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Abstract

While web applications provide enormous opportunities,
they also present potential threats and risks due to a lack of
trust among users. Reputation systems provide a promis-
ing way for building trust through social control by har-
nessing the community feedback in the form of feedback.
However, reputation systems also introduce vulnerabilities
due to potential manipulations by dishonest or malicious
players. In this paper, we focus on important feedback
aggregation related vulnerabilities, in particular, feedback
sparsity with potential feedback manipulations, and de-
velop resilient models and techniques. We propose simi-
larity measures for differentiating dishonest feedbacks from
honest ones and propose an inference framework to address
the sparsity issues. We perform extensive evaluations of
various algorithmic component of the framework and eval-
uate their effectiveness in countering feedback sparsity.

1 Introduction

Reputation systems have been shown to provide at-
tractive techniques to address the risks and facilitate
trust in a variety of web applications. Many electronic
markets and online communities have reputation sys-
tems built in, such as eBay, Amazon, Yahoo! Auction,
Edeal, Slashdot, Entrepreneur. A number of repu-
tation systems have been proposed recently for web-
based peer-to-peer applications, most notably, peer-
to-peer file sharing systems [1, 8, 15, 28, 17, 33]. Trust
management has been also proposed to facilitate trust
in semantic web and to combat web spam [19, 23, 12].
By harnessing the community knowledge in the form
of feedback, reputation based trust systems help par-
ticipants decide who (what) to trust, encourage trust-
worthy behavior, and deter dishonest participation
[22]. However, these systems also introduce vulner-
abilities due to potential manipulations and dynamic
behaviors of malicious peers. Among these, an impor-
tant problem that has caught less attention so far is
the sparsity of the feedback with potential manipula-
tions of the feedback.

Feedback Sparsity. Reputation systems rely on his-
torical transaction and feedback data to derive a rep-
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utation trust score for entities. In large scale peer-
to-peer networks, each peer may have interacted with
only a small number (percentage) of peers and hence
has few feedbacks about and from other peers. It is
been shown that limited reputation sharing or no rep-
utation sharing when personal experiences are avail-
able [17] helps minimize the adverse effect of feedback
attacks by malicious peers. However, when the feed-
back data is sparse, it is often not possible for peers
to have personal experiences with each other. As a
result, the problem of feedback sparsity has a ma-
jor negative impact in reputation systems. When the
feedback matrix is sparse, the system cannot evaluate
the trust value most peers or the output evaluations
suffer from accuracy.

Feedback Manipulation. A piece of feedback is
simply a statement from a user about another user,

typically, the service consumer about the service provider

in a peer-to-peer network. There is no mechanism
to guarantee that the statement is honest. Malicious
users may manipulate the feedback data in a way in
order to benefit themselves or damage the system. A
main technique in the reputation systems proposed so
far is to associate a credibility weight with each peer
(as versus the service reliability of the peer). Theo-
retically, a peer who has consistently provided honest
feedback will be associated with a higher credibility
weight so the system can differentiate honest feed-
back from dishonest ones. It has been shown [28] that
the user similarity based on previous feedbacks about
common peers can be used as a personalized credibil-
ity measure in the trust metric and is very effective
against certain attacks including collusion among a
group of peers who provide good ratings within the
group and bad ratings outside the group. Unfortu-
nately, when the feedback is sparse, it is highly prob-
able that two users have not interacted with any com-
mon set of peers and thus the feedback based similar-
ity between two users cannot be computed.
Interestingly, the problem of feedback sparsity and
manipulation are closely related. Feedback sparsity
concerns with the quantity of feedback data. Feed-



back manipulation concerns with the quality of feed-
back data and in most cases may affect the quantity
of good quality feedback data. The two problems also
have a magnifying effect on each other. On one hand,
when adversaries pollute the feedback data, the valid
or usable feedback data becomes sparse, which makes
sparsity problem worse. On the other hand, when
feedback data is sparse, the feedback related attacks
may be magnified and have a more detrimental effect.

Research in trust inference [30, 4, 27, 11] addresses
trust propagation of initial trust relationships assum-
ing certain transitivity of trust. They differ with rep-
utation systems in that they assume the initial trust
relationship is predefined among nodes and the pro-
posed approach typically uses graph theoretic models
or matrix operations to propagate the initial trust re-
lationships. Some recent works adopted certain infer-
ence techniques in reputation systems. A recent no-
table work EigenTrust [15] derives initial trust based
on personal feedback and perform a global trust prop-
agation till it finds the Eigenvector of the initial trust
matrix. However, it has been shown that the model
is vulnerable to certain types of attacks where adver-
saries exploit the trust transitivity property by creat-
ing false trust links.

While these works shed lights on the potential adop-
tion of inference techniques to address sparsity issues
in reputation systems, a few research challenges re-
main. First, how do we derive the initial relationships
among nodes and what information or relationships
do we use to perform inference so that it is robust to
potential user manipulation? Second, how do we de-
sign the inference model and select the right parame-
ters such as depth of inference and inference functions
to deal with sparse data while on the other hand to
avoid unnecessary cost. Finally and importantly, how
does the inference model cope with potential feedback
manipulations in the reputation system?

Bearing these questions in mind, we propose a sim-
ilarity based framework and study experimentally how
different inference parameters and models perform in
countering sparsity and vulnerabilities. The paper has
a few unique contributions. First, we propose a gen-
eral algorithmic framework for reputation computa-
tion and classify existing reputation schemes accord-
ing to the framework. Second, we focus on one set
of reputation algorithms that we refer to as neighbor-
hood based schemes and formalize the sparsity prob-
lem and explore different attack strategies related to
feedback vulnerabilities. Third, we study how vari-
ant algorithmic component of the above reputation
schemes help coping with feedback sparsity and vul-
nerabilities.

The rest of the paper is organized as follows. Sec-

tion 2 defines certain terms and examines the problem
space by defining threat models we consider and the
sparsity problem. Section 3 presents a similarity in-
ference scheme with variant algorithmic techniques.
Section 4 experimentally studies how the different al-
gorithmic components help coping with the feedback
sparsity and vulnerabilities. Finally, Section 6 sum-
marizes the paper and discusses a few directions for
future research.

2 Problem Statement

We first define certain terms that will facilitate our dis-
cussion and comparison of various reputation schemes.
We then examine the problem space for feedback spar-
sity as well as feedback integrity by defining the threat
model and attack strategies.

2.1 Terms and Definitions

Peer-to-peer community. The peer-to-peer com-
munity consists of NV peers who perform transactions
with each other. The community can be built on top
of a client server network or a pure P2P network. It
can be also generalized into an online community that
consists of N users and M service providers. In P2P
community, the number of users and service providers
happen to be the same as each peer serve both as a
client and a server.

Transaction. The community is defined by inter-
actions or transactions among peers. These transac-
tions may include downloading files, storing data, or
monetary transactions. Each transaction has a client
(service consumer) and a server (service provider) and
each peer may serve as a client in one transaction and
as a server in another.

Transaction feedback. A transaction feedback is a
statement issued by the client about the quality of a
service provided by the server in a single transaction.
This can be collected explicitly or derived implicitly.

Personal feedback. A personal feedback or opinion
is a user’s general impression about a service provider
based on its personal experiences with the server. It
can be derived from its feedback on all the transac-
tions that are conducted with the server in the past,
e.g. as the percentage of positive transactions or the
average rating for each transaction. We can represent
all the personal feedback in the network as a user-user
opinion matrix, where each cell represents an opinion
from a given user about a given server.

Reputation Trust. The goal of a reputation system
is to compute a reputation trust for a given service
provider from a given user’s perspective. We refer to
the evaluating user as source and the user to be evalu-
ated as target. A reputation trust matrix is a user-user
matrix, where each cell represents a reputation trust



score for a given service provider from a given user’s
perspective. We call the reputation trust global if the
reputation trust for each service provider is the same
across all the users. Otherwise, it is personalized.

In some trust schemes, if a user u has direct inter-

actions with a server s, then u’s rating of s is treated
as s’s trustworthiness from the u’s point of view. In
PeerTrust as well as some other schemes, u still needs
to consider the other users’ ratings about s when eval-
uating s’ trustworthiness. A peer’s trustworthiness is
the combination of the user’s personal opinion and the
community feedback. Thus we differentiate the user
rating from trustworthiness.
Credibility. Credibility of a user u indicates how
credible u is in providing feedback or rating is in gen-
eral. In contrast, trustworthiness indicates how reli-
able u is in providing service. Some works use trust-
worthiness as a general notion. In PeerTrust, we argue
that credibility should be differentiated from trust-
worthiness (reliability). User a may trust user b for
its ratings or recommendations but not necessarily its
service. It is also referred to as recommendation trust
in some literature [4] as versus service trust. We will
use the term credibility for this purpose and reserve
the term trust for the reputation based service trust
(reliability) in this paper. Credibility of a peer can be
collected or defined explicitly or derived computation-
ally.

2.2 Threat Model

Reputation systems have to cope with potential ma-
nipulations from adversaries. A common goal for ma-
licious users is to boost their own ratings or decrease
the ratings of other peers by manipulating feedbacks
so they can perform malicious services when other
peers select to perform a transaction with them. A
feedback manipulation attack corresponds to the ad-
dition of noise to the feedback data (training data).
A common strategy for adversaries is to provide false
ratings. We consider various dimensions of these types
of attacks in this section. There are other different at-
tacks including strategically milking a reputation or
oscillating behaviors [17, 26] and other different at-
tack incentives including free riding [2, 21, 32]. They
are not considered in this paper and interested readers
may refer to the references.

Attack Goals. Based on different goals of the at-
tacks, we consider the following two types of attacks.

e Random attacks. The goal of this type of at-
tacks is to reduce the overall performance of a
system as a whole. They are not directed at any
particular users.

e Target attacks. These are attacks that try to

force the ratings for a target user to a particular
target value. For example, in a nuke attack, the
goal is to force all predicted ratings of targeted
users to the minimum rating. Similarly, in a
push attack, the goal is to force the ratings to
the maximum rating.

Attack Models. We also consider two different types
of attacks models.

e Non-Collusive. In the non-collusive model, indi-
vidual malicious users do not know each other
and they each do something bad and hoping it
will affect the system.

e Collusive. In the collusive model, multiple ma-
licious peers may form a group and collude with
each other in order to achieve their goal. The
goal is typically targeted towards boosting the
ratings of the whole or part of the group.

A related attack is for an individual user to cre-
ate multiple fake profiles and act as a collusive
group. We will treat this same as the collusive
attack. We do assume adversaries have to pay
a cost to create a profile so it is not feasible to
create infinite false profiles. The goal of design-
ing a robust algorithm is to maximize the noise
level it can tolerate so an adversary has to pay
a high cost in order to achieve their malicious
goal.

Attack Strategies. Some attacks may be specifically
designed to exploit a particular weakness in a specific
algorithm or class of algorithms. For example, for
systems that does not differentiate trust (reliability)
and credibility, one simple strategy for the malicious
group is to have part of the peers act as front peers
or moles [18, 10]. These peers always cooperate with
other peers in order to increase their reputation and
then provide misinformation to promote other mali-
cious peers. We will discuss them in more detail when
we review different reputation systems in Section 5.

Differentiating trust (reliability) and credibility helps
systems to avoid the front peer attacks and are more
robust to dishonest feedbacks. It has been shown [28]
that using user similarity as a credibility weight when
aggregating community feedback provides promising
results in defending against dishonest feedback attacks
in a non-collusive model and a naive collusive model.

So in the rest of the paper, we will focus on the sim-
ilarity based models and explore more sophisticated
attack strategies and the sparsity problem and develop
enhanced framework to defend against them.

As malicious users do not collude with each other
in non-collusive setting and the individual attack strat-



egy is straightforward, we focus on the attack strate-
gies in the collusive model. Assuming the goal for the
group is to boost the ratings for the group. There
are different strategies that the users may use in rat-
ing other peers that are outside their group. Similar
to the shill attack designs from [16] in a collaborative
filtering context, we study the following strategies.

e Collusive. A straightforward way is for each col-
lusive user to rate each other in the group with
the maximum rating and rate peers outside the
group with a minimum rating. The hope is while
they boost their own ratings, they also decrease
other peers’ ratings or damage the performance
of the reputation system. However, by doing
this, they may end up with having very low sim-
ilarity to the normal users and in turn their rat-
ings will not be counted as much.

e (Collusive Camouflage. A more sophisticated at-
tack is for the malicious users to rate each other
within the group with maximum rating but rate
peers outside the group honestly so that they
will be similar to more existing honest users, and
thus, have a larger effect on boosting their own
ratings. Hypothetically, this strategy will allow
adversaries to amount a more detrimental at-
tack and boost their ratings by camouflaging as
honest users.

2.3 Sparsity Problem

Now we consider the sparsity problem for using such
a similarity based trust scheme such as the one used
in PeerTrust [28]. We compute the reputation trust
of a user as a weighted average of previous ratings
about the user. The credibility weight is a personal-
ized similarity measure between the evaluating peer
and the peer who provides ratings. Concretely, peer
w will use a personalized similarity between itself and
another peer v to weight the feedback by v on any
other peers. We define the similarity by modeling the
feedback by v and the feedback by w over a common
set of peers for which both v and w have rated as two
vectors and computing the similarity between the two
feedback vectors.

It is important to note that the similarity is defined
over the common set of peers that both peers have
rated. When the input ratings matrix is sparse, two
given peers may have a very limited number or zero
number of co-rated peers and the similarity can not
be derived. As a result, the reputation trust can not
be computed.

Now we formally analyze what is the probability
of an undefined prediction given a sparse feedback
matrix. Given a source user a and a target service

provider j, let U; denote the set of users who have
rated j, let N, denote the set of neighbors of a. N, is
selected by the neighborhood selection technique out
of all the users who have co-rated items with a. We
can compute the reputation trust by aggregating the
feedback from those neighbors of @ who have rated j,
computed as the intersection between U; and N,.

When the input matrix is sparse, it has three ef-
fects. First, a will have a limited number of neighbors,
i.e. N, is small, as there is less chance that other users
will have co-rated items with a. Second, j will have a
limited number of ratings, i.e. Uj is small. As a re-
sult, the probability of the intersection of N, and U;
being empty will be high which results in an undefined
prediction.

Suppose each user rates r users among the other
n — 1 users. The average number of ratings per user is
also r. For simplicity, we assume all users who have co-
rated items with a are considered as as neighbors and
no neighborhood selection is used. In this case, the
probability of a user not belonging to a’s neighborhood
is the probability that it does not have co-rated item
with a. The probability of an undefined prediction is
the probability that all of the users who have rated
item j do not belong to a’s neighborhood. So the final
probability is given by Equation 1.

()
()

In a large open community, most users will only
interact with a small set of users and may provide
ratings to an even smaller set of users among those.
The general sparsity problem refers to such situation
where while n, the number of users, could be of the
order of thousand, r, the number of ratings per user,
could be very small. The resulting probability of un-
defined prediction can be high. When a new user
joins the community, it does not have many ratings
about other users nor does it have many ratings from
other users. Suppose a new user a only has r, ratings
(rq < r). The probability of undefined prediction be-
(")

()
trix may not be sparse in general, the probability is
still fairly high due to a small r,. This is sometimes
referred to as cold start problem.

p(n,r) = ( (1)

comes ( )". Even though the input ratings ma-

3 A Similarity Inference Framework

In this section, we propose a framework that uses sim-
ilarity as credibility weight and an inference scheme
based on similarity weight to provide sparsity resilience
and robustness.



(a) Personal Rating Matrix

(b) Rating and Neighborhood Graph

Figure 1: Similarity Inference Scheme: Illustration

3.1 Overview

We first model our problem in a graph theoretic way.
Recall that in our personal rating matrix, each cell
represents a personal rating from a node about an-
other node. Suppose each peer is represented as a
node in the graph. If peer u has interacted with and
has a personal rating about peer v, it corresponds to
a directed link from u to v. Each peer then has a set
of outgoing links representing the ratings it has given
to other peers and a set of incoming links represent-
ing the ratings it has received from other peers. Fig-
ure 1 illustrate a partial personal rating matrix and a
corresponding graph with solid links representing the
personal rating links.

When peer u is evaluating the trustworthiness of
peer v, it can use its personal rating if it is available
(direct link from u to v) or the community reputa-
tion based on the community ratings about peer v
(all incoming links to v). Without loss of generality,
in our framework, the trust value is defined by a lin-
ear combination of the user’s personal rating and the
community reputation. The user can tune the weight
if it desires to give more weight to its personal experi-
ences when it is available. In the rest of the chapter,
we will focus on the computation of the community
reputation.

The community reputation aggregates all the rat-
ings about v. As we have discussed earlier, a common
strategy to combat the dishonest feedback is to use
certain metric to weigh the ratings during aggrega-
tion. There have been a few classes of metrics that
have been used. One common way is to use the peer’s
previously determined reputation score to weigh its
feedback. However, as we have discussed earlier, a

user may have personal experiences with another user
and get opinions on the user for performing service
but it does not indicate any opinions on the user for
providing feedback. It has been shown these schemes
are vulnerable to certain types of attacks where ad-
versaries exploit the transitivity property of the trust
links and create fake links.

We argue that we need to derive a separate credi-
bility link between users so they can use them to weigh
each other’s ratings. Intuitively, a user is more willing
to trust another user v’s ratings if v has given simi-
lar ratings to the same set of peers that w has done
before. If we treat all the ratings each peer has given
to others, we can derive certain relationship between
users in terms of their feedback filing and use this as
a credibility measure. As a result, in addition to the
personal rating links, we add another type of links,
credibility links, with each link representing the sim-
ilarity between a pair of users. The credibility links
are illustrated as dashed links in Figure 1.

For some pair of users, the similarity can be di-
rectly derived using certain similarity measure between
the ratings they have given before over a common set
of peers. And we will discuss in detail different simi-
larity measures and study experimentally how they af-
fect the performance. However, when the input data
is sparse, it is not always possible to derive the di-
rect similarity or the derived link may be unreliable
because they are based on too little information.

This motivates us to explore the transitive asso-
ciations of similarity. If a user u is similar to v, v
is similar to w, u should be somewhat similar to w.
In other words, similarity may propagate through the
network. The indirect similarity link is represented as
double dashed link in Figure 1. This is particularly



important when the input feedback matrix is sparse.
We will present algorithms that help peers find indi-
rect neighbors and compute indirect similarity weight
for indirect neighbors.

In summary, the framework uses user feedback sim-
ilarity to weigh their ratings and uses similarity infer-
ence to compute the weight for indirect neighbors. It
has the following main steps.

e Compute initial trust based on personal experi-
ence. The result of this is the personal experi-
ence matrix.

e Compute direct similarity based on the ratings
matrix.

e Find indirect neighbors and compute indirect
credibility.

o Aggregate user feedback (possibly from a selected
neighborhood of users) based on the credibility
of the users.

There are a number of research questions we would
like to study in the proposed scheme. First, what kind
of similarity do we use? Second, what kind of inference
model do we use and how do we determine the depth
of the inference and the inference functions? Third,
do we use all the user’s neighbors or use a subset of the
neighbors and what criteria? Finally, how do all the
algorithm variants handle the sparsity issue as well as
the attacks?

In the rest of the section, we present the details of
each component of the scheme and study these ques-
tions by examining various algorithms and techniques
and their effects on countering sparsity and vulnera-
bilities.

3.2 Computing Credibility using Similarity

We first derive the weight of direct links between two
users. Assuming the personal feedback v, ; is derived
as an average of all the transaction feedback (satisfac-
tion) from a to 7 in previous transactions. Complex
measures can be also used to handle strategic oscillat-
ing behaviors of nodes [26]. If we treat all the ratings
each peer has provided in the past about other peers
as a vector or variable, we can compute similarity be-
tween two users using different measures. The intu-
ition is that a user will trust another user’s ratings if
the latter has given similar ratings as the user does
previously. Depending on different similarity mea-
sures, the direct similarity can be undefined. Several
different similarity measures have been used in collab-
orative filtering systems. We adopt the following three
measures in our framework.

e Pearson correlation. Pearson correlation is widely
used in collaborative filtering systems. It com-
putes the degree of linear relationship between
two variables. It ranges from +1 to -1 where
+1 means there is a perfect positive linear re-
lationship. The Pearson correlation coefficient
between user a and b is calculated as:
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e Vector cosine similarity. The vector similarity
measure is another widely used technique in which
each user is represented by a vector of ratings in
the |I|— dimensional space, where I is the set of
items. The similarity between two users a and
b is calculated as the cosine of angle between
the two corresponding vectors (normalized inner
product):

D ic1 Va,iVbi
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e Fuclidean distance. In our previous work [28],
we have also used the root-mean-square or stan-
dard deviation (dissimilarity) of the two feed-
back vectors to compute the similarity.
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An inherent difference between the Euclidean dis-
tance and the other two is that it does not perform a
normalization of the feedback. Intuitively, normaliza-
tion of feedback will minimize the effect of user bias.
For instance, one user may always give high ratings
for all other users while another may always give low
ratings. When the feedback is normalized, it is the
relative ratings that matter and these two users will
have a high similarity despite their bias. On the other
hand, the Euclidean distance will treat these two users
as dissimilar.

Other potential measures include Spearman corre-
lation which takes the ranks of the two variables and
computes a ranked version of Pearson correlation. Ex-
isting collaborating filtering literature [5, 13] has re-
ported that Pearson correlation and Spearman corre-
lation yield comparable and slightly better accuracy
than vector cosine similarity in recommender systems
typically evaluated by movie rating datasets. We will
study experimentally how these measures perform in
our context with sparse feedback data and potential
feedback manipulations in Section 4.



3.3 Similarity Inference

We refer to all the users who have a direct similarity
weight defined with u as u’s direct similarity neigh-
bors. Once the direct similarity neighborhood is formed,
when u needs to evaluate another service providers
trustworthiness, it asks its neighbors for their opin-
ions about the target peer and aggregate their opin-
ions. (The user can either use all its neighbors or select
a subset of neighbors. We will discuss neighborhood
selection techniques later in this section). However,
when the input data is sparse, each peer may have a
very limited number of direct neighbors and thus the
chance increases that none of its direct neighbors has
an opinion about a given target peer. In this case, it is
natural to consider the neighbors neighbors in order
to get a larger neighborhood for future evaluations.
In this section, we explore the transitive associations
between similarity and present algorithms to find in-
direct neighbors of a given user and propagate the
similarity weight between the user and indirect neigh-
bors.

2-Hop

1-Hop
neighbors neighbors

Figure 2: Discovering Indirect Neighbors: Illustration

Discovering Indirect Neighbors We can model the
problem as a transitive closure problem to find all
nodes that are reachable by node u by at least one
path. (Note here that the path consists of only simi-
larity links). Intuitively, a user may be only willing to
take the opinions of other users that are within certain
distance. An indirect neighbor that is too far away on
a similarity path stops being useful even if each node
is perfectly similar to their immediate neighbors on
the path. So we bound the path by a maximum path
length L meaning we only consider the indirect neigh-
bors within L hops of the source user u. If a node is
reachable by u by at least [ hops, we call the node u’s
I-hop neighbor. u’s 1-hop neighbors are also u’s imme-

diate neighbors. Figure 2 shows the 1-hop (immediate
an illustration of the similarity based neighbors.
Since we have a maximum path length bound, we
do not need a full transitive closure algorithm. In-
stead, for each node, similar to the single source tran-
sitive closure problem, we can use a standard breath
first graph search algorithm to find all the indirect
neighbors that are within L hops. Since the input
data may be sparse and each user only has a limited
number of immediate neighbors, we expect the algo-
rithm to be efficient.
Computing Indirect Weights The similarity weight
for w’s immediate neighbors are the direct link weight.
For the neighbors greater than 1-hop, we need to com-
pute an indirect weight for them. For a [-hop neighbor
v, we consider all the /-length paths from u to v and
compute an indirect weight based on these paths.
Formally, for each path, we infer the indirect weight
for this path as a product of the direct weight on each
link as in Equation 5. We can also add in a decay-
ing factor at each step such that the similarity decays
at each step and essentially a path decays to 0 if it
is too long. Since we have bounded the path length
by a maximum length in finding neighbors, we set the
decay factor as 1 in our implementations.

®)

If there are multiple paths of length [ from node u
to node v, we need a function to select or combine the
inferred values from each path into a single value. We
consider three such functions: maximum, minimum,
and average.

(R )
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o Maximum Value. Maximum function assumes
an optimistic behavior of the user and selects
maximum similarity value of the multiple paths.
This is consistent with performing a generalized
or operation over [0,1] valued beliefs in fuzzy
logic. User u will believe another user j to an
extent with which at least one of its closer neigh-
bors trust j.

Sq,j = miinp;j (6)
Minimum Value. Minimum function assumes a
pessimistic behavior of the user and selects min-
imum similarity values of the multiple paths.
This is consistent with performing a generalized
and operation in fuzzy logic. User u will only
believe another user j to an extent with which
all its closer neighbors trust j.

(7)
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o Average Value. Average function computes an
average of the similarity values of the multiple
paths. Intuitively, this may give us the best of
maximum and minimum function. However, av-
erage function is not associative so it may be
harder to implement using standard algorithms
and we will discuss the implementation later in
this section.

Z’?:l pé,j
n
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Neighbor Selection Once the neighbors are discov-
ered and their indirect weights are computed, some
of them may turn out to have a very low similarity
with the source user. It is been observed in collab-
orative filtering systems that the neighbors with low
correlations will greatly affect the prediction accuracy
[5]. So in addition to the nave method that considers
all the neighbors, we also consider two neighborhood
selection techniques in our scheme.

e Threshold Based Selection. A threshold based
neighborhood selection scheme sets an absolute
similarity threshold, where all neighbors with
absolute similarity greater than the threshold
are selected. It has been suggested that high cor-
relates can be exceptionally more valuable than
those with lower correlations [5]. Hypothetically,
setting a high threshold limits the neighborhood
to containing very highly similar users, but may
also results in a small or even empty neighbor-
hood so it cannot compute the similarity based
reputation for many users.

e k Nearest Neighbor (kNN) selection An alterna-
tive technique is to pick the top k£ neighbors in
terms of similarity for each user. This works in
a similar way to k nearest neighbor (kNN) clas-
sification algorithm.

Note that although the similarity based distance is
defined in a symmetric way, i.e. the similarity between
node a and b is the same as that between node b and
a, the neighborhood can be defined in an asymmetric
way. Consider a scenario where node a is connected
to many nodes with high similarity and to node b with
low similarity while node b is connected to a few nodes
including node a with low similarity. In this case,
node a may filter out node b from its neighbor list by
setting a fairly high threshold while node b may very
likely keep node a as its neighbor because of its limited
number of connected nodes. This notion of relative
distance provides a nice notion of meta-distance into
the neighborhood selection.

We will evaluate the different neighborhood selec-
tion techniques with varying parameters such as the
threshold value in Section 4 in terms of their effects on
sparsity resilience and robustness of the algorithms.

When there is a neighborhood selection scheme,
the threshold parameters or the k value can be also
built into the neighborhood discovery process so that
the neighbors who have a low weight will be pruned
early on and the algorithm will be more efficient.
Matrix Representation If we represent the graph
by a Boolean adjacency matrix M, M' will gives us
all nodes that are reachable with a length [ path. If
we represent the graph by a similarity weight matrix
with each cell representing the link weight, assuming
the weight is normalized for each user, we can also use
matrix production M! to compute the indirect weight.
It essentially corresponds to using production as the
path concatenation function and using weighted aver-
age as the path combination function.

If we normalize the similarity weight by each user,
we can also interpret the similarity inference problem
as a stochastic transition process similar to the ran-
dom walker model in PageRank [20] and EigenTrust
[15]. Imagine the source user a is trying to find similar
neighbors, at each step, it hops to a neighbor accord-
ing to the current users distribution of similarity.

The difference between our approach and web of
trust or EigenTrust is that user a stops when it reaches
the maximum path length. In the global inference
approach such as EigenTrust, a users personal beliefs
are washed out by the infinite aggregation of other
users beliefs and the resulting eigenvector is a global
trust vector.

It is worth mentioning, however, if we normalize
the similarity weight by each user, then the similarity
value does not have the semantic meaning any more, it
only gives a relative rank of the users in terms of simi-
larity. So the threshold based algorithm will not work
with normalized similarity but kNN based scheme will.
Implementation Algorithm We implement a breath
first search based algorithm of the above conceptual
model in our first prototype.

Algorithm 1 depicts a sketch of the algorithm that
is executed at node a. Node a first initializes its neigh-
bor by adding itself into the list. Then at iteration
step [, it gets all the [-hop neighbors and compute
their indirect weights. The algorithm terminates after
it retrieves all the L-hop neighbors.

At each iteration step, node a go through its cur-
rent neighbor list, and retrieve all the immediate neigh-
bors of its current neighbors, if the node is not in us
neighbors list yet, it is considered a new [-hop neigh-
bor and being added into the newNeighbors list. If
there are multiple paths from a to ¢, it users the given



Algorithm 1 getNeighbors(a,L, f)
Input: a, L, f, Output: N,
N,.put((a,1)

l—1
while [ < l,,,, do
newNeighbors = ¢;
for b € N, do
IN, = GetImmediateNeighbors(b)
for ¢ € IN, do
Wa,c = Wq,b * Wp,c
if ¢ ¢ newNeighbors then
newNeighbors.put (¢, wq,c)
else
newN eighbors.update (c,
f(newNeighbors.get(c), wq,c))
end if
end for
end for
N,.add(newNeighbors)
l<1+1
end while

combination function (Maximum, Minimum or Aver-
age) to update its weight. Note that Average can be
implemented by using Sum and Count and we skip the
algorithm details here.

We can also adopt spreading activation algorithms
for certain implementations of the above model to
achieve better efficiency. Spreading activation mod-
els have been first introduced in order to simulate
human comprehension through semantic memory and
have been later applied to many associative retrieval
problems [7]. The similarity inference problem can be
naturally modeled as an association retrieval problem
and various spreading activation algorithms can be
used for implementing the computation. For example,
the branch and bound algorithm [6] can be adopted
to implement the above model if the path combina-
tion functions are associative (out of the functions we
considered, maximum and minimum are associative,
while average is not).

4 Experimental Evaluations

We performed a set of simulations to study the perfor-
mance of the framework under different sparsity levels
and threat models.

4.1 Experimental Design

For each experiment, we vary the sparsity of the in-
put feedback and evaluate the accuracy and coverage
of different parameters to study the effect of sparse
feedback.

Based on the algorithmic scheme described in Sec-

tion 3, we study the performance of the system exper-
imentally with the following varying parameters.

o Similarity measure. We study the three similar-
ity measures used to compute the direct similar-
ity weight: Pearson correlation, vector similar-
ity, and Euclidean distance.

o Mazimum path length. We vary the maximum
path length that is used for exploring indirect
neighbors from 1 to 4. When 1 is used, only
direct neighbors are considered.

e Path combination function. We consider the three
path combination functions used to compute the
indirect similarity weight when there are multi-
ple paths between two nodes: maximum, mini-
mum, and average.

o Threshold based neighbor selection. We also vary
the absolute threshold used for selecting a subset
of neighbors to aggregate the feedback from 0 to
0.75. When 0 is used, it is the same as using all
the neighbors.

When one parameter is varied, we set the other
parameters with a default value. Table 1 summarizes
the main experimental parameters with their default
values as well as the community parameters that we
used for the experiments.

We also perform attacks according to the attack
strategies we described in Section 2.2 and evaluate
the performance of the system with a low sparsity and
varying sizes of attacks. Table 2 summarizes the be-
haviors of malicious peers in different attack models.

4.2 Evaluation Metrics

We examine different algorithmic variants of each com-
ponent in the framework and evaluate their perfor-
mance focusing on the sparsity resilience and robust-
ness of the collaborative systems. We use the following
two main metrics.

e Accuracy. An accuracy metric empirically mea-
sures how accurate a system in predicting the
reputation scores as a measure of the trustwor-
thiness of peers.

We use statistical accuracy metrics that com-
pare how reputation system’s computed reputa-
tion values for a peer differ from the peer’s as-
signed reliability value. Typical statistics met-
rics include Mean Absolute Error (MAE), Root
Mean Squared Error and Correlation error. All
the above metrics generally provided same con-
clusions, so we only report Root Mean Square
Error.



Table 1: Countering Feedback Sparsity: Experiment Parameters

‘ ‘ Parameter ‘ Description ‘ Default ‘
Community N # of peers in the community 100
Setting s density of feedback 5%

k % of malicious peers in the community 0
mrate % of transactions a malicious peer acts malicious | 100%
Trust Similarity Measure Euclidean
Computation | L Maximum Path Length 2
Path combination function Average
Crmin Neighbor selection threshold 0
nExp # of experiments over which results are averaged | 10

Table 2: Countering Feedback Sparsity: Attack Models

| Attack Models

\ Service Quality \ Feedback Quality

Non-Collusive Low Random

Collusive Low Target maximum rating (within group)
Random (otherwise)

Collusive Camouflage | Low Target maximum rating (within group)
Honest (otherwise)

e (Coverage. Coverage measures the percentage of
a test dataset that the reputation system is able
to compute reputation value for. It is worth not-
ing that coverage and accuracy is at odds in
some cases. For example, using neighborhood
threshold selection may increase accuracy but
decrease coverage. We will therefore focus on
both improving accuracy and coverage in vari-
ous sparsity levels and threat models.

4.3 Countering Sparsity

We first study how variant algorithmic components in
our scheme handle the sparsity of the feedback.
Similarity measures. There are a number of ways to
derive the similarity measure as the credibility weight
for aggregating the feedback of peers. We first study
their effects on the sparsity reputation systems.
Figure 3 shows the trust computation error and
coverage of using different similarity measures under
different sparsity levels. The three similarity measures
give comparable precision and coverage. In particular,
Fuclidean distance and vector similarity achieve bet-
ter coverage than Pearson correlation as Pearson cor-
relation can only be computed when two users have
commonly rated peers.
Maximum Path Length. Now we study how the
propagation of similarity affects the system in coping
with sparsity. We first study the effect of the maxi-
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mum path length that is used to explore for indirect
neighbors.

Figure 4 shows the trust computation error and
coverage of using different maximum path length un-
der different sparsity levels. We can make a few inter-
esting observations. First, the 2-Hop algorithms pro-
vide significantly better precision and coverage than
the basic 1-Hop algorithm (maximum path length =
1). The performance gain is more significant when
the input data is extremely sparse. This shows that
considering indirect neighbors is important in coun-
tering sparse data. It reflects the intuition that you
need to talk to people outside your close circle to get
the best information. Second, 3-Hop and 4-Hop al-
gorithms do not perform much better than 2-Hop al-
gorithm. It shows that considering neighbors that are
far away does not help much in achieving a better pre-
cision and coverage in this case. It also reiterates the
observation that limited reputation sharing or a local
reputation scheme is desired to avoid the unnecessary
computation costs. This can be potentially explained
by the small world effect wherein most of the peers
may be connected by length 2 paths in our scenario.
It is worth noting however that a formal analytical
study is needed to determine the optimal maximum
path length for a given sparsity and distribution of
the community.

Path Combination Function. We also study the



0.2,

—— Euclidean Distance
-+- Pearson Correlation
©: Vector Similarity

Error

.

—— Euclidean Distance

-+- Pearson Correlation
o Vector Similarity

Coverage

0(.)02

0'%‘702

0.04 0.08

. 0.1
Rating Matrix Density

(a) Trust Computation Error

0.04 0.08

0.06 0.1
Rating Matrix Density

(b) Trust Computation Coverage

Figure 3: Trust Computation Error and Coverage of Different Similarity Measure with Varying Sparsity Levels

Error

-9

Coverage

0'%":.'02

0.04 0.06 0.08
Rating Matrix Density

0.1

(a) Trust Computation Error

0(?02 0.04 0.06 0.08 0.1

Rating Matrix Density
(b) Trust Computation Coverage

Figure 4: Trust Computation Error and Coverage of Varying Maximum Path Length with Varying Sparsity Levels

effect of different path combination functions when
computing the similarity weight for indirect neighbors.
Figure 5 illustrates the trust computation error
and coverage of the three path combination functions
with varying sparsity levels. Interestingly, the maxi-
mum function has the lowest error rate with varying
sparsity levels. This shows that by assuming an opti-
mistic behavior (taking the maximum similarity value
among multiple paths) peers can achieve better repu-
tation accuracy given a sparse feedback input. Differ-
ent path combination functions do not have any effect
on the computation coverage.

Threshold Based Neighbor Selection. Finally we
study the threshold based technique in selecting neigh-
bors for trust evaluations.

Figure 6 illustrates the trust computation error
and coverage of using different threshold values with
varying sparsity levels. Interestingly, setting different
threshold values does not have a significant impact on
the trust precision. Having a threshold value of 0.75
increases the precision marginally but suffers a lower
coverage.
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4.4 Effect of Feedback Manipulation

Now we study how the scheme performs at a low spar-

sity with feedback manipulations. We consider each

of the attack strategies we described earlier and study

how different algorithm components perform under

each of them.

Similarity Measure. We first study the performance

of different similarity measures in terms of trust com-

putation error and coverage under different threat mod-
els.

Figure 7 shows the trust computation error and
coverage using different similarity measures under non-
collusive model where each individual malicious user
acts independently. We see that the three similar-
ity measures have the same effect on the computation
error which increases as the percentage of malicious
users increases. Pearson correlation and Euclidean
distance give slightly better precision than vector sim-
ilarity. This may be contributed to the fact that vector
similarity assigns a default 0 value for the missing feed-
back rating when comparing two users which results
in errors. The computation coverage is not affected.

For the collusive threat models, collusive and col-
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lusive camouflage, we assume the goal of the collusive
malicious users is to boost their own ratings. In par-
ticular, in the collusive camouflage model, malicious
users camouflage as honest users by providing honest
ratings about the users outside their group in order
to be similar to other users so that their dishonest
(high) ratings about malicious users themselves can
be counted. So in addition to measure the trust com-
putation errors for the whole population of users, we
also measure the computation errors for the malicious
users which will reflect how the collusive camouflage
users achieve their malicious goal.

Figure 8 and 9 show the trust computation error
and coverage using different similarity measures un-
der collusive, and collusive camouflage threat model
respectively. We observe that by colluding with each
other, the malicious users are able to decrease the sys-
tem computation accuracy to a large extent esp. when
there is a majority of them in the system. The target
error is even higher than the general error. Among
the different similarity measures, Pearson correlation
is slightly more resistant to malicious users than the
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other two measures and vector similarity suffers the
most. Another interesting phenomenon is that by us-
ing a collusive camouflage strategy, the malicious users
are able to increase the target error to a larger extent
than the collusive model, meaning their own ratings
may be raised to a larger extent. However, the general
error is decreased because the camouflaged malicious
users provide honest ratings which actually make good
contributions to the community feedback.

We note that the system manages to be effective

until about 50% of the users are malicious even in the
worse collusive model. This is quite acceptable as a
system may be useless anyway when a majority of the
community is malicious.
Maximum Path Length. We next study the effect
of neighbors’ maximum path length on the trust com-
putation error and coverage with a sparse feedback
under different threat models.

Figure 10 shows the trust computation error and
coverage under non-collusive model. We can again
make a few interesting observations. First, the 2-Hop
algorithms and above provide significantly better pre-



0.7 —— Euclidean Distance
-+ Pearson Correlation
0.6 -0- Vector Similarity

...... *"‘"'x“"“*----"—o---....
0.8
()
0.6
g
[
>
304
0.2 —— Euclidean Distance
! -+-- Pearson Correlation
-0 - Vector Similarity

0.1 02 03 4 05 06
% of Malicious Users (Non—Collusive)

(a) Error

1 02 03 04 05 06
% of Malicious Users (Non—Collusive)

(b) Coverage

Figure 7: Trust Computation Error and Coverage of Different Similarity Measures in Non-Collusive Model

0.7 —— Euclidean Distance 0.7 —— Euclidean Distance P T E T MRRREEN -+
-+ Pearson Correlation -+ Pearson Correlation 0.8
0.6 -0- Vector Similarity 0.6 -0- Vector Similarity :
— o
005 . @
i i g°°
©0.4 i i )
g 2 04
< ' OO0.
0.3 .
:—"9’
0.2 0.2 —— Euclidean Distanpe
. -+ Pearson Correlation
) 01 -o- Vector Similarity
0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6 8.1 0.2 0.3 0.4 0.5 0.6
% of Malicious Users (Collusive) % of Mallicious Users (Collusive) % of Malicious Users (Collusive)
(a) Error (b) Target Error (c) Coverage

Figure 8: Trust Computation Error and Coverage of Different Similarity Measures in Collusive Model

cision and coverage than the basic 1-Hop algorithm.
This shows that considering indirect neighbors is im-
portant in countering sparse data and as a result it
also provides a better resilience to the manipulation
of feedback by malicious users. Second, 3-Hop and
4-Hop algorithms do not perform much better than
2-Hop algorithm. This shows that considering neigh-
bors that are far away does not help much in coping
with malicious feedback manipulation.

Figure 11 and 12 show the trust computation er-
ror and coverage results under collusive and collusive
camouflage threat model respectively. We see a simi-
lar trend as in the non-collusive model but to a larger
extent. Also, the collusive camouflage model is able
to slightly increase the trust computation error for the
malicious group.

Path Combination Function. We also experimen-
tally studied the effect of different path combination
functions in each of the threat models. The results
show that the three path combination functions have
a similar effect on the trust evaluation error which in-
creases as the percentage of malicious users increases.
The minimum function performs slightly worse than
the other two similar to what we have observed in their
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effects on countering sparsity. The collusive models
show a similar trend as in the non-collusive model but
to a larger extent. Due to space limitations, we omit
the graphs for this study in this paper and refer inter-
ested readers to [29] for a complete description of the
results.

Threshold-Based Neighbor Selection. Finally we
studied how threshold-based neighbor selection help
countering feedback manipulation attacks. We ob-
serve that when we increase the threshold, the pre-
cision of the algorithm increases as it helps to filter
out malicious peers when aggregating opinions. How-
ever, as we have expected, a higher threshold also de-
creases the coverage of the reputation computation.
The graphs are also omitted due to the space restric-
tions.

5 Related Work

A number of reputation based trust systems have been
proposed recently for P2P networks and web applica-
tions [1, 8, 9, 15, 23, 31, 33, 11]. They differ in a
variety of aspects, including application domains, in-
ference methodologies, and implementation strategies.
There have been a few efforts trying to classify the
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trust schemes based on various dimensions [36, 35, 18].
We first discuss the main techniques related to the
feedback vulnerabilities that we study. We then dis-
cuss a few representative works that are closely related
to our work and examine their approaches and limita-
tions.

A few reputation and trust systems use inference
schemes to propagate trust through network by as-
suming certain transitivity of trust relationships [15,
23, 11]. These schemes typically involve a high compu-
tation cost. On the other hand, Marti [17] suggested
limited reputation sharing. While it has benefits in
load balancing but it is not feasible when the feed-
back data is sparse.

A common strategy to combat the dishonest feed-
back is to use certain metric to weigh the information
and opinions collected from other peers. A user is
much more likely to trust a credible feedback source
or trusted acquaintance than from a stranger. There
have been a few classes of metrics that have been used.
‘While some works have assumed the recommendation
trust is predefined by users [23, 11], one common way
is to use the peer’s previously determined reputation
score to weigh its feedback. The latter do not differ-

entiate recommendation trust (credibility) and service
trust (reliability) and are susceptible to front peers
attacks [17]. We discuss representative ones including
EigenTrust [15] and limited reputation sharing [17] be-
low.

EigenTrust [15] is based on the notion of transi-
tive trust. It propagates the service trust through
the whole network until it results in the Eigenvector.
They overcome the problem of front peers attacks by
assuming there are pre-trusted peers in the network
and each peer has to place at least some trust in the
pre-trusted peers. This breaks up potential malicious
collectives as well as guarantees convergence of the al-
gorithm mathematically. While the algorithm showed
promising results, we argue that the pre-trusted peers
may not be available in all cases and it remains a re-
search question how to choose pre-trusted peers in a
network. Another shortcoming of their approach is
that the implementation of the algorithm is very com-
plex due to the global trust propagation scheme and
requires strong coordination and synchronization of
peers.

Limited reputation sharing scheme proposed by
Marti et al. [17] uses only limited or no informa-
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tion sharing between nodes. The rating of a peer is
the combination of the local statistics and the quorum
rating, which takes a weighted average of opinions of
other peers. A larger weight is given to the nodes
that have a high reputation trust value by behaving
well and providing good files. In contrast to global
history schemes, the focus is to use limited sharing
of opinions. They studied some interesting effects re-
lated to load-balancing and message traffic in the P2P
network. A problem with this scheme, as the paper
shows, is that it can be easily defeated by a group of
malicious peers who set up front nodes that properly
trade only authentic files, but when asked for their
opinion of other nodes, only promote malicious nodes
in the group. This problem can be alleviated when
peers consider their own local statistics and give very
small consideration of other peers’ opinions. However,
when the input matrix is sparse, majority of the nodes
will not have statistics for most of other nodes.

Yu et al. proposed a distributed reputation mech-
anism for P2P networks with techniques for detect-
ing deception in reputation propagation and aggrega-
tion [31, 33]. The weighted majority techniques they
adopted is in spirit similar to ours in that it associates
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a credibility weight with each agent when aggregat-
ing their opinions (differentiated from service trust).
However, in contrast to our work, all the weights are
initialized to 1 in their approach and they only get up-
dated (downgraded) after unsuccessful predictions. In
other words, the bad peers only get recognized (having
their credibility weights downgraded by other peers)
after their dishonest feedback incurs a transaction be-
tween a malicious peer and an honest peer. The mali-
cious peers who badmouth good peers may never get
recognized as the good peers who get malicious dis-
honest feedback may not get a chance to interact with
other peers. In our approach, the derived similarity
automatically reflects the changes in the ratings. It
would be interesting to explore the possibilities to al-
low the credibility to be updated by users as in their
work.

Another related area of research is recommender
systems based on collaborative filtering techniques.
Adomavicius et al. [3] provides a latest survey of the
state-of-the-art in recommender systems. While rep-
utation systems and recommender systems are closely
related and we adopted certain techniques from col-
laborative filtering, there are also important differ-



ences between them. First, recommender systems are
concerned with items or products that are fairly sta-
tic while reputation systems deal with transactions
and need to cope with dynamic behaviors of malicious
peers [18, 26]. S. K. Lam and J. Riedl [16] experimen-
tally studied several types of shilling attacks on col-
laborative filtering systems. We benefited from their
attack designs and modeled and analyzed feedback
manipulation attacks on reputation systems. There
has also been some research that attempted to alle-
viate the sparsity problem in collaborative filtering.
Dimension reduction techniques aim at reducing the
dimensionality of the user-product matrix. Empiri-
cal results have shown that dimension reduction tech-
niques improve recommendation performance in some
applications but perform poorly in others [24] as po-
tentially useful information might be lost during the
reduction process. Huang et al. [14] modeled the user-
product interactions as a bipartite graph and modeled
the recommendation problem as association retrieval
problem However, their framework only deals with
systems that have binary transactional data. Most
importantly, they did not consider the potential vul-
nerabilities of the system.

6 Conclusion

We presented in this paper a similarity inference scheme
that helps the a reputation system coping with feed-
back sparsity with potential feedback manipulations.

We studied various algorithmic components in the scheme [§]

including the similarity measure and the similarity in-
ference model. Our experimental evaluations show
that by considering indirect neighbors, the scheme
provides resilience for the trust framework against feed-
back sparsity even with various feedback manipulation
attacks.

Our work continues along several directions. First,
we would like to conduct a formal study analyzing the
effect of various algorithmic parameters, for example,
to determine the optimal maximum path length for
a given sparsity and distribution of the community.
Second, the proposed similarity inference scheme es-
sentially clusters similar users together based on their
feedback and helps them to evaluate each other de-
spite sparse feedback. An interesting and opposite
phenomenon that has been suggested recently is that
when recommendations are generated in a distributed
manner with scattering, the quality of the network
could improve when clusters are reduced [25, 34]. This
corresponds to the intuition that people benefit from
knowing others outside their parochial groups. This
suggests an interesting research opportunity that con-
sidering dissimilarity as well as similarity in the in-
ference scheme may yield unexpected yet potentially
good results. Finally, we are also interested in apply-
ing the techniques to web spam filtering and service

16

reputation ranking in semantic web.
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