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SPANNING TREES OF SMALL DEGREE
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Abstract. In this paper we show that pseudo-random graphs contain
spanning trees of maximum degree 3. More specifically, (n, d, λ)-graphs
with sufficiently large spectral gap contain such spanning trees.

1. Introduction

A classical problem in graph theory consists in determining sufficient con-
ditions for a graph to be Hamiltonian. Even though many techniques were
developed and many results exist, it is often difficult to prove Hamiltonicity
even for well-structured classes of graphs.

For the binomial random graph model Gn,p, where each possible edge
in {1, . . . , n} is selected with probability p, the threshold for the Hamiltonic-
ity property was found after a breakthrough by Pósa [Pós76] (see also Bol-
lobás book on Random Graphs [Bol01]). An alternative way of seeing Gn,p
is by considering a graph process where edges are sequentially added to an
empty graph on n vertices: sample a real number in [0, 1] independently
for each possible edge; at time p ∈ [0, 1] all edges that have an associated
number ≤ p were added by the process. The equivalence with Gn,p easily
follows.

A more refined analysis of the Hamiltonicity problem for random graphs
reveals that the main obstacle is the presence of vertices of degree less than 2.
In fact, a.a.s. (asymptotically almost surely) as soon as a graph with mini-
mum degree 2 is obtained in the random process, the graph becomes Hamil-
tonian. The threshold p ∼ log n/n for Hamiltonicity is just high enough so
that a.a.s. there are no vertices of degree less than 2.

The next natural step is to enforce a minimum degree condition on the
random graph, for instance, by asking it to be d-regular. In the model Gn,d,
where every d-regular graph on n vertices has equal probability, we can
ask for the probability of sampling a Hamiltonian graph. It turns out that
for d ≥ 3, a graph in Gn,d a.a.s. contains a spanning cycle (see Theorem 2.26
of Wormald’s survey [Wor99]).

It would be very interesting to extend this result to regular graphs with
large spectral gap, the so-called (n, d, λ)-graphs. These graphs resemble
a random graph since they are good expanders and have quite uniform
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edge distribution. For an extensive compilation of results on pseudo-random
graphs the reader is referred to the survey of Krivelevich and Sudakov [KS06].

The best known result for Hamiltonicity on pseudo-random graphs is due
to Krivelevich and Sudakov [KS03], where it was proved that for d as low
as polylog(n), with sufficiently small λ, (n, d, λ)-graphs are Hamiltonian.
Although those graphs are very sparse, the results for binomial random
graphs and random regular graphs are evidence that even sparser pseudo-
random graphs should be Hamiltonian.

Conjecture 1 ([KS03]). There exists a constant C > 0 such that for large
enough n any (n, d, λ)-graph with d/λ > C is Hamiltonian.

We remark that there are graphs of constant degree d for which λ =
Θ(
√
d). In particular, if the above conjecture is true, graphs with (large)

constant degree and large spectral gap would be Hamiltonian.
In this note we consider a kind of relaxation of the Hamiltonicity prob-

lem. Instead of trying to prove the existence of a spanning cycle or path,
we look for spanning trees having low degree. A recent related result of
Alon, Krivelevich and Sudakov [AKS07] concerns almost spanning trees of
bounded degree. In [AKS07] it is shown that for every ε > 0 and ∆ ≥ 2,
(n, d, λ)-graphs with sufficiently large d and sufficiently small λ contain all
trees of size (1−ε)n and degree at most ∆. In contrast we show the existence
of a spanning tree of degree at most 3 in (n, d, λ) with sufficiently small λ.

Our proof is based on Pósa’s rotation technique, which is frequently used
on Hamiltonicity problems. We first establish a minimality criteria for span-
ning trees and then show that taking a minimal spanning tree under these
criteria in a pseudo-random graph implies that the tree has degree at most 3.

2. Preliminaries

The only properties of pseudo-random graphs we shall be concerned with
are the edge distribution and the vertex expansion. Namely, our result
holds for graphs where the number of edges crossing large disjoint sets is
proportional to the density of the graph and, moreover, every small set has
a neighborhood of much larger size.

Property 2. An n-vertex graph G = (V,E) satisfies property P(n, α, d) if
minS⊆V : |S|≤αn |Γ(S)|/|S| ≥ 10 and, for all X,Y ⊆ V , with |X|, |Y | ≥ αn,
we have ∣∣∣e(X,Y )− d

n
|X| |Y |

∣∣∣ ≤ αd

2

√
|X| |Y |.

Definition 3. A graph is called good if it satisfies P(n, α, d) for some con-
stant α ∈ (0, 1/10).

We note that in a good graph G = (V,E), for small sized sets, we
have guaranteed expansion, that is, given U ⊂ V , with |U | ≤ αn, we
have |Γ(U)| ≥ 10 |U |. Moreover, any set U having αn vertices must sat-
isfy |Γ(U)| ≥ (1 − α)n. Indeed, since e(U, V \ Γ(U)) = 0, if we take Y ⊆



SPANNING TREES OF SMALL DEGREE 3

V \ Γ(U) with αn elements, we then have∣∣∣e(U, Y )− d

n
|U | |Y |

∣∣∣ = dα2n = dα
√
|U | |Y |,

a contradiction. The following fact can be easily derived from this.

Fact 4. Let G be a good graph and suppose that U ⊆ V (G) is such that |Γ(U)| <
10 |U |. Then |Γ(U)| ≥ 0.9n.

It is a very useful fact that a large spectral gap implies edge unifor-
mity [AS00, Corollary 9.2.5]. In any (n, d, λ)-graph with vertex set V , for
all U,W ⊂ V we have

(1)
∣∣∣e(U,W )− d |U | |W |

n

∣∣∣ ≤ λ√|U | |W |.
The following theorem of Tanner [Tan84] relates spectral gap and vertex

expansion.

Theorem 5. For any α ∈ (0, 1) an (n, d, λ)-graph G = (V,E) satisfies

(2) min
S⊂V
|S|≤αn

|Γ(S)|
|S|

≥ d2

α(1− λ2) + λ2
.

From equations (1) and (2) we conclude that any (n, d, λ)-graph satis-
fying λ ≤ d/20 has property P(n, 1/10, d). There are many examples of
explicit graphs where λ ≤ d/20. In fact, there are many known construc-
tions of Ramanujan graphs, that is, graphs for which the spectral gap is
almost optimal (one always has λ ≥ 2

√
d− 1). In particular, all Ramanu-

jan graphs with large enough degree are good graphs and thus satisfy the
conditions of our main result.

3. Main Result

Theorem 6. If G is a good graph then there exists a spanning tree T ⊆ G
with ∆(T ) ≤ 3.

Theorem 7 (Main result - restated). If G is an (n, d, λ)-graph with λ ≤
d/20 then there exists a spanning tree T ⊆ G with ∆(T ) ≤ 3.

To prove Theorem 6 we shall generalize to trees the concept of path rota-
tions developed by Pósa [Pós76].

Definition 8 (Rotations). Let T ⊂ G be a tree. The set of leaves (vertices
of degree 1 in T ) is denoted by l(T ). Suppose that u ∈ l(T ) and v ∈ V (T )
are such that e = {u, v} ∈ E(G) \ E(T ). Let T ′ = T − f + e ⊂ G with e 6=
f ∈ E(T ) being the edge incident to v in the unique cycle of T + e. Such a
tree T ′ is called an elementary rotation (ER) of T . We say that the edge f
is the broken edge and v is the pivot of the rotation.

A general rotation is a tree obtained by removing an arbitrary edge of
the unique cycle in T + e.
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Figure 1. By adding an edge {u, v} to the tree a cycle is
formed with the edges in bold. Removing the bold edge in-
cident to v we obtain a new tree which is an elementary
rotation of the original tree. If instead we remove an arbi-
trary bold edge, we obtain a general rotation of the original
tree.

Definition 9. A tree T ⊆ G is called `-minimal if, among all spanning trees
in G[V (T )], it has minimum number of leaves.

Notice that an elementary rotation preserves the vertex set of the tree
and does not increase the number of leaves. Suppose that T is `-minimal.
In such a case, all elementary rotations are reversible. Indeed, suppose
that T ′ = T−f+e is an elementary rotation of T where u ∈ l(T ) and e = uv.
If f = xv then x must be a leaf in T ′ otherwise we contradict `-minimality.
Hence, T = T ′ − e+ f is an elementary rotation of T ′.

Definition 10 (Similarity relation). Let W ⊆ V (G) be such that G′ =
G[W ] is connected. Suppose that T is an `-minimal spanning tree of G′.
We write T ∼ T ′ if T ′ can be obtained from T by a sequence of elementary
rotations.

Note that the above indeed defines a relation over the family of all `-
minimal spanning trees of G′.

Definition 11 (Leaf closure). Let T ⊂ G be an `-minimal tree. The leaf
closure of T , denoted by l̄(T ) is given by

⋃
T ′∼T l(T

′).

Our next lemmas and facts are inspired by Pósa’s Rotation-Extension
technique [Pós76].

Lemma 12. Given an `-minimal tree T ⊂ G, let N = ΓT (l̄(T )). Then there
are no edges in G between V (T ) \ (l̄(T ) ∪N) and l̄(T ).

Proof. Let v ∈ V (T ) \ (l̄(T )∪N). Suppose that there is an edge uv ∈ E(G)
with u ∈ l̄(T ). Let T ′ ∼ T be such that u ∈ l(T ′). The set of edges
incident to v in T ′ is precisely the same as in T since, otherwise, a rotation
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that involved an edge incident to v would take place in the sequence of
elementary rotations from T to T ′. But if an edge (of G) incident to v is
added or removed in an ER, either v or one of its neighbors in T is contained
in l̄(T ), a contradiction. Note that, in particular, we have ΓT ′(v) = ΓT (v).

Since e = uv ∈ E(G) \ E(T ′) (as otherwise u ∈ ΓT ′(v) = ΓT (v) and
thus v ∈ N), we could perform an elementary rotation by adding e to T ′

and removing some edge f ∈ E(T ′) incident to v, but this is a contradiction
since some vertex of ΓT ′(v) = ΓT (v) would become a leaf and would belong
to l̄(T ). �

Note that in an `-minimal tree T every vertex u ∈ l̄(T ) satisfies dT (u) ≤ 2.
In fact, if dT (u) ≥ 3 then dT ′(u) = dT (u) for all T ′ ∼ T . This follows because
when an edge incident to u is broken, u must be the pivot of the rotation. If
that is not the case, we obtain a contradiction to the `-minimality of T by
reducing the number of leaves through a sequence of elementary rotations.
In fact, every elementary rotation changes the degree of one leaf to degree 2
and turns a vertex of degree 2 into one leaf (preserving all other degrees).

From the simple observations above we get the following facts.

Fact 13. If T ⊂ G is an `-minimal tree, we have |N | ≤ 2 |l̄(T )|.

Fact 14. If T ⊂ G is an `-minimal tree then every T ′ ∼ T has the
same degree sequence as T . Moreover, if v ∈ V (T ) has degree dT (v) ≥ 3
then dT ′(v) = dT (v) for all T ′ ∼ T .

The following technical lemma shows that, by taking a tree that is mini-
mum with respect to certain criteria, it is possible to find a maximum degree
vertex for which its subtrees have roughly balanced sizes. For this purpose,
define γ(v) = max{|Tv| : Tv is a tree in T − v}.

Lemma 15. Let G be a good graph and T ⊂ G be a spanning tree that is
minimal according to the following criteria (in order of importance)

(1) number of leaves;
(2)

∑
v∈V

dT (v)2;

(3) ω(T ) = minv∈V : dT (v)=∆(T ) γ(v).
If ∆(T ) ≥ 4 then ω(T ) ≤ 2n/3.

Once the above lemma is established, we can decompose T into two edge-
disjoint subtrees T0, T1 of balanced size for which V (T0) ∩ V (T1) = {v}
for some v having maximum degree in T . Later we shall prove that un-
less ∆(T ) ≤ 3, such a decomposition implies a violation of the minimality
of T .

Proof of Lemma 15. Suppose, for the sake of a contradiction, that ∆(T ) ≥ 4
and T is minimal with respect to criteria (1)-(3) and ω(T ) > 2n/3. Let v ∈ V
be a vertex of maximum degree in T such that Tv, the largest tree in T − v,
has size ω(T ).
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Figure 2. A tree T that is minimal with respect to (1)-(3).
The vertex v is a vertex with dT (v) = ∆(T ) such that ω(T ) =
γ(v); the other marked vertices are all referred in the Proof
of Lemma 15.

Let W = V \ V (Tv), where V = V (G). Observe that T [W ] is `-minimal
since v is not a leaf of T [W ]: in particular, every leaf of T [W ] is also a leaf
of T . Therefore we may apply Lemma 12 to T [W ].

Let U denote the leaf closure of T [W ] andN = ΓT [W ](U). From Lemma 12,
we get that there is no U–W \ (N ∪U) edge. Suppose that there is no edge
from U to V (Tv) (hence no U–V \ (N ∪ U) exists). Since Γ(U) ⊆ U ∪ N ,
Fact 13 implies |Γ(U)| ≤ 3 |U |. From Fact 4, it follows that |Γ(U)| ≥ 0.9n,
which contradicts Γ(U) ⊆ W with |W | ≤ n/3. Hence, there must be a
vertex in U sending an edge to Tv.

Let T ′ ∼ T [W ] be a tree having a leaf u that sends an edge to Tv. We
note that by replacing T [W ] with T ′ in the tree T affects neither the first
nor the second minimality criteria, since elementary rotations of minimal
trees preserve the degree sequence (Fact 14). As for the third criterion,
it is enough to argue that the degree of v in T ′ is the same as in T [W ].
Since dT [W ](v) ≥ 3 (recall dT (v) = ∆(T ) ≥ 4), this follows from Fact 14.

For simplicity, we shall assume from now on that T [W ] = T ′. Let x ∈
V (Tv) be a neighbor of u. If dT (x) ≤ ∆−2, one can obtain T ∗ with the same
number of leaves and reduce the second criterion by performing a general
rotation: add e = ux and remove f from T , where f = vy is the edge
connecting v to Tv. Note that dT (y) = 2 since, otherwise, T ∗ would have
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fewer leaves than T . The sum of squares of the degrees would decrease by

D = dT (v)2 − dT∗(v)2 + dT (x)2 − dT∗(x)2

+ dT (u)2 − dT∗(u)2 + dT (y)2 − dT∗(y)2

= 2∆− 2dT ∗(x)

≥ 2∆− 2(∆− 1) = 2.

(3)

It follows that dT (x) ≥ ∆ − 1. Suppose that xz ∈ E(T ) is in the
path from x to v in T . Consider the subtree Tx ⊂ T containing x in
the forest T − xz. If |V (Tx)| ≤ n/3, then the elementary rotation T ∗ =
T −xz+ux preserves the degree sequence and decreases the third criterion,
since dT ∗(v) = ∆ and the largest tree in T ∗ − v is strictly smaller than Tv
(as Tx is a sub-tree of Tv which is now joined to another subtree with less
than n/3 vertices).

On the other hand, if |V (Tx)| > n/3 then we would have dT (x) = ∆− 1
as otherwise the largest tree in T −x would be smaller than Tv, which would
contradict the assumption on v. But in this case, performing a general
rotation, we would obtain T ∗ = T − vy + ux. The degree sequence is
preserved by this rotation and x would have maximum degree in T ∗. Since
the largest tree in T ∗ − x would then be smaller than Tv, we again have a
contradiction. It follows that ω(T ) ≤ 2n/3. �

We now use Lemma 15 to obtain a tree T that is minimal with respect
to criteria (1)-(3) which is the edge disjoint union of trees T0 and T1 having
somewhat balanced sizes. Let T ′1, T

′
2, . . . , T

′
∆ be the collection of trees in T −

v, where v is a vertex of maximum degree ∆ such that |T ′i | ≤ 2n/3 for all i.
Let S(J) =

∑
j∈J |T ′j |. Take I ⊂ [∆] to be such that

D =
∣∣S(I)− S([∆] \ I)

∣∣
is minimum. Without loss of generality, assume that S(I) ≥ S([∆] \ I). For
every i ∈ I, if we remove i from I, we cannot decrease the above difference,
meaning D ≤ |T ′i |. In particular, S([∆] \ I) ≥ S(I) − |T ′i |. If I contains
only one element, we know S(I) ≤ 2n/3. If I is not a singleton, then there
exists i such that |T ′i | ≤ S(I)/2. In both cases it follows that n − S(I) =
1 + S([∆] \ I) ≥ S(I)−D ≥ S(I)− |T ′i | ≥ S(I)/2.

If I is a singleton, take j ∈ [∆] \ I with |T ′j | minimum and add it to I.
Notice that this increases S(I) by at most S([∆]\I)/(∆−1) ≤ [n−S(I)]/3.
If |I| = ∆− 1 then take j ∈ I with |T ′j | minimum and remove it from I. In
both cases, max{S(I), S([∆] \ I)} ≤ 7n/9.

We set T0 to be the union of all trees T ′i , i ∈ I, together with the edges
connecting those trees to v. Let T1 be the tree with edges E(T )− E(T0).

Proof of Theorem 6. Suppose, for the sake of a contradiction, that a span-
ning tree T that is minimal with respect to criteria (1)-(3) has maximum
degree ∆(T ) ≥ 4. Consider the above decomposition of T into two edge-
disjoint trees T0 and T1.
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v

Figure 3. Representation of the decomposition of T into
two balanced edge-disjoint trees. Notice that v is the only
vertex shared by T0 and T1 and that v has degree at least 2
in both.

Let L = |l(T )| and Li = |V (Ti) ∩ l(T )|, for i = 0, 1. Note that the vertex
set of the trees T0 and T1 intersect precisely at v (which is not in l(T )) and
therefore L = L0 + L1. Let j be such that Lj ≥ L1−j . Denote by R the
number of elements w ∈ V (T1−j) − v such that dT (w) ≥ ∆ − 1 ≥ 3. By
adding up the degrees in the tree T1−j , we get

2(|V (T1−j)| − 1) = 2 |E(T1−j)| = dT1−j (v) +
∑

w∈V (T1−j)\{v}

dT (w)

≥ L1−j · 1 +R · (∆− 1) + (|V (T1−j)| − 1− L1−j −R) · 2
= 2(|V (T1−j)| − 1) +R(∆− 3)− L1−j .

It follows that R ≤ L1−j/(∆− 3).
Let U ′ be the set of leaves that one can obtain by performing elementary

rotations which keep T1−j fixed, namely

U ′ =
⋃

T ′∼T : T1−j⊂T ′
l(T ′).

Set U = U ′ \ l(T1−j). As seen in the proof of Lemma 15, any neighbor of U
in V (T1−j) − v must have degree at least ∆ − 1 in T1−j , as otherwise we
would contradict the minimality of the sum of squares of the degrees in T .
Hence, there are at most R ≤ L1−j/(∆− 3) ≤ Lj/(∆− 3) such neighbors.

Let N = ΓT (U). Observe that, by construction, Tj does not have v as
leaf. In particular Tv must be an `-minimal tree since any tree on V (Tv)
with less leaves than Tv could be extended to a spanning tree of G with
less leaves than T . By Lemma 12 there are no U–V (Tj) \ (N ∪ U) edges
in G. It follows that the number of neighbors of U ⊇ l(T ) ∩ V (Tj) in G
is at most R + |N ∪ U | ≤ Lj + 3 |U | ≤ 4 |U |. But by Fact 4, we must
have |Γ(U)| ≥ 0.9n and, moreover, at least 0.9n − R elements of Γ(U) are
contained in Tj .
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Let ni = |V (Ti)|, i = 0, 1. Then n0 +n1 = n+1 and R+L1−j ≤ n1−j−1.
Using that R ≤ L1−j , we get that

nj ≥ 0.9n−R ≥ 0.9(n0 + n1 − 1)− 0.5(n1−j − 1) = 0.9nj + 0.4n1−j − 0.4.

But this implies that nj ≥ 4n1−j − 4 = 4(n − nj) and thus nj ≥ 4n/5, a
contradiction since by construction max{n0, n1} ≤ 7n/9 + 1. �
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