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Abstract

We define a matrix concept we call factor width. This gives a hierarchy of matrix
classes for symmetric positive semidefinite matrices, or a set of nested cones. We
prove that the set of symmetric matrices with factor width at most two is exactly
the class of (possibly singular) symmetric H-matrices (also known as generalized
diagonally dominant matrices) with positive diagonals, H+. We prove bounds on
the factor width, including one that is tight for factor widths up to two, and pose
several open questions.
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1 Introduction

Symmetric positive definite and semidefinite (SPD and SPSD, respectively)
matrices arise frequently in applications and have been studied by many au-
thors [1,2]. For instance, it is well known that a Cholesky decomposition
A = LLT , where L is lower triangular, exists for any SPD matrix A. In this
paper we characterize SPSD matrices in terms of rectangular factorizations of
the type A = V V T , where V is typically sparse and may have more columns
than rows.

We restrict our attention to real matrices in this paper. In Section 2 we define
the factor width of a symmetric matrix and show some basic properties. In
Section 3 we show our main result, that factor-width-2 matrices are precisely
H+ matrices. We review a couple of known properties of H-matrices in the
process. In Section 4 we prove bounds on the factor width, and show that a
lower bound is exact for factor widths one and two. Finally, in Section 6 we
pose several open questions.

2 The Factor Width of a Symmetric Matrix

Definition 1 The factor width of a real symmetric matrix A is the smallest
integer k such that there exists a real (rectangular) matrix V where A = V V T

and each column of V contains at most k non-zeros.

For example, let

A =















3 1 −1

1 2 −2

−1 −2 5















, and let V =















1 1 0 1

0 1 1 0

0 0 −2 −1















.

Then A has factor width at most two because A = V V T . It is easy to see that
a matrix has factor width one if and only if it is diagonal and non-negative;
hence, the factor width of A is two. The factor width is independent of the
ordering of the matrix since PAP T = (PV )(PV )T has the same factor width
as A = V V T for any permutation matrix P .

It follows from well-known properties of diagonally dominant matrices [3] that
symmetric diagonally dominant matrices with non-negative diagonal have fac-
tor width two, which we also prove below. Recall that a real matrix A is
diagonally dominant if |aii| ≥

∑

j 6=i |aij| for all i.
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Proposition 2 If A is SPSD and diagonally dominant then A has factor
width at most two.

PROOF. Let P = {(i, j)|i < j, aij > 0} and N = {(i, j)|i < j, aij < 0}, and
let ei denote the ith unit vector. Then we can write A as a sum of rank-1
matrices,

A =
n
∑

i=1



aii −
∑

j 6=i

|aij|


 eie
T
i +

∑

(i,j)∈P

aij(ei+ej)(ei+ej)
T +

∑

(i,j)∈N

(−aij)(ei−ej)(ei−ej)
T .

For digonally dominant matrices all the coefficients are non-negative, and one
can readily construct a V such that A = V V T from the expression above where

each column of V is of one of the types
√

aii −
∑

j 6=i |aij| ei,
√

aij (ei + ej), or√−aij (ei − ej).

Note that not all factor-width-two matrices are diagonally dominant, as the
matrix A in the beginning of this section shows. Any SPSD matrix of order
n has factor width at most n. A question arises: Are there matrices of factor
width k for all k ≤ n? The answer is yes.

Proposition 3 For any positive k ≤ n, there exist matrices of order n with
factor width k.

PROOF. Let vk = (1, 1, . . . , 1, 0, . . . , 0)T , where there are k ones. Let A =
vkv

T
k . Clearly, the factor width of A is at most k. Since A has rank one then

A = vkv
T
k is the unique symmetric rank-one factorization, and there cannot

be any other factorization A = V̄ V̄ T with fewer nonzeros.

We remark that the lemma above holds even if we restrict our attention to
full-rank matrices. A simple example is A = vkv

T
k + εI for sufficiently small ε.

In conclusion, the concept of factor width defines a family of matrix classes. Let
FW (k) denote the set of matrices with factor width k or less. Then FW (1) ⊂
FW (2) ⊂ · · · . It is easy to verify that FW (k) is a pointed convex cone for
any k and FW (n) is precisely the cone of SPSD matrices of order n.

3 Factor-Width-2 Matrices are H-Matrices

The importance of our study of the class of factor-width-2 matrices stems
from the fact, which we prove in this section, that this class is exactly the
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class of H+ matrices (defined later in this section), which occur frequently in
engineering and scientific computation [4,1].

The definition of H-matrices relies on M-matrices. In this paper, we allow both
M- and H- matrices to be singular, which is a bit unusual but convenient for
us. Following [1], we have:

Definition 4 A real matrix A is an M-matrix if it is of the form A = sI−B,
where B ≥ 0 and s ≥ ρ(B), where ρ denotes the spectral radius.

For symmetric matrices there is a simpler characterization.

Lemma 5 A real symmetric matrix A is an M-matrix if and only if aij ≤ 0
for all i 6= j and A is positive semidefinite.

PROOF. For any real symmetric matrix A, we have that aij ≤ 0 for all i 6= j
if and only if A can be expressed in the form sI−B, for some s and symmetric
B with B ≥ 0; therefore, it suffices to show that s ≥ ρ(B) if and only if A
is positive semidefinite. We have that xT Ax = sxT x− xT Bx, so A is positive
semidefinite if and only if s ≥ maxx 6=0 xT Bx/(xT x) ≥ ρ(B), where the latter
inequality follows since B is nonnegative and symmetric.

Definition 6 A matrix A is defined to be an H-matrix if M(A) is an M-
matrix, where the comparison matrix M(A) of a matrix A is defined by

(M(A))ij =







|aij|, i = j,

−|aij|, i 6= j.

We use H+ to denote H-matrices that have non-negative diagonal. A useful
characteristic of nonsingular H-matrices (see for instance, [5, lemma 6.4]) is
that they are generalized strictly diagonally dominant, defined as follows:

Definition 7 A square matrix A is generalized (weakly) diagonally dominant
if there exists a positive vector y > 0 such that for every row i,

|aii| yi ≥
∑

j 6=i

|aij| yj .

If strict inequality holds, we say A is strictly generalized diagonally dominant.

The problem of finding such a vector y is equivalent to the problem of finding a
positive diagonal matrix D such that AD (or equivalently, DAD) is diagonally
dominant. This problem has been studied in [6,4]; in general y may be found by
solving a linear feasibility problem, but potentially faster iterative algorithms
were proposed in the papers mentioned.
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Theorem 8 A symmetric matrix A is an H-matrix if and only if A is gener-
alized (weakly) diagonally dominant.

This is an extension to the singular case. The proof is somewhat lengthy but
not difficult and is deferred to the appendix. Now we are ready to prove our
main result.

Theorem 9 A matrix has factor width at most two if and only if it is a
symmetric H+-matrix.

PROOF. (⇐) Suppose that A is a symmetric H+-matrix. Then A is gen-
eralized diagonally dominant, and hence there is a positive diagonal matrix
D such that Ã = DAD and Ã is diagonally dominant. We know that di-
agonally dominant matrices have factor-width at most 2 by Proposition 2.
Hence Ã = V V T for some V with at most two non-zeros per column. But
A = D−1ÃD−1 = (D−1V )(D−1V )T , so A also has factor-width 2. This con-
cludes the first part of the proof.

(⇒) Suppose A has factor width two or less. A symmetric matrix A is an
H-matrix if and only if its comparison matrix M(A) is an M-matrix. Given a
factor-width-two factorization A = V V T , we can obtain a width-two factor-
ization of M(A) by simply flipping the sign of one nonzero in each column of
V that contains two nonzeros with the same sign. By this factorization, M(A)
is positive semidefinite. Because M(A) is a comparison matrix, it has nonneg-
ative diagonals and nonpositive off-diagonals. Therefore, M(A) satisfies the
conditions of Lemma 5, so it is an M-matrix and hence A is an H-matrix.
Since A is also SPSD, A must be in H+.

One consequence of this theorem is that for any FW(2) matrix A = V V T ,
there exists a positive diagonal D such that A = (DU)(DU)T , where U has
≤ two nonzeros per column and entries of unit magnitude. However, this does
not imply that V = DU .

4 Bounding the Factor Width

We do not know if the factor width of a given matrix can be efficiently com-
puted, except in special cases. From our characterizations, it follows that
FW (k) matrices can be recognized in linear time for k = 1 and in polynomial
time for k = 2, but already recognition for k = 3 is of unknown complexity
and may be NP-hard.
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In this section we derive several bounds that can be used to efficiently estimate
the factor width of a matrix.

One upper bound on the factor width is easy to obtain: the largest number
of nonzeros in a column of a Cholesky factor of PAP T for some permutation
matrix P . Many sparse matrices have a sparse Cholesky factor, and effective
algorithms exist to find a permutation P that leads to a sparse factor. We note,
however, that this bound may be very loose. For example, all the Cholesky
factors of symmetric permutations of the Laplacian of the complete graph Kn

have n nonzeros in their first column, giving a trivial upper bound of n, even
though the Laplacian matrix actually has factor width 2.

The lower bounds that we present relate the factor width of a matrix A to
the 2-norm of a matrix derived from A. The derivations are computationally
trivial. One of the bounds is tight for matrices with factor widths one or two.

We use two tools to derive from A a matrix whose 2-norm lower bounds
the factor width of A. The first tool is diagonal normalization, or symmetric
diagonal scaling. The factor width of A is invariant under symmetric diagonal
scalings of the form DAD, where D is diagonal, but the norm is not. If,
however, we always symmetrically scale A so that the diagonal elements of
DAD are all 1’s (except for diagonal elements in zero rows of A, which remain
zero in DAD), then ‖DAD‖2 bounds from below the factor width of A. The
second tool is perhaps more surprising. We show that if we also replace the
elements of A by their absolute values, we get a tighter lower bound.

Definition 10 Let A be an SPSD matrix. Let DA be the diagonal matrix
whose diagonal elements are those of A, and let D+

A be the Moore-Penrose
pseudo-inverse of DA, that is, (D+

A)ii = 1/(DA)ii for all i where (DA)ii 6= 0.
The diagonal normalization dn(A) is the matrix

dn(A) =
(

D+
A

)1/2
A
(

D+
A

)1/2
.

Our lower bounds depend on the following lemma, which provides a sufficient
condition for a real function s of a matrix to be a lower bound on factor width.

Lemma 11 Let s be a function which assigns a real value to an SPSD matrix.
Let s satisfy:

1) s(uuT ) ≤ k for any column vector u with k nonzeros.
2) s(A + B) ≤ max(s(A), s(B)).

Then for any SPSD matrix A, the factor width of A is at least ds(A)e.

6



PROOF. We prove the theorem by first showing that if the factor-width of
A is bounded by k, then s(A) ≤ k.

Let A be a matrix in FW (k) (A has factor width at most k). Let A = UUT

be a factor-width-k representation of A. The number of nonzeros in a column
u of U , which we denote by nnz(k), is at most k. For notational convenience,
let u ∈ U mean “u is a column of U”.

s(A) = s(UUT )

= s

(

∑

u∈U

uuT

)

≤max
u∈U

(

s(uuT )
)

≤max
u∈U

(nnz(u))

≤ k .

We have shown that if the factor-width of A is at most k, then s(A) ≤ k.
Therefore, if s(A) > k then the factor-width of A is larger than k. Thus, the
factor width of A is greater or equal to ds(A)e.

4.1 The Diagonal Normalization Bound

We now show that the factor-width of an SPSD matrix A is bounded from
below by d‖dn(A)‖2e.

Theorem 12 For any SPSD matrix A, the factor width of A is bounded from
below byd‖dn(A)‖e.

PROOF. In our proof we will use the two results below, which we state
without proofs since they both can be easily verified.

Lemma 13 Suppose a, b, c, d are non-negative and c > 0, d > 0. Then

a + b

c + d
≤ max

(

a

c
,
b

d

)

Lemma 14 Let A be SPSD. Then

‖dn(A)‖ = λmax(A, DA) = max
x

xT Ax

xT DAx
,

where λ(A, B) denotes a generalized eigenvalue.
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We define the function s1 to be s1(A) = ‖dn(A)‖2 and show that s1 satisfies
the conditions of Lemma 11. We begin with condition 1, and show that for
any vector u with k nonzeros, s1(uuT ) is exactly k.

Let u be a column vector with k nonzero entries. If u = 0, then s1(uuT ) =
0 = k. Otherwise, uuT is a rank-1 matrix. The matrix

dn(uuT ) =
(

D+
uuT

)1/2
uuT

(

D+
uuT

)1/2
=
[

(

D+
uuT

)1/2
u
] [

(

D+
uuT

)1/2
u
]T

also has rank-1, because (DuuT )ii = u2
i . The norm of dn(uuT ) is the only

nonzero eigenvalue of
(

D+
uuT

)1/2
uuT

(

D+
uuT

)1/2
. Let v be the sign vector of u,

vi =















1 ui > 0,

−1 ui < 0,

0 ui = 0.

We now show that v is an eigenvector corresponding to the eigenvalue k. We
have

(

D+
uuT

)

ii
=







u−2
i ui 6= 0,

0 ui = 0,

so
(

D+
uuT

)1/2
u = v .

Therefore, dn(uuT ) = vvT , so dn(uuT )v = (vvT )v = v(vT v) = vk = kv.

All that remains is to prove that s1(A + B) ≤ max(s1(A), s1(B)).

s1(A + B) = ‖dn(A + B)‖2

= max
x

xT (A + B)x

xT (DA + DB)x

= max
x

xT Ax + xT Bx

xT DAx + xT DBx

≤max
x

max

(

xT Ax

xT DAx
,

xT Bx

xT DBx

)

≤max

(

max
y

yT Ay

yT DAy
, max

z

zT Bz

zT DBz

)

= max (‖dn(A)‖2 , ‖dn(B)‖2)

= max(s1(A), s1(B)),

where we used Lemmas (13–14).
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4.2 A Tighter Lower Bound

The lower bound can be made tighter. Let |A| denote the matrix whose i, j
entry is |aij|.

Theorem 15 For any SPSD matrix A, the factor width of A is bounded from
below by d‖dn(|A|)‖2e.

PROOF. Let s2(A) = d‖dn(|A|)‖2e. One can show that s2 satisfies the first
condition in Lemma 11 in the same way as for s1 (cf. proof of Theorem 12).
For the second condition, we only need to prove that

max
x

xT (|A + B|)x

xT (DA + DB)x
≤ max

x

xT (|A|+ |B|)x

xT (DA + DB)x
;

because the rest follows from the previous proof. Without loss of generality
we can assume A and B already have been diagonally normalized (scaled)
so DA = DB = I. From the Perron-Frobenius Theorem we know that the
largest eigenvector of a non-negative matrix is non-negative, so x ≥ 0. From
the triangle inequality |aij + bij| ≤ |aij|+ |bij|, it follows that xT (|A + B|)x ≤
xT (|A|+ |B|)x for any x ≥ 0.

This second bound is tighter (or at least as tight) as our first bound (Theo-
rem 12). This follows from the fact that ‖A‖2 ≤ ‖|A|‖2 for any SPSD A.

5 Identifying Factor-Width-2 Matrices

Since FW(2), the set of all matrices with factor width at most two, is a subset
of H-matrices, any algorithm to identify H-matrices (generalized diagonally
dominant matrices) can easily be adapted to recognize matrices in FW (2).
There are many such algorithms, see for instance, [6,4]. Since FW(2) matrices
are also SPSD, it may in fact be easier to identify such matrices than general
H-matrices.

We show that we can use Theorem 15 to easily identify matrices with factor-
width at most 2. The following theorem shows that FW(2) is exactly the set
of symmetric matrices with non-negative diagonals satisfying ‖dn(|A|)‖ ≤ 2.

Theorem 16 Matrix A has factor-width at most 2 if and only if it is sym-
metric with non-negative diagonals, and satisfies ‖dn(|A|)‖ ≤ 2.
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PROOF. (⇒) Let A have factor-width at most 2. Then A is symmetric with
non-negative diagonals. By Theorem 15, ‖dn(|A|)‖ ≤ 2.

(⇐) Let A be symmetric with non-negative diagonals satisfying ‖dn(|A|)‖ ≤ 2.

Since ‖dn(|A|)‖ = maxx
xT |A|x
xT DAx

≤ 2, it follows that xT (2DA − |A|)x ≥ 0 so
2DA−|A| is positive semidefinite. 2DA−|A| is exactly A’s comparison matrix.
Since A’s comparison matrix is symmetric and positive semidefinite, then it
is an M-matrix. Therefore A is an H-matrix. Furthermore, A is symmetric
with non-negative diagonals, and therefore A is an H+-matrix. Since A is an
H+-matrix, it has factor-width at most 2.

This result is in fact just a special case of one of many known characterizations
of H-matrices:

Theorem 17 The following are equivalent:
(i) A is a non-singular H-matrix.
(ii) Let D = diag(A). Then ρ(|I −D−1A|) < 1.

This theorem was stated in a slightly different (more general) form for M-
matrices in [7, Thm. 1]. Note that this result holds for all H-matrices (even
non-symmetric matrices). Since we allow singular H-matrices, the inequality
in case (ii) should be modified to ρ(|I − D−1A|) ≤ 1. This condition is then
equivalent to Theorem 16 in the SPSD case.

We conclude that our lower bound (Theorem 16) is always tight for factor
width two. We do not know if the bound is tight for factor width three. For
large factor widths it is easy to construct examples where the bound is not
tight, that is, the factor width is strictly greater than the lower bound.

6 Conclusions and Open Problems

We have defined factor width for symmetric matrices and characterized the
matrix classes FW (1) and FW (2). An obvious question is, does FW (k) cor-
respond to any known matrix class for other values of k? In particular, what is
FW (3)? We note that the finite element method naturally produces matrices
of low factor width since each element has a small number of degrees of free-
dom. This indicates that the study of (low) factor width may have practical
applications.

Other open problems are the complexity of computing the factor width (Sec-
tion 4), and proving better upper bounds. It could be interesting to study
how many columns in V are needed to realize a factor width k decomposition
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A = V V T . This number can be denoted the “factor width k rank”.

Finally, we ask if there is any useful generalization of factor-width for non-
symmetric matrices. A simple but naive choice is to consider factorizations
A = UV T and count the nonzeros in columns of U and V . However, with such
a definition any matrix would have “factor width” one since any nonzero aij

in A can be represented by the scaled outer product aijeie
T
j .
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A Appendix: Deferred proofs.

Lemma 18 A symmetric matrix A is an H-matrix if and only if there exists
a vector y > 0 such that M(A)y ≥ 0.

To prove this result we need the following two lemmas.
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Lemma 19 (Farkas’s Lemma) Given a matrix A and vector b, exactly one

of the sets, {w | Aw ≥ b} and
{

z ≥ 0 | AT z = 0 and bT z > 0
}

is nonempty.

Lemma 20 For any symmetric positive semidefinite matrix M there exists a
vector y > 0 such that My ≥ 0.

PROOF. For any matrix M , there exists a y > 0 such that My ≥ 0 if and
only if the set Y = {y | My ≥ 0 and y ≥ 1} is nonempty. Farkas’s Lemma

yields that Y is nonempty if and only if the set,
{

(x, s) ≥ 0 | MT x + s = 0 and eT s > 0
}

,
where e is the vector of all 1s, is empty. The emptiness of the latter set is equiv-
alent to the emptiness of the set X =

{

x ≥ 0 | MT x ≤ 0 and MT x 6= 0
}

. We
prove the contrapositive of the Lemma.

Suppose there is a symmetric matrix M for which Y is empty. Thus there
exists a vector x ≥ 0 such that Mx ≤ 0 and Mx 6= 0; we must have that
xT Mx ≤ 0. If xT Mx < 0 then M is not positive semidefinite, so we need only
consider the case when xT Mx = 0. Since M is symmetric semidefinite, it can

be factored into M = UUT , so if xT Mx = 0, then 0 = xT UUT x = UT x
2

2
,

which implies UT x = 0 so Mx = UUT x = 0. Thus if xT Mx = 0, M cannot
be positive semidefinite since Mx 6= 0.

PROOF. (Lemma 18) Given a symmetric comparison matrix M = M(A),
suppose there exists a y > 0 such that My ≥ 0. Let D be a diagonal matrix
with y as its diagonal. We observe that DMD is diagonally dominant: MDe =
My ≥ 0, so DMDe ≥ 0. It is well known that symmetric diagonally dominant
matrices with a non-negative diagonal are positive semidefinite, and they also
have factor width at most two (cf. Proposition 2). Since DMD satisfies these
conditions, it is positive semidefinite and so is M .

Lemma 20 supplies the other direction of the proof.

The equivalence between H-matrices and generalized diagonally dominant ma-
trices now follows easily.

PROOF. (Theorem 8) A vector y > 0 satisfies the conditions of Definition 7
if and only if M(A)y ≥ 0.

To find a y satisfying the conditions of Lemma 18, it suffices to solve the linear
feasibility problem M(A)y ≥ 0, y ≥ 1 for y.
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