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Abstract. This paper is concerned with a generalization of the Hermitian and skew-Hermitian
splitting iteration for solving positive definite, non-Hermitian linear systems. It is shown that the
new scheme has some advantages over the standard HSS method, and can be used as an effective
preconditioner for certain linear systems in saddle point form. Numerical experiments using dis-
cretizations of incompressible flow problems demonstrate the effectiveness of the generalized HSS
preconditioner.
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1. Introduction. The Hermitian and skew-Hermitian Splitting (HSS) iteration
was first introduced by Bai, Golub and Ng in [4] for the solution of a broad class of
non-Hermitian linear systems Ax = b. The basic iterative scheme works as follows.
Let α > 0 be fixed. Denoting by H = (A + A∗)/2 the Hermitian part of A and by
S = (A−A∗)/2 the skew-Hermitian part, the HSS method is the alternating iteration{

(H + αI)xk+ 1
2

= (αI − S)xk + b,

(S + αI)xk+1 = (αI −H)xk+ 1
2

+ b
(1.1)

(k = 0, 1, . . .), where x0 is an arbitrary initial guess. It was shown in [4] that when H
is positive definite the HSS iteration is unconditionally convergent, i.e., the sequence
{xk} converges to the solution x∗ = A−1b as k →∞ for all α > 0 and for any choice
of x0. Moreover, it was shown in the same paper that choosing α =

√
ab, where

a = λmin(H) and b = λmax(H) are the extreme eigenvalues of H, minimizes an upper
bound on the spectral radius of the iteration matrix associated with the stationary
scheme (1.1).

Due to its promising performance and elegant mathematical properties, the HSS
scheme immediately attracted considerable attention, resulting in numerous papers
devoted to various aspects of the new algorithm.1 In one direction, the method was
extended to the solution of saddle point problems in [7, 8]; see also [1, 5, 12, 21].
Notice that in these problems the Hermitian part of A is generally singular, requiring
a different convergence analysis. Another natural development, first considered in
[7, 8], was to use the HSS scheme not as a stationary iterative solver, but as a precon-
ditioner for Krylov subspace methods [20], resulting in a far more efficient and robust
class of solvers. Other significant developments include “preconditioned” variants of
the HSS iteration, the extension to certain singular systems, studies on the optimal
selection of iteration parameters, and application of the HSS preconditioner to specific
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problems like convection-diffusion equations, incompressible flow problems, and real
formulations of complex linear systems, often with excellent results; see [2, 3, 6, 9, 11]
and the references therein.

A potential difficulty with the HSS approach is the need to solve two linear sys-
tems at each iteration (or at each application of the preconditioner), one with matrix
H + αI and one with matrix S + αI, cf. (1.1). The first of these two systems is Her-
mitian positive definite and often well-conditioned (at least for α not too small) and
its solution does not present great difficulties. The shifted skew-Hermitian system,
however, can be much more problematic; in some cases its solution is as difficult as
that of the original linear system Ax = b. There are situations where the matrix S is
structured in such a way as to make systems involving S+αI easy to solve; see [10] for
an example arising in image processing, and [9] for one arising in fluid mechanics, as
well as section 3 below. In general, however, this will not be the case. It is therefore
not surprising that beginning with the first HSS paper [7] considerable attention has
been devoted to the use of inexact solves. In a typical situation, the two linear sys-
tems in (1.1) are solved to relatively low accuracy, usually by inner iterative schemes
which could be some preconditioned Krylov iteration or a multigrid method. There
is now considerable evidence that the good convergence properties are preserved even
when the inner solves are performed to rather low accuracy, resulting in considerable
savings, especially for very large problems; see, e.g., [9].

In this paper a generalization of the original HSS scheme is presented and some of
its basic properties are studied. The idea is to split H into the sum of two Hermitian
positive semidefinite matrices: H = G + K, where K is is of simple form (e.g.,
diagonal), and to associate K to the skew-Hermitian portion S of A, so that A =
G+ (S +K). The generalized HSS scheme is based on the splittings

A = (G+ αI)− (αI − S −K) and A = (S +K + αI)− (αI −G) .

When either G or K is positive definite the resulting scheme, which reduces to the
classical HSS method when K = 0, is shown to be convergent for all α > 0; see the
next section. Its rate of convergence is often faster than that of the standard HSS
scheme. However, the main interest of the generalized scheme consists in the fact
that solution of systems with coefficient matrix S + K + αI by inner iterations is
made easier, since this matrix is more “diagonally dominant” (loosely speaking) and
typically better conditioned than S +αI. The new variant (to be used primarily as a
preconditioner for a Krylov subspace method) was motivated by the type of matrices
that arise in the solution of time-dependent incompressible flow problems, but it is
not restricted to them and can be described in a completely algebraic manner.

The remainder of the paper is organized as follows: in section 2 the generalized
HSS scheme is described and some of its properties are discussed. Types of problems
for which the generalized HSS method appears to be well-suited are described in
section 3 and a few numerical tests are discussed in section 4. Concluding remarks
are given in section 5.

2. The generalized HSS scheme. First, a brief review of the classical HSS
iteration is needed. This method is based on the splitting A = H + S, which in turn
induces the two splittings

A = (H + αI)− (αI − S) and A = (S + αI)− (αI −H) ,
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with α > 0. Alternating between these two splittings yields the HSS iteration (1.1).
Elimination of xk+ 1

2
from the second of (1.1) yields

xk+1 = Tαxk + P−1
α b

(k = 0, 1, . . .), where

Tα = I − P−1
α A, Pα =

1
2α

(H + αI)(S + αI) .

Here A = Pα − (Pα −A) is the splitting induced by the HSS iteration, and Pα is the
HSS preconditioner. The iteration matrix Tα is given by

Tα = (S + αI)−1(αI −H)(H + αI)−1(αI − S) ,

which is similar to

T̂α = (αI −H)(H + αI)−1(αI − S)(S + αI)−1 .

Hence, the following bound for the spectral radius of Tα holds:

ρ(Tα) = ρ(T̂α) ≤ ‖(αI −H)(H + αI)−1‖ ‖(αI − S)(S + αI)−1‖ ,

where ‖·‖ denotes the spectral norm. Since (αI−S)(S+αI)−1 is the Cayley transform
of a skew-Hermitian matrix, it is unitary (see, e.g., [16]) and therefore it has norm 1.
Denoting by σ(H) the spectrum of H it follows that

ρ(Tα) ≤ max
λ∈σ(H)

|λ− α|
|λ+ α|

< 1 ,

showing that the method converges for all α > 0. As a consequence, the spectrum of
the preconditioned matrix P−1

α A lies inside the circle of center (1, 0) and radius 1 in
the complex plane.

If the Hermitian part H is only positive semidefinite (i.e., at least one of the
eigenvalues of H is zero), then the foregoing upper bound on the spectral radius
becomes ρ(Tα) ≤ 1 and the HSS method may not converge, in general. However, in
the special case of (generalized) saddle point problems the method can be shown to
be unconditionally convergent; see [8, Theorem 3.1].

Numerical experiments show that the HSS iteration is especially effective if either
H or S “dominates,” i.e., if either part of A is much larger than the other. For
instance, assume that A = H + S = εL + S where ε > 0 is a (small) parameter,
L = L∗ is positive definite, and S = −S∗. Assume further that L and S have been
scaled so as to have approximately the same norm. Then

Pα =
1

2α
(εL+ αI)(S + αI) =

1
2
A+

ε

2α
LS +

α

2
I .

This shows that up to a numerical factor, the HSS preconditioner Pα can be regarded
as an approximate factorization of the coefficient matrix A; for fixed α and for ε→ 0,
the matrix 2Pα approaches A + αI, which is a good approximation of A when α
is small. Taking α =

√
ε yields a preconditioner that (apart from the factor 1/2)

approaches A as ε→ 0. This heuristic argument helps explain the good performance
of the method on linear systems with dominant skew-Hermitian part; obviously, a
similar heuristic argument applies in case the Hermitian part dominates.
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Consider now the situation where the Hermitian partH can be split asH = εL+K
(ε > 0 small) where L = L∗ is positive definite and K = K∗ is positive semidefinite,
possibly positive definite. (For example, K could be a matrix of the form K = σM
where σ is related to a time step, e.g., σ = O(1/∆t), and M is a mass matrix, or
possibly a scaled identity.) In this case it is easy to see that Pα does not yield a good
approximation of A as ε→ 0 (for any α), and indeed the performance of HSS on this
type of problems is sometimes poor. The following extension of the HSS method may
be used instead. Write G = εL and consider the splittings

A = (G+ αI)− (αI − S −K) and A = (S +K + αI)− (αI −G),

together with the corresponding alternating iterative scheme{
(G+ αI)xk+ 1

2
= (αI − S −K)xk + b,

(S +K + αI)xk+1 = (αI −G)xk+ 1
2

+ b ,
(2.1)

(k = 0, 1, . . .). The following convergence result holds.
Theorem 2.1. Let A = (G + K) + S = H + S where G and K are Hermitian

positive semidefinite and S is skew-Hermitian. If either G or K is positive definite, the
alternating iteration (2.1) converges unconditionally to the unique solution of Ax = b.

Proof. Elimination of xk+ 1
2

from (2.1) leads to the iterative scheme xk+1 =
Tαxk + P−1

α b where

Tα = (S +K + αI)−1(αI −G)(G+ αI)−1(αI − S −K) = I − P−1
α A ,

with Pα = 1
2α (G+ αI)(S +K + αI). The iteration matrix Tα is similar to

T̂α = (αI −G)(G+ αI)−1(αI − S −K)(S +K + αI)−1 .

Clearly,

‖(αI −G)(G+ αI)−1‖ = ρ((αI −G)(G+ αI)−1) = max
λ∈σ(G)

|α− λ|
|α+ λ|

≤ 1 ,

with the inequality being strict if G is positive definite. Moreover, by Kellogg’s Lemma
(see, e.g., [18]) it holds that

‖(αI − S −K)(S +K + αI)−1‖ ≤ 1 ,

the inequality again being strict if K is positive definite. Therefore if either G or K
is positive definite it holds

ρ(Tα) = ρ(T̂α) ≤ ‖(αI −G)(G+ αI)−1‖ ‖(αI − S −K)(S +K + αI)−1‖ < 1 ,

showing the unconditional convergence of the iteration (2.1).
Some remarks are in order. First of all, it is clear that the iterative scheme (2.1)

is a generalization of the standard HSS scheme (1.1), to which it reduces whenever
K = 0.

Secondly, if G and K are both positive definite then the iteration matrix Tα is
similar to a matrix T̂α which is the product of two factors, (αI −G)(G+ αI)−1 and
(αI−S−K)(S+K+αI)−1, both of which are contractions with respect to the spectral
norm. In contrast, in the original HSS matrix Tα is similar to a matrix T̂α which is
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the product of a contraction times an isometry. This is not enough to conclude that
the new scheme converges (asymptotically) faster than the standard HSS iteration,
since it can be easily seen by examples that the spectral radius of (G+αI)−1(G−αI)
is often larger than that of (H + αI)−1(H − αI). This increase, however, may be
offset by the fact that the norm of (S +K + αI)−1(S +K − αI) is strictly less than
1 when K is positive definite, and numerical experiments show that the the spectral
radius is often smaller for the new method.

As a simple example, let n = 100 and let A = G + K + S where G = εL with
ε = 10−3 and

L =


2 −1 0

−1
. . . . . .
. . . . . . −1

0 −1 2

 , S =


0 0.1 0

−0.1
. . . . . .
. . . . . . 0.1

0 −0.1 0

 , K = 10−1In .

Then for α = 0.1 the spectral radius of the iteration matrix is ρ = 0.8999 using the
standard HSS splitting and ρ = 0.7999 using the generalized HSS splitting.

It is instructive to interpret the corresponding preconditioner

Pα =
1

2α
(εL+ αI)(S +K + αI)

as an approximate factorization of A. Indeed, expanding the product yields

Pα =
1
2
A+

ε

2α
L(S +K) +

α

2
I .

Again, this shows that up to a numerical factor, the new preconditioner Pα can be
regarded as an approximate factorization of the coefficient matrix A; for fixed α and
for ε → 0, the matrix 2Pα approaches A + αI, which is a good approximation of A
when α is small. Again, taking α =

√
ε yields a preconditioner that (apart from the

factor 1/2) approaches A as ε→ 0.
A few comments are in order concerning the “optimal” choice of the parameter

α. In the literature, a great deal of effort has been put in determining the value of α
which minimizes the spectral radius of the iteration matrix Tα, or some upper bound
on it. Such estimates on α can be given for the generalized HSS method using for
example the approach detailed in [18, Chapter 4]. However, the practical usefulness of
such estimates is questionable. First of all, the estimated value of α usually depends
on spectral information that may not be accessible, such as the extreme eigenvalues
of H (or, in the case of the generalized HSS method, of G). Second, minimizing the
spectral radius or an upper bound on it does not always result in the best choice of α
when the stationary iteration is accelerated by a Krylov method; see, e.g., the analysis
and examples in [7]. Furthermore, when these techniques are used as preconditioners
the exact value of α is not as important as when the algorithms are used as iterative
solvers. Since Krylov acceleration dramatically improves the rate of convergence of
these methods (with a largely negligible increase in cost per iteration), there is little
reason to try to estimate the “optimal” value of α. Experience suggests that in most
applications, and for an appropriate scaling of the problem, a “small” value of α
(usually between 0.01 and 0.5) gives good results.

As already mentioned, the main potential advantage of the generalized HSS
scheme over the classical one is the fact that the solution of linear sytems with coef-
ficient matrix S + K + αI, where K 6= 0 is positive semidefinite and of simple form



6 M. BENZI

(e.g., diagonal or block diagonal with blocks of small size, or perhaps banded) can
be expected to be less expensive than in the classical HSS scheme (K = 0) in the
common situation where inner iterative solvers are used. For example, when K is a
nonnegative diagonal matrix, the corresponding system will have a “heavier” diagonal
and be better conditioned. Of course, the solution of systems involving the matrix
H+αI is now replaced by the solution of systems with matrix G+αI, which has now a
somewhat “weaker” diagonal and could be somewhat less well-conditioned. However,
linear systems with matrix G+αI will typically be still fairly easy to solve since this
matrix is Hermitian positive definite and efficient solvers exist for problems of this
kind. Some examples are considered in the next section.

3. Some applications of the new scheme. As already noted, the HSS precon-
ditioner has been successfully tested on problems from incompressible fluid dynamics;
see in particular [9, 17]. An important example is given by the unsteady Navier–Stokes
equations:

∂u
∂t
− ν∆u + u · ∇u +∇ p = f in Ω× [0, T ] (3.1)

div u = 0 in Ω× [0, T ] (3.2)

where ν > 0 is the kinematic viscosity, Ω ⊂ R3 an open bounded region with suffi-
ciently smooth boundary ∂Ω, [0, T ] a time interval, u the unknown velocity field, and
p the pressure. The unknown functions u = u(x, t) and p = p(x, t) are subject to suit-
able boundary and initial conditions. When implicit methods are used to integrate
(3.1)-(3.2) in time and a simple linearization is applied, a sequence of semidiscrete,
linear boundary value problems of the form

σu− ν∆u + w · ∇u +∇ p = f in Ω (3.3)
div u = 0 in Ω (3.4)

u = g on ∂Ω (3.5)

is obtained. This problem is often referred to as the generalized Oseen problem. Here
w is a given divergence-free vector field (the “wind”), and σ > 0 is related to the
time step ∆t, for example, σ = O(1/∆t). In the 3D case, this is a system of four
partial differential equations, to be solved for the unknowns u = (u, v, w) and p. For
σ = 0, the steady-state case is obtained. For w = 0 problem (3.3)-(3.5) reduces to the
generalized Stokes problem, which is also of considerable importance in the numerical
solution of the unsteady Navier–Stokes equations; see [15] or [19] for details.

Space discretization of the generalized Oseen problem (3.3)-(3.5) by finite differ-
ence or finite element schemes leads to a large, sparse linear system in saddle point
form: [

A BT

−B C

] [
u
p

]
=
[

f
0

]
. (3.6)

Here A = σM + νL+N is the discrete counterpart of the operator σ − ν∆ + w · ∇.
The matrix L is symmetric positive definite (SPD) and consists of a direct sum of
discrete Laplace operators. The skew-symmetric matrix N contains the first-order
(convective) terms; note that N = 0 for the generalized Stokes problem. Also, M is a
mass matrix, possibly a scaled identity. The (rectangular) matrix BT is the discrete
gradient and −B the discrete divergence operator. Finally, C is a symmetric positive
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semidefinite pressure stabilization matrix; usually C = 0 for div-stable discretizations
[15]. The (1,1) block A has dimensions n × n while the (2,2) block C is m × m,
with n > m. Rather than writing the saddle point system in the equivalent indefinite
formulation (with B instead of −B in the (2,1) block and −C instead of C in the (2,2)
block), the nonsymmetric positive semidefinite formulation (3.6) is used here in order
to easily form the HSS and generalized HSS splittings. The standard HSS method is
based on the splittings[

σM + νL+N BT

−B C

]
=
[
σM + νL+ αI 0

0 C + αI

]
−
[
αI −N −BT
B αI

]
and [

σM + νL+N BT

−B C

]
=
[
N + αI BT

−B αI

]
−
[
αI − σM − νL 0

0 αI − C

]
.

In contrast, the generalized HSS method is based on the splittings[
σM + νL+N BT

−B C

]
=
[
νL+ αI 0

0 C + αI

]
−
[
αI − σM −N −BT

B αI

]
and[

σM + νL+N BT

−B C

]
=
[
σM +N + αI BT

−B C + αI

]
−
[
αI − νL 0

0 αI − C

]
.

Therefore, the difference between HSS and generalized HSS preconditioning amounts
to the structure of the systems to be solved at each application of the preconditioner.
HSS requires solving first two decoupled SPD linear systems, one with coefficient
matrix σM + νL + αI and the other with matrix C + αI, followed by a shifted
skew-symmetric linear system of the form[

N + αI BT

−B αI

] [
u
p

]
=
[

c
d

]
. (3.7)

For 3D problems, the first SPD system decouples into four independent linear systems
that are strongly diagonally dominant and rather well-conditioned; in an inexact
implementation, just one or two iterations of multigrid or preconditioned Conjugate
Gradients are usually enough to achieve a sufficiently accurate solution, in the sense
that the accuracy is enough to preserve the rate of convergence of the outer iteration.

The second system (3.7) is more complicated. For the generalized Stokes problem
(N = 0), it can be reduced to the solution of a much smaller (m×m) system involving
the Schur complement αI + 1

αBB
T . This system is also SPD, and is essentially a

discrete analogue of a (shifted) Poisson-type equation; it can be solved efficiently by
Conjugate Gradients or by multigrid. When N 6= 0, however, such reduction is not
possible, since the corresponding Schur complement matrix is now dense.

With the generalized HSS method, the first system to be solved also decouples
into a set of independent systems with SPD matrices that are well-conditioned and
diagonally dominant. The second system can also be reduced, in the case N = 0, to
a much smaller one involving the Schur complement αI + B(αI + σM)−1BT . If M
is a diagonal matrix (such as a scaled identity), this matrix can be explicitly formed.
If M is not diagonal, for the purpose of constructing a preconditioner it can be
approximated by a diagonal matrix, either by lumping or simply by replacing M with
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its diagonal. The resulting system is very easy to solve; in an inexact implementation,
one or two steps of an inner preconditioned Conjugate Gradients iteration usually
suffice.

As before, when N 6= 0 no explicit Schur complement reduction is available, and
a coupled system of the form[

σM +N + αI BT

−B αI

] [
u
p

]
=
[

c
d

]
(3.8)

must be solved at each iteration. Fortunately, the presence of the matrix σM in the
(1,1) block tends to make this system much easier to solve than the one arising from
the standard HSS method (cf. (3.7)), where the term σM is not present (since it is
included in the symmetric part). A few numerical experiments in support of this
claim are presented in the following section.

In concluding this section, it is worth mentioning that the (exact) generalized HSS
iteration can be shown to be unconditionally convergent for saddle-point problems of
the type (3.6), thus generalizing Theorem 3.1 in [8]. The formal statement is as
follows.

Theorem 3.1. Assume that A ∈ Rn×n has positive definite symmetric part
H = (A+AT )/2, B ∈ Rm×n has full row rank, and that C = CT ∈ Rm×m is positive
semidefinite. Assume further that H is split as H = G+K with G symmetric positive
definite and K positive semidefinite. Then the generalized HSS iteration converges
unconditionally to the unique solution of problem (3.6).

The proof is a straightforward modification of the one given in [8, Theorem 3.1],
and is omitted. See also [17, pages 61–65] for a special case.

4. Numerical experiments. In this section, a few numerical experiments are
discussed. Their purpose is to demonstrate the performance of the generalized HSS
preconditioner on sparse linear systems arising from the numerical solution of problem
(3.3)-(3.5). Some of the results also show that for σ > 0, the generalized HSS scheme
can greatly improve over the standard HSS preconditioner.

The first set of experiments concerns the generalized Stokes problem, i.e., problem
(3.3)-(3.5) with w = 0. In Table 4.1 numerical results are reported for Flexible
GMRES [20] with an inexact variant of the generalized HSS preconditioner. The
discrete saddle point problems were generated in this case by the Marker-and-Cell
(MAC) finite difference discretization on a 40 × 40 × 40 grid for different values of
σ and ν. This discretization is known to be div-stable, so that C = 0 in (3.6).
Homogeneous Dirichlet boundary conditions were imposed on the velocities. Here Ω =
[0, 1]× [0, 1]× [0, 1]; the discrete problem has over 250,000 unknowns. The parameter
α was set to 0.5, and a zero initial guess was used. The outer iteration was stopped
when a reduction of the initial residual by six orders of magnitude was reached. For
the inexact inner solves the Conjugate Gradient algorithm with incomplete Cholesky
preconditioning was employed throughout; the incomplete factorization used a drop
tolerance τ = 0.001. The inner iterations were stopped as soon as a reduction of
the initial residual by one order of magnitude was attained. This only required 1-2
PCG iterations per inner linear solve. The iteration counts, which can be shown to
be largely independent of the grid size, improve for increasing σ and decreasing ν.

Table 4.2 shows timings (in seconds) for a generalized Stokes problem with ν =
0.001 for different grids. Here σ = h−1 where h denotes the grid size. Generalized
HSS preconditioning with α = 0.5 is used. In the table, the dimensions n and m and
the total number of FGMRES iterations are also indicated. The test runs were done
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Table 4.1

Iteration count for 3D generalized Stokes problem, inexact variant.

σ ν = 0.1 ν = 0.01 ν = 0.001 ν = 10−6

1 45 27 16 13
10 32 19 15 12
20 30 18 14 11
50 28 15 13 11
100 25 14 12 10

Table 4.2

Results for 3D generalized Stokes problem, ν = 0.001, σ = h−1.

grid n m iterations cpu time
10× 10× 10 2700 1000 12 0.42
20× 20× 20 22800 8000 12 4.66
30× 30× 30 78300 27000 12 20.97
40× 40× 40 187200 64000 13 66.02

on one processor of a SunFire V880 workstation with 8 CPUs and 16 GB of memory.
These results show the good performance of the generalized HSS preconditioner.

On this problem, the standard HSS preconditioner gives similar results. The
last experiments show that for more difficult problems, such as the Oseen problem,
the generalized HSS approach can drastically outperform the standard HSS precon-
ditioner. The underlying application is the classical leaky-lid driven cavity problem.
The matrices were generated using the IFISS Matlab toolbox [14]. The discretization
was obtained using quadrilateral Q1-P0 elements on the unit square (uniform grid).
Pressure stabilization was used, hence C 6= 0. For a 32 × 32 mesh, the matrix di-
mensions were n = 2178 and m = 1024, for a total of 3202 unknowns. The default
values ν = 0.01 and β = 0.25 were used for the viscosity and stabilization parameter,
respectively. IFISS scales the resulting matrices so that the symmetric part of the
saddle point matrix in (3.6) has norm 1 (using the infinity norm) while the skew-
symmetric part has norm 0.25. To simulate a generalized Oseen problem, a matrix of
the form σM was added to the (1,1) block, where σ ≈ 10h−1 (h is the mesh size) and
M was the mass matrix for the velocity space. The matrix σM has norm 0.1. In the
preconditioners used below, M was replaced by a scaled identity.

Table 4.3 contains results for the HSS and generalized HSS (indicated by GHSS in
the table) preconditioners. The outer iteration was (full) GMRES, with a convergence
tolerance of 10−6. The symmetric and nonsymmetric linear systems arising at each
application of the preconditioner were solved by preconditioned Conjugate Gradients
(PCG) and by GMRES, respectively, with a rather tight convergence tolerance (also
set to 10−6). The inner PCG iteration was preconditioned by an incomplete Cholesky
factorization, and the inner GMRES iteration was preconditioned by an incomplete
LU factorization; in both cases the drop tolerance was set to 0.01. The table reports
the number of outer preconditioned GMRES iterations, the average number of inner
PCG and ILU-GMRES iterations, and the total number of inner iterations. It is
obvious that the generalized HSS preconditioner is much better, both in terms of rate
of convergence and in terms of work per iteration. For these experiments, the value
α = 0.01 was used in both HSS and GHSS: no effort was spent in finding the optimal
value of α for each method.
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Table 4.3

Results for 2D generalized Oseen problem, ν = 0.01.

Prec. Outer its. PCG/outer GMRES/outer Total inner
HSS 67 2 12 938

GHSS 24 2 5 182

The results in Table 4.3 correspond to what are essentially exact variants of the
two preconditioners. Substantial savings in overall work can be obtained by solving
the subproblems arising at each iteration inexactly rather than exactly. Numerical
experiments indicate that an inner convergence tolerance of 10−2 is generally enough
to preserve the rate of convergence of the outer iteration. Of course GMRES must
now be replaced by Flexible GMRES. With the inexact variants, the number of outer
iterations is essentially unchanged from those reported in Table 4.3, while the aver-
age number of inner PCG and ILU-GMRES is reduced to about six (= 2 PCG +4
ILU-GMRES) for the HSS method and to about three (= 2 PCG +1 ILU-GMRES)
for GHSS. The total number of inner iterations is about 400 for inexact HSS precon-
ditioning, and about 75 for inexact GHSS preconditioning.

So even in the inexact case, the generalized scheme is much better than the stan-
dard one. Moreover, the total cost of the incomplete Cholesky and LU factorizations
is much smaller for the generalized scheme. This is shown in Table 4.4, where the
number of nonzeros in the incomplete Cholesky and ILU factors for the two methods
is shown. The ILU factors of the shifted skew-symmetric matrix arising in the HSS
method suffered enormous fill-in with the original ordering; the number reported in
the table is for the reverse Cuthill–McKee ordering. It is clear that adding a positive
diagonal matrix to the (1,1) block of the shifted skew-symmetric matrix (3.7) has
a beneficial effect on the cost of the associated ILU factorization. In contrast, the
increase in fill-in in the incomplete Cholesky factor for the generalized HSS scheme is
quite modest. Note that the system matrix itself contains 35,266 nonzero entries.

Table 4.4

Number of nonzeros in the incomplete factors.

Prec. Incomplete Cholesky Incomplete LU
HSS 11,546 179,437

GHSS 14,682 77,808

5. Conclusions. In this paper, a generalization of the Hermitian and skew-
Hermitian Splitting method of Bai, Golub, and Ng has been described. The exact
version of the new scheme has been shown to be unconditionally convergent. Examples
indicate that the generalized scheme can be in some cases asymptotically faster than
the classical HSS iteration. In practice, however, the new method is most useful as
a preconditioner for a (flexible) Krylov subspace method with inexact inner solves.
Besides providing much faster convergence than the standard HSS preconditioner for
some important problems, the new scheme has the considerable advantage of replacing
the solution of the shifted skew-symmetric system in the HSS method by the solution
of an easier (i.e., more diagonally dominant, better conditioned) system. Numerical
experiments have been presented showing the effectiveness of the new scheme.
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