(4+8/v) < 20’}/2n. It remains to show that A has the absorbing property. Let
UcCV\V(A), |U| <~°n. Because for every v € U we have |A, N F| > 4°n, that is,

there are at least v°n disjoint, v-absorbing 4-tuples in A, we can insert all vertices of
U into A one by one, each time using a fresh absorbing 4-tuple. [ |

Given U CV and z,y € V, let
degu(zy,U) =|{z € U :zyz € H} |,

and, in particular, degy (ry) = degy(zy, V). Note that in an (n,v)-graph H we have
degu(zy) > (1/2 + v)n for all pairs of vertices z,y € V.

Lemma 2.3 (Reservoir Lemma) For every subset W C V, |W| < yn/4 there
erists a subset R C V \ W (a reservoir) such that |R| = [v°n/2] and for every pair
of vertices x,y € V

degn(zy, R) > (1/2 +v/2)(|R| + 4).

In particular, for every S C V\ R, |S| =4, H{RU S] is an (|R| + 4,/2)-graph.

Proof:  Set 7 = 4°n/2 (to avoid irrelevant complications, we assume that r is an
integer). We choose R randomly out of all ("_1W|) possibilities and apply the proba-
bilistic method. The random variable X = X,, has the hypergeometric distribution
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with expectation EX satisfying

deg (zy) 1.3
SEX = ——— 22> [ — — i
r> n—| |r_ 2+47 T

Hence, by Chernoff’s bound ([7], (2.6) on page 26 and Thm. 2.10 on page 29)

PlX < 1+1 (r+4)) <Pl X <EX ! +2)< v
-+ = T — =T exp§ — =
22 - - g = &P 337

and consequently,
1 1 n ¥'n
Pl dzy: X, -+ = 4) ) < —— = o(1).
<xy y<<2+27)(r+ ))_(2)exp{ 66} o(1)

A matching in a hypergraph is a set (subhypergraph) of disjoint edges. Our last
lemma in this section guarantees an almost perfect matching in a special class of
hypergraphs. This lemma will be later applied to the so called cluster graph resulting
from the Regularity Lemma (Lemma 4.1).

Given a hypergraph K, let Gk be the graph of all pairs xy of vertices which belong
to less than |V (K)|/2 edges of K, that is, for which degx(zy) < |V(K)|/2.

Lemma 2.4 If a hypergraph K on t > 24 vertices satisfies the inequality

t
<
A(Gk) < 13’

then K contains a matching M covering all but at most max(2, A(Gk)) + 1 vertices.

Proof: Let M =eq,...e4, g <t/3, be a largest matching in K and suppose that a
set U of more than u = max(2, A(Gg)) + 1 vertices remains uncovered. Note that

t—=39=U/>u+1>4. (1)

Call a pair of vertices of K big if it belongs to at least ¢/2 edges of K, that is, it is an
edge of the complement G% of the graph Gk. Let vy, v9,v3,v4 € U be four vertices
of U, where v3vy forms a big pair. (The existence of a big pair in U is guaranteed,
because for any vertex v € U its degree in Gk is at most u — 1, while there are at
least u vertices in U besides v.)

The set N(vs,vs) of neighbors of the pair vsvs in K intersects at least ¢/6 edges of
M (since it is disjoint from U). Then, because 2(u — 1) < t/6, there exists an edge
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of the matching M, say e, = {z1, 2, z3}, such that vsvszs € K and both, v1z; and
v are big pairs in K.

Note that if for some s = 1,2, there is a vertex v € U \ {vs, v4} such that vv,z, € K,
then the edges ei,...,e4_1, vv,z, and vsvsz3 would form a matching of K larger
than M - a contradiction. Hence, for each s = 1,2 we have N(vsz;) N U C {v3,v4}.
Similarly, v1z1zs € K and vezox; & K. Hence, for each ¢ = 1,2, all but at most three
neighbors of v;z, belong to M — e,.

Let a3, s =1,2,¢=1,...g9 — 1, be the number of vertices of e, which together with
vsxs form an edge of K. Then

g—1

t
) (ag+a2) > 2 (5—3) =t—6.
q=1

By averaging, there must be an index ¢, 1 < ¢ < g — 1, such that

t—6
1 2
aq+angj>3,

where the last inequality follows from (1). This means, however, that there are
Y, 2 € eq, Yy # 2, such that yviz; € K and also zvozy € K. But then

€1,---,€¢-1,€¢+1,---,€g—1,VgVUs T3, YV1T1, 2V2T2

is a larger matching than M — a contradiction. [ |

3 Proof of Theorem 1.1

We first outline the forthcoming proof. Let H be an (n,)-graph.

e By Lemma 2.2 fix an absorbing l-path A4, | = |[V(4)| < 20y?n.
e By Lemma 2.3 with W = V(A), fix a reservoir set R C V\V(A), |R| = [37°n].

e Set H = H[V \ (V(A) U R)] and cover all but at most 37°n vertices of H; by
disjoint paths P, ..., P,, where p < ®n. Denote the set of uncovered vertices
by T'.

e By p+1 applications of Lemma 2.1 and by the property of R, connect all paths
Pi,..., P, as well as A, into one cycle C in H, leaving only a leftover subset
R' of R and the trash set T outside C. Note that |R' UT| < 4°n.
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e Using the absorbing property of A insert R'UT into C, obtaining a hamiltonian
cycle in H.

It remains to explain the third task on the above list: how to cover almost all vertices
of H, by disjoint paths P,...,P,. This will be taken care of by Lemma 3.1 stated
below. However, as this lemma relies heavily on a regularity lemma for hypergraphs
and some related results, we devote two separate sections, Section 4 and Section 5,
to its proof.

Lemma 3.1 (Path-Cover Lemma) For everyy > 0 there ezists ng such that every
(n,v)-graph, n > ng, contains a family of at most v®n vertex-disjoint paths, covering
all but at most v°n/2 vertices.

Proof of Theorem 1.1: Let us assume that v < 4%0 (see Remark 1.1) and let A be
an absorbing l-path in H, | = |V(A)| < 2092n, whose existence is guaranteed by
Lemma 2.2. By Lemma 2.3 applied to H with W = V(A), there exists a reservoir
set R C V \ V(A) of size |R| = 17°n (for simplicity we are assuming that this is an
integer) with the property described in that lemma. Set H; = H[V \ (V(A)UR)| and
note that Hy is an (ny,7;)-graph, where

2 L 5
n—20’yn—§'yn§n1§n

and )
0<’y—2072—§75<71<7.

We apply Lemma 3.1 to Hy, obtaining a family of p < v¥n; < ¥®n vertex-disjoint
paths P, ..., P,, and the set T C V(H;) of vertices not covered by these paths of
size |T'| < viny /2 < v°n/2.

To connect all these paths as well as the path A into one cycle C, we successively
apply Lemma 2.1 to ever shrinking subhypergraphs of the form H[R; U S|, where
a subset R; C R will be defined below in (2), while S consists of all four vertices
from the endpairs of the two paths to be connected at the current stage. Thus, new
vertices of the connecting paths will be entirely contained in the set R. The next
claim, very similar to Claim 2.4, describes the procedure of connecting together all
path P,..., P, into one path L.

Claim 3.1 There exists a path L in H of the form

L=PoCi---0F,0C,0A,

11



where the paths Ci,...,C, have each at most 20/~ vertices and are such that

V(CiU---UC)\V(PU---UP,UA) CR.

Proof: Set P,;; = A to unify notation. We will prove by induction on ¢ that for
every t = 1,...,p+ 1, there exists a path L; in H of the form

Li=PoCi---oP_10C;_10F,
where the paths Ci,...,C;_; have each at most 20/~ vertices and are such that
ViCiUu---UC;_))\V(PLU---UP;) CR.

Then L = L,,;. There is nothing to prove for ¢ = 1. Assume that the statement is
true for some 1 < ¢ < p. Let ab be an endpair of L; and cd be an endpair of P; ;.
Since

[V(C1U---UCi)| < (i = 1)(20/7) < 20p/y < 207"n,

the remaining subset
R, =R\V(CiU---UC;_4) (2)

of R still maintains the property described in Lemma 2.3 but with %fy instead of /2.

Indeed, since v < ﬁ, for every pair z,y € V

1 1 1 2
Hence, the subhypergraph H[R; U {a,b,c,d}] is an (|R;| + 4, %’y)—graph. By Lemma
2.1 applied to H[R; U{a, b, c,d}] and the pairs ba and dc there is a path C; in H[R; U
{a,b, c,d}] of length at most 20/~ connecting these pairs. Note that V(C;)\{q,b, c,d}
is disjoint from V(C; U---UC;_1) UV(PyU---U P,.,) and thus,

Liyy =L;joCio Py

is the desired path. [ |

To obtain the cycle C, let ab and cd be the two endpairs of L = L., (we follow
the notation from the proof of Claim 3.1. Again, applying Lemma 2.1 to H[R,4; U
{a,b,c,d}] and the pairs ba and dc we obtain a path Cpi1 of length at most 20/y
connecting these pairs (and thus forming the desired cycle C') and such that V(Cp11)\
{a,b,c,d} C R,y1. Set Ry o = R,,1 — V(Cpy1). There are at most y°n vertices left
outside C. Indeed, we have

1 1
n = V(O) = IT| +|Bpia| < IT|+|R| < 57°n+ 590 =7"n.
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Finally, we absorb these remaining vertices into the path A, which is now part of
the cycle C. Set U = V — V(C). By Lemma 2.2 there is a path Ay with the same
endpairs as A and such that V(Ay) = V(A)UU. Then Ay UC is a hamiltonian cycle
in H. [ |

4 Regularity of Hypergraphs

In the previous section we stated Lemma 3.1, so crucial for the proof of our main
result. Here we make thorough preparations towards its proof which is contained in
Section 5. Our proof will be based on a regularity lemma for hypergraphs from [5].

4.1 Regularity of graphs

We say that a bipartite graph G with bipartition V(G) = X UY is (d, €)-regular if
forall AC X and B CY with |A| > ¢|X| and |B| > €|Y|, we have

‘dG(A, B) - d‘ <§g,
where
eG(AaB)
|A||B|

is the density of the pair (A4, B) and eg(A, B) is the number of edges in G with one
endpoint in A and the other in B. We will write dg or d(G) for dg(X,Y). We say

that G is e-regular if it is (d, €)-regular for some d.

dG(Aa B) =

Note that the (bipartite) complement of a (d,¢)-regular graph is itself (1 — d,¢)-
regular. Also, if G; is (d;, &;)-regular, : = 1,2, and G; and G5 have the same vertex
set (and the same bipartition), but are edge-disjoint, then their union G; U G» is
(dy + da, €1 + €2)-regular.

A triple T = (P2, P13, P?3) of bipartite graphs with vertex sets V; U Vs, V; U V3 and
Vo U V3 will be referred to as a triad. Let tr(7) stand for the number of triangles
in P = P2U PB U P2, It is easy to estimate the number of triangles in a triad
consisting of e-regular graphs (see, e.g., Fact A in [5]). Here we will need a slight
extension of that result, assuming that only two out of the three bipartite graphs are
g-regular. We include a simple proof for completeness.
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Fact 4.1 Let T = (P2, P13 P?) be a triad, where for some 0 < di3,da3,¢ < 1, the
graphs P'3 and P?® are, respectively, (di3, €)-reqular and (das,€)-regqular. Then

tr(T)
d(P*?)dy3dyg — 4 < ———— < d(P'?)d;3d 6e.
(P*)d13das — 4e VAIVal[Va) (P**)dy3das + 6¢
In particular, if all three graphs are (d,€)-regular, then
tr(T)
d3—56< T <d3+7€.
Maana

Proof:  Assume for simplicity that |V;| = n for each ¢ = 1,2,3. For v € Vi, let N(v)
be the set of neighbors of v in P'3 and for v € V} and u € V,, let N(v,u) be the

subset of N(v) consisting of the neighbors of u in P?® (which are thus also neighbors
of v in P3).

Let U™ and U* be the sets of those vertices v € V; for which, respectively, |N(v)| >
(di3+¢)n and |N(v)| < en. By the e-regularity of P'% we have |[Ut| < en. If v € U?,
then, clearly, |N(v,u)| < en for every u € V5. For each v € U =V, \ (U U U?), let

U, be the set of those vertices u € V; for which |N(v,u)| > (das + €)|N(v)|. Then,
by the e-regularity of P? we have |U, | < en.

Let us express P2 as a union of four edge-disjoint subgraphs, P2 = F,UF,U F3U Fy,
where F consists of all edge vu with v € UT, Fy — with v € U®, F3 — with v € U and
u € U}, and, finally, F, consists of all edges vu with v € U and u ¢ U,'.

By the above estimates, D, .p [N (v,u)| < en®, i =1,2,3, while
> IN(v,u)| < |P|(dis + €)(das + &)

vucFy
Altogether,
t’f'(T) = Z |N(U, U)' S 3671,3 + d(Plz) (dlg —+ E)(dzg + €)TL3 < (d(Plz)dlg,dzg + 66)7’L3.
vue P12

For the lower bound, we may assume that min(d(P'?), d;3,ds3) > 4¢ and consider the
set U~ of all v € V; for which |N(v)| < (di3 — €)n, and for each v € V; \ U, the set
U, of those vertices u € V5 for which |N (v, u)| < (des —€)|N(v)|. We have |[U~| < en
and, for allv € Vi — U, |U, | < en, because |N(v)| > (di3 — €)n > en. Thus, for all
but at most 2en? pairs v,u, we have |N(v,u)| > (di3 — €)(das — €)n. Consequently,
similarly as for the upper bound,

t’l‘(T) 2 (d(P12) — 26) (dlg — E)(d23 - 6)’IL3 > (d(P12)d13d23 - 46)%3.
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4.2 Regularity of hypergraphs

For a triad 7 = (P2, P'3, P®) with ¢tr(7) > 0 and a 3-uniform, 3-partite hypergraph
H with vertex set V(H) = V; U V5 U V3 we define the density of H over T as

du(r) = 0T,

where T'r(T) is the set of triplets formed by the vertex sets of all triangles in P. (If
tr(T) = |Tr(T)| = 0 then we set dg(7) = 0.)

Definition 4.1 Let § > 0. We will say that a hypergraph H is §-regular with respect
to the triad 7 = (P2, P13, P2) if for every triad S = (Q¥Y,Q%, Q%) such that
QY C P9 1<i<j<3, and tr(S) > 6tr(T), we have |dg(S) —dy(T)| < 6. A triad
with respect to which a hypergraph is not d-regular will be called §-irregular.

The hereditary nature of regularity is captured by the following, simple fact.

Fact 4.2 Let T = (P2, P'3 P?3) be a triad with vertex sets V1, Vs, Vs, all of equal
size n, and let H be a hypergraph, V(H) = V; UV, U V3. Furthermore, for 0 <n <1,
let U; CV;, |Uj| >mm, i=1,2,3, and Q¥ = P9[U,,U,), 1 <i < j<3.

(a) If P2 is (d,e)-reqular with d > € and ¢ < n < 1 then Q' is e/n-reqular with
density d — e < dgu(Uy,Uy) < d+¢€.

(b) If all graphs P, 1 < i < j < 3, are (d,€)-regular , d® > 11¢/n, and H is §-reqular
with respect to T, where § < n®/3, then H is 36/n®- reqular with respect to the triad
S = (Q",Q",Q%) and has density dg(S) satisfying |dg(S) — du(T)| < 6.

Proof: Part (a) is obvious. For part (b), note that by Fact 4.1, tr(T) < n3(d® + 7¢)
and, similarly,

1r(S) > (nn)*(d® — 5e/n) > %ni*(d?’ + e > %n%rm,

where for the middle inequality we used the assumption that d®* > 1l¢/n. Thus,
if R is a subtriad of S with tr(R) > (36/n%)tr(S) then, since n*/3 > §, we have
tr(R) > dtr(T) and by the d-regularity of H with respect to 7,

[de(R) — du(T)| < 6.

Since the above applies in particular to R = S, we conclude that |dg(R) — du(S)| <
26 < 36/n3, which proves that H is 36 /n*-regular with respect to S. u
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We now state the regularity lemma for 3-uniform hypergraphs in a simplified form,
suitable for our needs. Set K (U, W) for the complete bipartite graph with vertex sets
U and W.

Lemma 4.1 (Regularity Lemma for Hypergraphs [5]) For every é > 0, an in-
teger to and for all sequences 0 < (1) < 1/(2013), there exist constants Ty, Ly and Ny
such that every 3-uniform hypergraph H with at least Ny vertices admits a partition
IT of (V(Z,H)) consisting of an auxiliary verter set partition VH)=VouWuU---UV,
where ty < t < Ty, [Vo| < t and |V1| = |Va] = = |Vi|, and, for each pair i, j,
1 <i<j<t, of a partition K(V;,V;) = Ul P”, where 1 <1 < Ly, satisfying the
following conditions:

(i) all graphs P9 are (1/1,e(1))- regular,

(i) for all but at most §13t* triads Th? = (PM, P} PY), the hypergraph H is
d-regular with respect to ’Th” .

There are three essential differences between the original version from [5] and the
one stated above. Firstly, we consider only the case r(l,t) = 1. Secondly, instead of
counting triangles contained in irregular triads, in (ii) we count the irregular triads
themselves, which is essentially equivalent (cf. Proposition 4.6 in [11] and the outline
below).

Thirdly, and most importantly, we have no exceptional graphs P whatsoever. More-
over, the number of graphs P¥ between each pair (V;,V;) of clusters, which varied
in the original setting, is now, conveniently, precisely [. Below we outline how our
version follows from the original statement, Theorem 3.5 in [5] (see [14] for more
details).

Outline of how Lemma 4.1 follows from Theorem 3.5 in [5]: Given § > 0, ty and
0 < ¢(I) < 1/(2003), apply Theorem 3.5 in [5] to H with §' = §/2, ¢ = §*/8, to,
lo =1, r(l,t) = 1 and e5(l) = de(l)/(61) obtaining a partition IT" as in Theorem 3.5
of [5], consisting of a vertex partition V(H) = Vo UV; U.--UV; = m and, for each
pair i,7, 1 <17 < j <t, of a partition K(V;,V;) = UL’ZO Pi 1, <1. Set

e=¢(l) and g9 = €3(1).
For each pair 4,5, 1 <4 < j <t, call a graph Pi good if it is (1/1,e5)-regular. Let
s = s;; <l be the number of good graphs P¥ and assume that these are the graphs
Pi aq=1,...,s. Define

RY = K(V;,V;) — U P,
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Note that R, as a complement of a union of s (1/1, ;)-regular graphs, is (1—s/1, se3)-
regular.

Partition each RY with s < [ into [ — s (1/l,¢)-regular graphs P¥ a = s+ 1,...,1
(a random partition will do), and set P¥ = P¥ for a = 1,...,s. If s = [, set
Pj = P URY and P¥ = P¥ for a =2,...,s. Then we have K(V;,V;) = UL_, P¥,
for all 1 < i < j <t, and all graphs P¥, a =1,...,l, are (1/,¢)-regular. This is the
required partition II.

It remains to estimate the number of J-irregular triads in II. According to Theorem
3.5 in [5], only at most §'n® triplets belonged to (as triangles of) ¢'-irregular triads
of IT". The changes that lead from partition IT’ to the new partition IT affected only the
edges of |J RY, that is, at most &1 (3)m?/2 < e1n?/2 edges belonging to ey-irregular
graphs of IT', at most £;n?/2 edges between the exceptional pairs (V;, V), and at most
e1m?/2 edges in graphs Py with |P}’| < eym?. Altogether,

| U R”l S 28177,2.

1<i<j<j

The edges of |JRY could enlarge the set of existing §'n3 triplets belonging to 4-
irregular triads by at most 2¢1n3 < dn3/4 triplets. Using Fact 4.1 and our assumption
on ¢, it is easy to check that a set of at most 20n? triplets may form at most 6/3¢3
triads.

Note that when s;; = [, each ¢'-regular triad of II' which contained the graph P
turned, after “swallowing” the graph R* into a (&' + 3ley(I))-regular, hence also 4-
regular triad, and thus the edges of P}’ do not need to be accounted for. [ |

4.3 Regularity and hyperpaths

In order to cover a d-regular hypergraph by many disjoint paths, it suffices to construct
one path, remove it, and use the heredity. The lemma below is a very special case of
Theorem 3.1.1 in [10], where all we want is just one path. In its full version, Theorem
3.1.1in [10], under a stronger assumption of so called (4, r)-regularity of H, guaranties
the right number of copies of any fixed hypergraph, but has, therefore, a much more
complicated proof which requires the strongest form of Lemma 4.1 (see [5]).

Lemma 4.2 For all integers k > 3 and |l > 1, real numbers o > 0, and all
1
d < 3 min(k™t, o) and e < §/(151%)
the following holds. Suppose that
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e H is a k-partite 3-uniform hypergraph with vertex partition (V1,..., Vi), |Vi| =
e = |Vk| = m)

e P' is q bipartite graph between V; and Vi1, 1 <i < k—1, and Q' is a bipartite
graph between V; and V1o, 1 <1 < k — 2,

e all graphs P and Q' are (1/1,¢)-reqular, and

o foralll <i<k—2, H is §-reqular with respect to the triad T* = (P*, P, Q%)

and has density dg(T*) > a.
Then, H contains a path on k vertices, one from each set V;.

Proof: Define graphs B*~! ... B! recursively. Set B*¥! = () and for each i =
k—2,...,1, let Bt be the set of those edges uv € P*, u € V;, v € Vi1, for which there
is no w € V5 such that uvw € H and vw ¢ B*L.

Claim 4.1 For eachi=1,...,k — 1, we have |B*| < 2(k — 1)d|P?|.

Observe that once we have proved this claim, we are done. Indeed, we may create a
required path as follows. Select any edge v,v, € P! — B!, where v; € V; and v, € V5.
This is possible, because |P'| > |B'|. Then choose v3 € V3 so that v;vev3 € H and
vov3 € P? — B2, Continue until an entire path on k vertices is found.

Proof of Claim 4.1: We prove the claim by backward inductionon ¢ =%k—1,...,1. It
is clearly true for i = k—1 (recall that B*~! = )). Assume that for some 1 < i < k—1,
we have

B <20k —i—1)OPT but  [BY| > 2(k - i)d| P,

Set
T=T'=F,P*",Q) ad To=(B, P —B" Q.

Our goal is to prove that
tr(To) > otr(T), (3)
and thus, by the J- regularity of H with respect to 7, that
du(To) >da(T)—6>a—26 > 0.

As dg(To) = |H N Tr(T)/tr(Ts), this would imply that there is an edge wvw € H
with uwv € B* and vw € P! — B! — 3 contradiction with the definition of B:.
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To prove (3), note first that, by Fact 4.1,

1
tr(T) < (l—3 + 75) m? (4)
and, trivially,
tr(To) > tr(BY, P, QY) — tr(P*, B, QY.

Now, apply Fact 4.1 two more times, first the lower bound to tr(B%, P*"!, Q'), then
the upper bound to tr(P?, B!, Q%), obtaining

S . 2(k — 1)d| Pt
tr(B', P, Q") > (M - 46) m3,

12m?

S ) 2(k —i—1)5|P¢
t,r(Pz’Bz—l—l’Qz) < ( ( ;2m2) | ‘—66‘) m3’

and, finally,
26 2 1
tr(To) > (1_3 —10e — 1—26) m® > (l_3 + 75) om® > otr(T),
by our assumption on ¢ and (4). [ |

It is now relatively easy to show that a d-regular hypergraph can be almost covered
by disjoint paths of a given length.

Corollary 4.1 Forallk>1,1>1,0< a <1,

o V6
< — <
OS e M SR
the following is true. If T = (P,Q,R) is a triad of (1/l,¢)-reqular graphs and a
hypergraph H is §-regular with respect to T and has density dg(T) > «, then at least
(1 —6Y4)|V(H)| vertices of H can be covered by vertez-disjoint 3k-paths.

Proof:  For clarity of exposition let the three vertex sets of T be U, V,W and |U| =
\V| = |W| = m, where k divides m. We break each set U, V,W arbitrarily into k
subsets of equal size: U = U; UUs U - - - U Uy, etc., and claim that there are at least
(1—0Y/*)m/k vertex-disjoint 3k-paths, each containing precisely one vertex from each
set Uy, Vi, W1, Uy, Vo, Wy, ..., Uy, Vi, Wy, (we will call such paths transversal).

Indeed, consider any family Q of less than (1 — §'/4)m/k vertex-disjoint transversal
3k-paths. Let subsets U] C U;, V! C V;, and W] C W;, i = 1,...,k, consist of all
vertices not covered by these paths. Since for all h,7,7 =1,...,k

U = V]| = |W}| > 6"*m/k,
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by Fact 4.2 with n = §'/4/k (note that (1/1)® > 11¢/n and § < 1®/3), the subtriad 7~
induced by sets Uy, V/, W] is such that the three bipartite subgraphs,

PlU,V{], QU Wjl, RV, Wj,

are all (1/1,&")-regular with ¢’ = ¢/n, and H is ¢'-regular with respect to 7' with
8" = 36Y%k® and has density du(7") > o — 6 > a/2. Since &' < §'/(151%) and
0 < %min((3k)_1, a/2), by Lemma 4.2 applied to the subhypergraph

H =H[UUVJUW/UU, UV, UW,---UU, UV, UW,]

with 3k and «/2 in place of k and «, there is a transversal 3k-path in H’. This path
can be added to Q. [ |

5 Proof of The Path-Cover Lemma

In this final section we prove Lemma 3.1, a crucial ingredient of the proof of our main
Theorem 1.1. The outline of the proof of Lemma 3.1 goes as follows. With a suitable
choice of 6, ty, and (1),

e Obtain a partition II with respect to H as in Lemma 4.1.

e Select from II a system of bipartite graphs P = {P%,1 < i < j < t}, such that
the corresponding cluster hypergraph K = K(P) of dense and é-regular triads
preserves essentially the property of H (see Claim 5.2 below).

e Relying on Lemma 2.4, choose from K a subsystem M of vertex-disjoint triads
which cover most of the clusters.

e To each of the triads of M apply Corollary 4.1 and cover most of its vertices by
disjoint paths.

To achieve the second task above, we will randomly choose one graph P¥ between
each pair (V;,V;) and benefit from the assumption that H is an (n,7)-graph. The
obtained system K will contain a large subsystem K', |V (K)| — |V (K')| < 128'/4¢,
with A(Gg) < 6Y/4¢.

Proof of the Path-Cover Lemma 3.1: Let 0 < v < 1/2, n be sufficiently large, and let
H be an (n,y)-graph. Let

132 74

7 and e(l) S —

0= (12 x 13)*
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and to > 200/~ such that for all ¢ > ¢, we have

t? ex 1 2t <1
P11 7327 9

Assuming n > Ny(6,tp,€(l)), apply Lemma 4.1 to H with the above choice of §,%,
and £(1), to obtain a partition II of (V(zH)) satisfying conditions (i) and (ii) of that
lemma. Set

e=¢(l) and Vil=+--=Vi| =m,
and recall that |Vp| < t.

A triad 7 in II is said to be dense if dg(7T) > /2. Using the assumption that every
pair of vertices in H belongs to at least (1/2+)n hyperedges, we will now show that
every graph P¥ belongs to nearly as large fraction of dense triads.

Claim 5.1 In the partition I1 every graph P belongs to at least (1/2+/3)tl* dense
triads.

Proof:  For clarity of exposition, we assume that V; = 0, or, equivalently, that
t divides n. Suppose to the contrary that a graph P = P belongs to less than
(1/2 + ~/3)ti? dense triads of IT. Let S be the set of hyperedges of H which contain
an edge of P and a third vertex outside V; U V;. First note that, because every pair
of vertices of H belongs to at least (1/2 + +v)n hyperdges of H, we have

1 1
|S| > (7—6> m? (§n+’yn—2m).

Since, m = n/t < n/ty, to > 200/ and 0.99y < 1/2, this leads to the bound

1 n?
|S| > (2 + 0.99v 6l> o
We will find an upper bound on |S| contradicting the above lower bound. Let us split
the hyperedges of S into two classes. Let S; consist of those hyperedges of H which
contain an edge of P, an edge of P;" and an edge of P/" for some h € [t]\ {,;} and
1 < b,c < I, such that the triad 7™*¢ = (P, Pi*, Pi") is dense. For each such triad
we will estimate the number of hyperedges of H by the number ¢r(7™¢) of triangles
in (P, Pih, Pih), which, by Fact 4.1, is at most (1/13 + 7e)m3. Since we assumed that
there are at most (1/2 + v/3)tl? such triads, we infer that,

1 1 1 1 1 n3
RSPV I £ 3 4= P .
|Sl\<<2+37> (l3—|—7s>m <(2+37+7s )t2l
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Let S; = S\ S consist of those hyperedges of H which contain an edge of P, an edge
of P{" and an edge of P?", for some h € [t]\{7,7} and 1 < b,c <, such that the triad
Thoe = (P, Pi*, Pi") is not dense. In this case, conversely, we estimate their number

by tI? - the total number of triads containing P, while the number of hyperedges of
H is now at most $vytr(7™"¢). Hence,

1 1 1 3
1Sy| < Efytlz (— + 7e) m® < (—'y + 7513) n

3 2 2l
and L s .
n
= Sy 4 Uel’) -
|S| = |S1| + |S2| < <2+67+ £ >t2l
As 14el® + el < /7 < (0.99 — 5/6)~, this is a contradiction with the previously
established lower bound on |S]. [

Using the probabilistic method we will now select one graph from each set {P¥ : g =
1,...,1}, 1 <i < j <t, which (almost) maintains the property established in Claim
5.1, and in which most triads are J-regular.

Claim 5.2 There exists a family P of (;) bipartite graphs PY = P;’J between pairs
(Vi, V;) such that

(a) every graph of P belongs to at least (1/2+ v/12)t dense triads in P,
and

(b) all but at most 26t* triads of P are §-regular.

Proof: We apply the probabilistic method and Chernoff’s and Markov’s inequalities.
For all 1 <i < j <t, choose an index a;; € {1,2,...,1} independently and uniformly
at random. The selected indices determine a (random) family P of () bipartite
graphs.

Foreacha =1,2,...,1,1et I¥ = 1if a;; = a and 0 otherwise. For convenience, we will
abbreviate P,/. = P*. Further, let X;7 be the number of indices A € [t] — {3, j} such
that (P%, P™ Pi") is a dense triad. Note that I’/ and X% are independent random
variables and that X/ is a sum of independent 0 — 1 random variables with

) 1 1 1\2 1 1
Yy > [ = - 2 ([ - I - .
E(Xa)_(2+37>tl (l) (2+37>t

Thus, by Chernoff’s inequality ([7], (2.6) on page 26 and Thm. 2.8 on page 29)

. 1 1 . .. 1 1
P{XY < (24— <P{XY <EXY -yt < — Yty
U< (g ) = <o <o o)
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Further, let Z¥=1 if both I¥ = 1 and X% < (1/2 + v/12)t. Then

P {Z 79 > o} <> E(ZJ) = ZE(I;J')P{X;J' < (% + 11—27) t}

a,i,j a,i,j a,i,j

1 1 1 1
< = —— 2t =¢t? —— < =
= leXp{ 327 } eXp{ 327 2

On the other hand, by condition (ii) of Lemma 4.1, the expected number of §-irregular
triads of P is at most §t313(1/1)® = 6t3, and hence, by Markov’s inequality, the
probability that there are more than 26t> such triangles in G’ is less than 1/2. Thus,
there exists a selection P which satisfies both (a) and (b). |

by our assumption on .

To proceed we define the cluster hypergraph K = K(P) as the 3-uniform hypergraph
consisting of all triplets ijh, 1 < i < j < h <t, corresponding to dense and d-regular
triads 74" = (PY, Pth Pih) where recall that “dense” means that dg(7T9") > /2.

Consider also the auxilliary hypergraphs D = D(P) and IR = IR(P) of all triplets
ijh for which the triad 74" = (P% Pih Pih) is respectively, dense and d-irregular.
Thus, for P satisfying the conclusion of Claim 5.2, we have that D is a (¢,y/12)-graph,
while |[IR| < 26t*. Note that K = D—IR does not necessarily satisfies the assumption
of Lemma 2.4. To remedy this we will select carefully a large subhypergraph K’ of
K as follows.

Call a pair 4, j of vertices of K malicious if it belongs to more than v/6¢ triplets of IR,
that is if degrg(ij) > v/0t. Then at most 61/6t> pairs are malicious, since otherwise
the sum of pair degrees would be larger than 3|/IR| — a contradiction. Let B be the
graph of malicious pairs. In turn, call a vertex i malicious if degg(i) > §'/4t. At most
126/4¢ vertices are malicious, since otherwise the sum of vertex degrees in B would
be larger than 2|B| — a contradiction, again. Remove all malicious vertices obtaining
a subhypergraph D' and a subgraph B’, both on the same set of at least ¢ — 125/%¢
vertices. Note that A(B') < 6'/4¢.

In the hypergraph K’ = D' — IR, every pair ¢, j which is not an edge of B’ has degree

1 1 t
degp(ij) > | = + —~ — 1264 — >~
egp (i) > <2 + 127 ) VElt> 5

where the last inequality follows by our choice of §. Hence, the graph G, consisting
of those pairs 4, j for which degx(ij) < t/2, is a subgraph of B’ and thus A(Gg) <
A(B') < §'/4t. By Lemma 2.4, there is in K’ a matching M covering all but at most
A(Ggr) +1 < 28Y/%t vertices of K'.
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Set k = |y 8| and o = /2, and note that each triad corresponding to a triplet of K’
(and thus, also of M) satisfies the assumptions of Corollary 4.1. Apply Corollary 4.1
to each triad corresponding to a triplet of M to conclude that all but 26*/*-fraction
of the vertices of each such triad can be covered by vertex-disjoint 3k-paths. Hence,
by our choice of §, altogether there are only at most

1 1
Vol + (12 4+ 2 + 1)6Y*n < 166Y*n < 573377, < 57571
vertices not covered by this system of disjoint 3k-paths. Clearly, as the paths in the
cover have each 3k > y~8 vertices, the total number of these paths does not exceed
n/3k < v%n. m

6 Concluding Remarks

Remark 6.1 Using a recent result from [6] and standard derandomization techniques
our proof can be turned into a polynomial time algorithm constructing a hamiltonian
cycle in every (n,y)-graph with sufficiently many vertices.

Remark 6.2 It is possible to generalize Theorem 1.1 to k-uniform hypergraphs, k& >
4, in which every (k — 1)-tuple of vertices belongs to at least (1/2 + )n edges.
(This is work in progress — see [12].) Moreover, a much more refined and complicated
argument allows us to strengthen Theorem 1.1 to the case v = 0, which was originally
conjectured in [8]. (This is work in progress too — see [13].)

Remark 6.3 After completing their proof, the authors realized that the Frankl-
R6d] Regularity Lemma for 3-uniform hypergraphs from [5] could be replaced by an
application of a weaker form of the lemma, which is a straightforward generalization
of the Szemerédi Regularity Lemma for graphs in [15] (see, e.g., [2] for a precise
statement).

The method presented in this paper will be, however, more suitable for approaching
problems of this kind which require more structure than just a path, such as hyper-
graph extensions of the results in [1] and [9]. This is because, unlike the weak regu-
larity lemma, the Frankl-Rodl Regularity Lemma provides a partition into §-regular
blocks which contain many copies of any fixed subhypergraph (see the comment prior
to Lemma 4.2).
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