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Abstract

In this paper we introduce a new boundary condition that can be used when reconstructing an
image from observed blurred and noisy data. Our approach uses information from the observed
image to enforce boundary conditions that continue image features such as edges and texture
across the boundary. Because of its similarity to methods used in texture synthesis, we call our
approach synthetic boundary conditions. We provide an efficient algorithm for implementing
the new boundary condition, and provide a linear algebraic framework for the approach that
puts it in the context of more classical and well known image boundary conditions, including
periodic, zero, reflective, and anti-reflective. Extensive numerical experiments show that our
new synthetic boundary conditions provide a more accurate approximation of the true image
scene outside the image boundary, and thus allow for better reconstructions of the unknown,
true image scene.

1 Introduction

The use of advanced imaging technologies is an integral part of scientific research, especially in
fields such as biology, medicine and astronomy. Imaging is also an important component of modern
security systems (e.g., video surveillance and biometric scanning), and is used to inspect machine
parts (e.g, jet engine turbine blades) for possible small, but critical, defects. Although physical
limitations of imaging devices, as well as environmental effects, impede the ability to obtain perfect
images, the resolution can often be improved through computational postprocessing techniques.

In this paper we consider the particular, and commonly used, postprocessing technique of image
deblurring with a spatially invariant blurring operator (i.e., deconvolution). The image formation
process is modeled as a linear inverse problem,

g = Af + ε . (1.1)

In the discrete setting, the vector f contains pixel values of the true (unknown) image scene on
a bounded domain. The matrix A models the distortion (e.g., blurring) in the observed image
g, and ε is additive noise. The underlying continuous mathematical model is often ill-posed,
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resulting in a discrete problem given by equation (1.1) where the matrix A is severely ill-conditioned,
with singular values decaying to zero, without a significant gap to indicate numerical rank. The
postprocessing problem is, given A and g, compute an approximation of f .

The matrix A is defined by a given point spread function (PSF). Algorithms to solve (1.1)
exploit structure of A, which depends on the PSF and on the imposed boundary conditions. In
general,

A = T + B (1.2)

where T has a Toeplitz structure and B, which is defined by the boundary conditions, is often
structured, sparse, and low rank.

Boundary conditions make assumptions about how the image behaves outside the field of view,
and they are often chosen for algebraic and computational convenience. For example, periodic
boundary conditions result in a matrix A that has a circulant structure, which is diagonalized by
the unitary discrete Fourier transform matrix [4]. It is well known that computations with such
matrices can be done very efficiently by using fast Fourier transforms (FFT) [15]. Note that periodic
boundary conditions assume that the true infinite scene can be represented as a mosaic of a single
finite dimensional image, repeated periodically in all directions. Thus, although computationally
convenient, for most images it is difficult to provide a physical justification for the use of periodic
boundary conditions.

Other boundary conditions can have better physical justification. For example, if the image
is assumed to have a black background (such as in the case of astronomical images), then zero
boundary conditions may provide a good physical representation for the image scene outside the
viewable region. In this case B is zero, and thus A has a Toeplitz structure. Although direct
filtering type methods cannot be implemented as efficiently as in the case of circulant structures,
it is possible to effectively use iterative methods [14, 16]. However, if there are significant features
near the image boundary, then zero boundary conditions may not provide a physically accurate
model of the infinite scene.

If there are significant features that overlap the edge of the viewable region, then it may make
sense to use reflective boundary conditions, where it is assumed that the scene outside the viewable
region is a mirror reflection of the scene inside the viewable region [18]. In this case the matrix
A has a Toeplitz-plus-Hankel structure. Iterative methods for such matrices can be implemented
efficiently, and, moreover, if the PSF satisfies a strong symmetry condition, A can be diagonalized
by the orthogonal discrete cosine transformation matrix, and spectral filtering methods can be
implemented very efficiently [13]. With reflective boundary conditions, continuity of the graylevel
values of the image is maintained.

More recently, anti-reflective boundary conditions have been proposed, which extend the pixel
values across the boundary in such a way that continuity of the image and of the normal derivative
are preserved at the boundary [19, 6, 5]. In this case the structure of A is Toeplitz-plus-Hankel,
plus an additional structured low rank matrix. As with reflective boundary conditions, iterative
methods for such matrices can be implemented efficiently, and, moreover, if the PSF satisfies a
strong symmetry condition, spectral filtering methods can be implemented very efficiently (though
the details are a bit more complicated); see [1] for more details.

In this paper we propose a new approach, which we call synthetic boundary conditions. Our
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goal is to not necessarily continue graylevels at the boundary, but instead to develop a scheme
that can continue edge directions and textures of the image inside the viewable region to outside
the image boundary. We remark that, although our discussion is for the specific problem of image
deblurring (deconvolution), the approach we propose in this paper can be used in other imaging
applications as well.

This paper is outlined as follows. In Section 2 we briefly review the most commonly used
boundary conditions (zero, periodic, reflective, and anti-reflective) for image deblurring, and in-
troduce our new synthetic boundary conditions. Using a linear algebraic framework we establish
connections between various boundary conditions, and discuss efficient implementation details. The
linear algebraic framework is also exploited in Section 3 to construct preconditioners for iterative
image deblurring algorithms. In Section 4 we provide extensive numerical examples to illustrate
the effectiveness of the synthetic boundary conditions, and Section 5 contains some concluding
remarks.

2 Image Deblurring and Boundary Conditions

In this section we review some classical boundary conditions that are commonly used in imaging
deblurring. We illustrate that in each case the the matrix A in equation (1.1) can be put in the
form given by equation (1.2). Since our focus in this section is on the matrix A and the structure
it exhibits when using various boundary conditions, without loss of generality we can assume there
is no additive noise in the image formation process, that is ε = 0. The noise will be accounted
through regularization methods in the numerical results section.

To simplify the discussion, we begin by describing matrix structures for one dimensional prob-
lems. We then extend the discussion to two dimensional problems. Finally we propose a new
approach that uses information from the observed image to enforce continuity of image features
such as edges and texture across the boundary.

2.1 One dimensional problems

We begin with the one dimensional problem because the matrix descriptions are easier to follow.
The two dimensional problem is discussed in the next subsection. We use notation similar to that
in [18]. Suppose g is a one dimensional image (i.e., a signal) that is obtained by convolving the
PSF h with (an unknown, true) signal f true, where

g =


g0

g1

...
gn−1

 and h =



h−m

...
h−1

h0

h1

...
hm
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and n ≥ 2m + 1. Then the convolution model implies that for each k = 0, 1, . . . , n− 1,

gk =
m∑

i=−m

hifk−i ,

which can be written in matrix-vector form as


g0

g1

...
gn−1

 =



hm · · · h0 · · · h−m

. . .
...

. . .
...

. . .

hm h0 h−m

. . .
...

. . .
...

. . .

hm h0 h−m

. . .
...

. . .
...

. . .

hm · · · h0 · · · h−m





f−m

...
f−1

—–
f0

...
fn−1

—–
fn

...
fn−1+m



(2.1)

where we use horizontal lines in f true to denote the boundaries of the field of view in the true image
scene, which correspond to those of the observed signal g. Although m is generally small compared
to n, the problem is underdetermined since values of g near the boundary (such as g0 and gn−1)
depend on values of f true outside the field of view. It will be convenient to rewrite equation (2.1)
as

g =
[

T−1 T T1

] 
f−1

f

f1


where T−1, T and T1 are the following Toeplitz matrices

T−1︷ ︸︸ ︷

hm · · · h1

. . .
...

hm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T︷ ︸︸ ︷
h0 · · · · · · h−m

...
. . .

...
. . .

...
. . .

... h−m

hm h0

...
. . .

. . .
...

. . .
...

. . .

. . .
... h0 h−m

hm

...
. . .

...
. . .

...
. . .

...
hm · · · · · · h0

T1︷ ︸︸ ︷∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
h−m

...
. . .

h−1 · · · h−m



(2.2)
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and

f−1 =

 f−m

...
f−1

 , f =

 f0

...
fn−1

 , f1 =

 fn

...
fn−1+m

 .

Since f−1 and f1 are outside the field of view, and are therefore not measurable, boundary conditions
replace these with values that can be either set a priori or obtained from information within the
field of view. Specifically, f−1 and f1 are replaced with

f̂−1 = S−1f and f̂1 = S1f ,

where S−1 and S1 are matrices defined by the boundary condition (specific examples are given
below). With this notation, and with ε = 0, equation (2.1) is approximated by

g = Af , (2.3)

where A = T + B and B = T−1S−1 + T1S1. Some well-known examples include:

• For zero boundary conditions it is assumed that the signal is always zero outside the field of
view; that is, f̂−1 = f̂1 = 0. In this case, S−1 = S1 = O, where O is a matrix of all zeros.
Thus B = O, and A = T.

• For periodic boundary conditions we use

f̂−1 =


fn−m

fn−m+1

...
fn−1

 and f̂1 =


f0

f1

...
fm−1

 .

Thus, S−1 =
[

O I
]

and S1 =
[

I O
]
, where O is a matrix of all zeros, and I is an

m×m identity matrix. In this case, B =
[

O T−1

]
+

[
T1 O

]
, and it is not difficult to

show that A = T + B is a circulant matrix. Note that the rank(B) = 2m, which is (often
much) less than n.

• For reflective boundary conditions we use

f̂−1 =


fm−1

...
f1

f0

 and f̂1 =


fn−1

...
fn−m+1

fn−m

 .

Thus, S−1 =
[

O I
]
J and S1 =

[
I O

]
J, where J is the “reversal” permutation matrix,

J =

 1

. .
.

1

 .
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In this case, B =
[

O T−1

]
J +

[
T1 O

]
J is a Hankel matrix, and so A = T + B is a

Toeplitz-plus-Hankel matrix. Again we see that the rank(B) = 2m.

• For anti-reflective boundary conditions, originally proposed by Serra-Capizzano [19], we use

f̂−1 =


2f0 − fm

...
2f0 − f2

2f0 − f1

 and f̂1 =


2fn−1 − fn−2

...
2fn−1 − fn−m

2fn−1 − fn−m−1

 .

Thus, S−1 =
[

O −I 2 e
]
J and S1 =

[
2 e −I O

]
J, where e is a vector of ones. In

this case B =
[

O −T−1 2T−1e
]
J+

[
2T1e −T1 O

]
J is the sum of a Hankel matrix

and a matrix with rank equal to two. The matrix A = T + B is then Toeplitz-plus-Hankel,
plus an additional rank-2 matrix. Note that in this case the rank(B) = 2m + 2.

Observe that in all of the above examples, the noise-free one dimensional deblurring problem can
be represented as

g = Af , A = T + B

where T is a Toeplitz matrix, and B is a matrix defined by the boundary condition, which is
structured, and if m � n, also sparse and low rank. This linear algebra formulation can be
extended to higher dimensions.

2.2 Two dimensional problems

Extending this linear algebraic formulation to two dimensional imaging problems is not so difficult,
but the notation can be a bit cumbersome. To facilitate readability, we assume all images are
square (e.g., n× n) arrays of pixel values, and that the PSF is separable.

Suppose that G is an n× n image that is obtained by convolving the m×m PSF H with (an
unknown, true) image F true, where n ≥ 2m + 1. Then the convolution model implies that for each
k, ` = 0, 1, . . . , n− 1,

gk,` =
m∑

i=−m

m∑
j=−m

hijfk−i,`−j . (2.4)

If the PSF is separable (i.e., the vertical blurring operation is independent of the horizontal blurring
operation), then there are vectors

hc =



h
(c)
−m
...

h
(c)
−1

h
(c)
0

h
(c)
1
...

h
(c)
m


and hr =



h
(r)
−m
...

h
(r)
−1

h
(r)
0

h
(r)
1
...

h
(r)
m
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such that
H = hchT

r ⇔ hij = h
(c)
i h

(r)
j ,

where hc and hr represent, respectively, the vertical and horizontal components of the PSF [13].
In this case, the convolution equation (2.4) becomes

gk,` =
m∑

i=−m

m∑
j=−m

hijfk−i,`−j

=
m∑

i=−m

m∑
j=−m

h
(c)
i h

(r)
j fk−i,`−j

=
m∑

i=−m

h
(c)
i

m∑
j=−m

(
fk−i,`−jh

(r)
j

) ,

which can be written in matrix-vector form as

G =
[

Tc,−1 Tc Tc,1

]  F−1,−1 F−1,0 F−1,1

F0,−1 F F0,1

F1,−1 F1,0 F1,1


 TT

r,−1

TT
r

TT
r,1

 , (2.5)

where
[

Tc,−1 Tc Tc,1

]
and

[
Tr,−1 Tr Tr,1

]
are identical in structure to the matrices given

in equation (2.2), F is the n × n portion of the true image scene within the field of view (defined
by G), and Fi,j represent sections of the scene that are outside the field of view. As in the one
dimensional model, since Fi,j are outside the field of view, we use boundary conditions to replace
these with values that are either set a priori (e.g., to zero), or with values that can be obtained
from information within the field of view. That is, the array representing the true image scene

F true =

 F−1,−1 F−1,0 F−1,1

F0,−1 F F0,1

F1,−1 F1,0 F1,1


is replaced with F̂−1,−1 F̂−1,0 F̂−1,1

F̂0,−1 F F̂0,1

F̂1,−1 F̂1,0 F̂1,1

 =

 Sc,−1FST
r,−1 Sc,−1F Sc,−1FST

r,1

FST
r,−1 F FST

r,1

Sc,1FST
r,−1 Sc,1F Sc,1FST

r,1


=

 Sc,−1

I
Sc,1

F
[

ST
r,−1 I ST

r,1

]
where Sc,−1 and Sc,1 define the vertical boundary conditions (i.e., those imposed at the top and
bottom of the image), and Sr,−1 and Sr,1 define the horizontal boundary conditions (i.e., those
imposed at the left and right of the image).
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We remark that our approach to defining boundary conditions does not require a separable
PSF. However, if the blur is separable, then equation (2.5) can be approximated with

G =
[

Tc,−1 Tc Tc,1

]  Sc,−1

I
Sc,1

F
[

ST
r,−1 I ST

r,1

]  TT
r,−1

TT
r

TT
r,1


= (Tc,−1Sc,−1 + Tc + Tc,1Sc,1)F

(
ST

r,−1T
T
r,−1 + TT

r + ST
r,1T

T
r,1

)
,

or, equivalently, we can write this in matrix-vector form as

g =
(
(Tr,−1Sr,−1 + Tr + Tr,1Sr,1)⊗ (Tc,−1Sc,−1 + Tc + Tc,1Sc,1)

)
f

=
(
Tr ⊗Tc + Tr ⊗ (Tc,−1Sc,−1 + Tc,1Sc,1)

+(Tr,−1Sr,−1 + Tr,1Sr,1)⊗ (Tc,−1Sc,−1 + Tc + Tc,1Sc,1)
)
f

where ⊗ denotes Kronecker product, and g = vec(G) and f = vec(F). Again we see that the
(noise-free) image deblurring problem with spatially invariant, separable blur, can be represented
as

g = Af , A = T + B

where T = Tr ⊗ Tc is a block Toeplitz matrix with Toeplitz blocks (BTTB), and B = Tr ⊗
(Tc,−1Sc,−1 + Tc,1Sc,1) + (Tr,−1Sr,−1 + Tr,1Sr,1) ⊗ (Tc,−1Sc,−1 + Tc + Tc,1Sc,1) is defined by the
boundary conditions. Note that if the blur is not separable, then we do not get neat Kronecker
product decompositions of T and B, but we still get the basic form where T is BTTB and B is a
structured (and typically sparse) matrix.

All of the boundary conditions discussed in the previous subsection for one dimensional problems
extend naturally to the two dimensional problem. For example, in the case of reflective boundary
conditions, we use

Sc,−1 = Sr,−1 =
[

O I
]
J and Sc,1 = Sr,1 =

[
I O

]
J .

In the next subsection we propose a new boundary condition that is more effective at continuing
edges and texture of the image across the boundary than periodic, zero, reflective, and anti-reflective
approaches.

2.3 Synthetic boundary conditions

As mentioned in Section 1, it is unlikely that a true image scene would be modeled well by peri-
odic boundary conditions, and zero boundary conditions only make sense for scenes with a black
background. There may be some rare cases when reflective and anti-reflective boundary conditions
provide a good model of the true image scene outside the field of view. In this paper we develop
an approach that provides a more realistic extension of pixels across the boundary. For exam-
ple, texture and edges should be extended sensibly. The motivation for our approach comes from
observing that the problem of defining appropriate boundary conditions is similar to the image
recovery problem, in which part of the image is damaged and the aim is to recover missing pixels.
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In our case, the region we wish to recover corresponds to those pixels outside the boundary. Two
common approaches for the image recovery problem are image inpainting [2] and texture synthesis
[8]. Image inpainting tries to extend the geometric structure of the image, while texture synthesis
extends the texture pattern into the unknown region. In this paper we use the texture synthesis
approach.

With the image recovery idea in mind, we wish to determine a relationship between (unknown)
pixel values outside the boundary to those pixel values inside the boundary. Using a basic texture
synthesis approach, we can try to find a pixel in the viewable region whose neighborhood (e.g.,
rectangular region) is most similar to the corresponding neighborhood of the boundary pixel we
wish to fill in. If this idea is applied to a blurred image, it can extend edges across the boundary
well, but there is little hope that it can also extend the texture, as texture information is lost in
blurring. Hence, instead of copying single pixels, we propose to copy small patches that contain
the required texture information. This idea is similar to the generalization of texture synthesis to
image quilting [7].

To describe more precisely our approach for synthetic boundary conditions, we need a bit of
notation. Let

D = [0, n− 1]× [0, n− 1] (domain)
B = ([−m, n + m− 1]× [−m, n + m− 1]) \D (border)

Then, using for example 2× 2 patches, for each [i, i + 1]× [j, j + 1] patch ∈ B:

• Find
(kmin, `min) = arg min

k,`
SSD(nbhd(i, j),nbhd(k, `))

where the search is over all (k, `) ∈ D ∪ {pixels already processed}, and SSD is the sum of
squared differences of pixels in the specified neighborhoods.

• Set the boundary pixels in the 2× 2 patch to be

fi,j = fkmin,`min

fi+1,j = fkmin+1,`min

fi,j+1 = fkmin,`min+1

fi+1,j+1 = fkmin+1,`min+1

This patch-based texture synthesis idea is illustrated in Figure 2.1. Larger patches can be used,
but we have found that 2× 2 patches work well.

An example of padding with synthetic boundary conditions compared to the padding used
in other boundary conditions is shown in Figure 2.2 (the left column shows the full image with
padded boundaries, the center column shows a zoom in on the upper left corner, and the right
column shows a zoom in on the upper right corner of the image). This figure clearly illustrates
that zero and periodic boundary conditions do not preserve continuity of pixel values. Reflective
boundary conditions result in continuity of the pixel values across the boundary, but the derivatives
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fi,j

fkmin,lmin

nbhd(i, j)D

B

nbhd(kmin, lmin)

Figure 2.1: Illustration of how the synthetic boundary condition is determined. Specifically,
(kmin, lmin) = arg mink,l SSD(nbhd (i, j) ,nbhd (k, l)).

of the gray level perpendicular to the image boundary are fixed to be zero. Anti-reflective boundary
conditions allow for continuity of the pixel values as well as the derivatives across the boundary.
Synthetic boundary conditions do not strive (at least not directly) to maintain continuity, but
instead the aim is to match neighborhoods of pixel values. Figure 2.2 clearly shows that synthetic
boundary conditions are much better at extending edges (e.g. of the books in the zoom of the
upper left corner) and texture (e.g., of the chair in the zoom of the upper right corner).

The matrix A for synthetic boundary conditions is similar to the periodic and reflective cases
because the pixels in B are simply copies of pixels in D. Thus, they can be obtained by permutation.
To see this, consider again the situation when the blur is separable. Then we can write the matrix-
vector model as

g =
([

Tr,−1 Tr Tr,1

]
⊗

[
Tc,−1 Tc Tc,1

])
Pf

where

P =

 Sr,−1

I
Sr,1

⊗
 Sc,−1

I
Sc,1

 .

Thus, in the case of periodic and reflective boundary conditions, P is simply a highly structured
permutation matrix, which only allows to grab entries from restricted regions of the viewable
region. With the use of synthetic boundary conditions we relax the structure of P, and allow the
permutation matrix to grab entries more flexibly in the viewable region. The result, as illustrated
in Figure 2.2 is a much better representation of the edges and texture of the image across the
boundary.

We emphasize that synthetic boundary conditions are image dependent, and are therefore more
capable of extending image features. However, an additional step is needed to estimate the bound-
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Figure 2.2: Padded results with different boundary conditions
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ary conditions. For efficient implementation, the search for (kmin, lmin) can be done only over nearby
pixels of (i, j), rather than over the whole image. This makes sense since pixels with similar image
features (e.g. edge directions, texture) are usually close to each other. For a fixed size for nbhd(i, j)
and nbhd(k, l) and a fixed size for the search pool, the cost of enforcing synthetic boundary con-
ditions is proportional to the number of pixels to be filled in the border area, i.e. O(mn) for an
image with m× n pixels. Further computational savings in the implementation, similar to that in
[7], can be obtained by reusing intermediate values of SSD(nbhd(i, j),nbhd(k, l)). We remark that
the cost of obtaining the boundary conditions is negligible compared with that of the subsequent
iterative methods to deblur the image.

3 Preconditioners for Synthetic Boundary Conditions

For synthetic boundary conditions, the matrix A does not have the kind of structure that allows
efficient implementation of direct filtering type methods. This is similar to the situation when zero
boundary conditions are used, or when reflective and anti-reflective boundary conditions are used
with a nonsymmetric PSF. In these situations it is necessary to use iterative methods, such as
a conjugate gradient type approach (e.g., CG, MINRES, or LSQR). By exploiting the structure
of A = T + B, matrix-vector multiplications can be done very efficiently; FFTs can be used to
multiply T, and B is a sparse matrix. Or, alternatively, FFTs can be used on appropriately padded
image arrays.

The next issue, then, is to consider preconditioning. Note that for the various boundary condi-
tions considered in this paper, we have:

Zero BC: AZ = T + BZ

Periodic BC: AP = T + BP

Reflective BC: AR = T + BR

Anti-reflective BC: AA = T + BA

Synthetic BC: AS = T + BS

That is, the matrix structures are very similar, and thus we could consider using, for example, AP ,
or a symmetrized version of AR as a preconditioner for AS . The important property we need is
that it is possible to efficiently compute the spectral decomposition of the preconditioner. Note that
AP is the standard, and well studied, choice for preconditioning AZ ; see, for example, [3, 16, 17].

For synthetic boundary conditions, if the PSF is symmetric, or close to being symmetric, then
(the symmetrized) AR is likely to be the most effective preconditioner. If the PSF is far from being
symmetric, then AP may be the best choice. Note that if we use AR as the preconditioner for AS ,
then

AS −AR = BS −BR ⇒ ASA−1
R = I + (BS −BR)A−1

R .

If the reflective BC is a good approximation of the synthetic BC, then we expect BS −BR to have
small rank and small norm. Thus AR would be a good preconditioner for AS .

Since the image deblurring problem is extremely ill-conditioned, some care needs to be taken
when incorporating preconditioning so that noise in the observed data is not magnified when we
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solve systems with the preconditioner,

ARx = AT
Rx = y (3.1)

(the first equality is due to the symmetry of AR for a symmetrized PSF). This equation can be
solved efficiently using the discrete cosine transform (DCT) [18]. However, since AR is usually
ill-conditioned, we cannot use it directly as a preconditioner without including regularization [11].
In this paper we use Tikhonov regularization [9, 10, 12, 20]. Specifically, the spectral decomposition
of AR is

AR = CTΣC,

where C is (for n× n images) the n2 × n2 orthogonal DCT matrix and

Σ = diag(σ1, σ2, . . . , σn2).

Under Tikhonov regularization with regularization parameter λ, AR is approximated by ÃR:

ÃR = CT Σ̃C,

where

Σ̃ = diag(σ̃1, σ̃2, . . . , σ̃n2) with σ̃i =
σ2

i + λ2

σi
.

The solution to (3.1) is then computed as

Ã−1
R y = C−1(Σ̃−1 ∗ C(y)), (3.2)

where C and C−1 denotes the DCT and inverse DCT respectively. Using fast DCT algorithms, the
cost of computing (3.2) is only O(n2 log n). The regularization parameter λ can be chosen using
a variety of schemes, including discrepancy principle, L-curve, and generalized cross-validation
(GCV) [12]. In our work, we use GCV.

4 Numerical Experiments

It is well known that the image deblurring problem requires regularization to stabilize the inversion
process when there is noise in g and/or in A. Note that even if the data g has no noise (which
is highly unlikely in any real problem), because we use only an approximation of the the true
boundary elements (e.g, with AZ , AP , AR, AA, or AS), there is effectively noise in A. For the
numerical results reported in this paper we use standard Tikhonov regularization [9, 10, 12, 20],

min
f

{
‖g −AXf‖2

2 + λ‖f‖2
2

}
,

where AX is one of AZ , AP , AR, AA, or AS . Our implementation can be obtained from Re-
storeTools1 patched with synthetic boundary conditions modification2 , or PYthon REstoreTools

1http://www.mathcs.emory.edu/~nagy/RestoreTools
2http://www.mathcs.emory.edu/~yfan/SyntheticBC/SyntheticBcPatch.tgz
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(PYRET)3. The following experiments are done with the function HyBR (hybrid bidiagonalization
regularization), which implements a modified version of LSQR, in RestoreTools. If the true image
is known (as we do in our simulations) HyBR can easily compute Tikhonov solutions with optimal
regularization parameters. RestoreTools also facilitates the implementation by providing functions
to efficiently implement matrix-vector multiplications.

In our first set of experiments, we use the “Barbara” image (Figure 4.1) as the main test image.
The following 4 cases are considered:

• Gaussian blur (Section 4.1)

• diagonal motion blur (Section 4.2)

• Gaussian blur with additive Gaussian noise (Section 4.3)

• diagonal motion blur with additive Gaussian noise (Section 4.4)

• DCT based preconditioning with AR (Section 4.5)

Results on other images are also shown in Section 4.6. Note that for display purposes only, pixel
values in all of the following figures are clipped to the range [0,255].

viewable region zoom: table zoom: face

Figure 4.1: “Barbara” image

4.1 Gaussian blur

We start with the “Barbara” image, blur it with a Gaussian blur of size 11 with a standard deviation
3 and crop out the central viewable part (Figure 4.2).

To deblur the image, we use the HyBR function with different boundary conditions. The
true image is supplied to HyBR to choose the optimal regularization parameters. We run 100
iterations and select the iterates that yield minimum errors. Since the relative errors for reflective,
anti-reflective, and synthetic boundary conditions are still decreasing at the 100th iteration, we
continue the iterations for these boundary conditions until 500th iteration. The plot of relative
errors against iteration is shown in Figure 4.3. Ideally (when there is no additive noise) with the

3http://www.mathcs.emory.edu/~yfan/PYRET
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blurred image zoom: table zoom: face

Figure 4.2: Gaussian blurred “Barbara” image

true boundary conditions, the relative error decreases as the iteration progresses. As can be seen in
Figure 4.3, synthetic and anti-reflective boundary conditions are most faithful to the true boundary
conditions, with synthetic performing slightly better than anti-reflective. The corresponding peak
signal-to-noise ratios (PSNR),

PSNR(F,F true) = 20 log10

255
RMS(F,F true)

= 10 log10

MN2552∑
i,j [(F)i,j − (F true)i,j ]2

of the computed reconstructed images are shown in Table 1.

Table 1: PSNRs of deblurring results on Gaussian blurred “Barbara”.
Blurred image Zero Periodic Reflective Anti-reflective Synthetic

PSNR 24.5646 23.8368 25.4884 27.4083 28.4664 28.7532
iteration - 2 5 167 255 500

The reconstructed images for the different boundary conditions are shown in Figure 4.4. From
the figure, it is obvious that reconstructions with synthetic boundary conditions contain the least
amount of ringing (oscillation) artifacts. The absence of the oscillation is easily seen at the table
cloth on the left and the chair behind the woman. Synthetic boundary conditions also give better
facial features.

4.2 Diagonal motion blur

We repeat the experiment with a diagonal motion blur of size 11; the blurred image is shown
in Figure 4.5. A plot of the relative errors is shown in Figure 4.6, which clearly illustrates the
effectiveness of synthetic boundary conditions compared to other boundary conditions.

Figure 4.7 shows the computed reconstructions at the point where the iterations reached their
smallest error, and the corresponding PSNRs are shown in Table 2. Note that with synthetic
boundary conditions we are able to recover the texture of the table cloth and the chair very well,
while other boundary conditions either return a blur or texture with severe ringing artifacts. Facial

15



(a) All boundary conditions (b) Reflective, anti-reflective and syn-
thetic boundary conditions

Figure 4.3: Relative error vs iteration for deblurring Gaussian blurred “Barbara”

features are also well preserved under synthetic boundary conditions. In terms of PSNRs, synthetic
boundary conditions give a significantly higher PSNR than other boundary conditions. Thus, for
this particular blurring, our synthetic scheme is most faithful to the true boundary conditions.

Table 2: PSNRs of deblurring results on motion blurred “Barbara”.
Blurred image Zero Periodic Reflective Anti-reflective Synthetic

PSNR 22.7484 22.5552 24.0441 27.0792 24.9434 29.1441
iteration - 2 3 11 8 77

4.3 Gaussian blur with additive Gaussian noise

Next, we add 1% Gaussian noise to the Gaussian blurred image and deblur it with different bound-
ary conditions. The noisy blurred image is shown in Figure 4.8 and the deblurring results are shown
in Figure 4.9. The corresponding PSNRs are shown in Table 3, and the relative error plot against
iteration is shown in Figure 4.10(a).

Table 3: PSNRs of deblurring results on noisy Gaussian blurred “Barbara”
Blurred image Zero Periodic Reflective Anti-reflective Synthetic

PSNR 24.5383 23.8341 25.4795 26.9879 27.0608 26.3866
iteration - 2 5 23 18 29
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deblurred image zoom: table zoom: face
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Figure 4.4: Deblurring results on Gaussian blurred “Barbara” with different boundary conditions
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blurred image zoom: table zoom: face

Figure 4.5: Motion blurred “Barbara” image

Figure 4.6: Plot of the deblurring errors vs iteration.
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Figure 4.7: Deblurring results on motion blurred “Barbara” with different boundary conditions
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blurred image zoom: table zoom: face

Figure 4.8: Noisy Gaussian blurred “Barbara” image

In this case, anti-reflective boundary conditions give the best result, reflective boundary condi-
tions the second best, and synthetic boundary conditions a close third. One may suggest that in the
process of obtaining synthetic boundary conditions from the noisy image, noise is taken as image
feature and incorrect boundary conditions are obtained. However, we believe this is not true; we
applied the synthetic boundary conditions, obtained from the noisy blurred image, to deblur the
corresponding noise-free blurred image, and obtained the very good results shown in Figure 4.11,
with a PSNR of 28.5262dB. This illustrates that good synthetic boundary conditions can still be
obtained from noisy images.

In fact, except for some pixels near the boundary, it is difficult to determine visually if synthetic
boundary conditions really perform worse than reflective and anti-reflective boundary conditions.
Note that if we exclude the outermost 5 pixels in the calculation of relative errors and PSNRs,
anti-reflective and synthetic boundary conditions give very similar results (cf. Figure 4.10(b)), with
slightly better results being obtained with synthetic boundary conditions.

Table 4: PSNRs (excluding outermost 5 pixels) of deblurring results on noisy Gaussian blurred
“Barbara”.

Blurred image Zero Periodic Reflective Anti-reflective Synthetic
PSNR 24.5383 24.7184 26.0702 27.1973 27.2696 27.3012

iteration - 2 6 22 18 25

4.4 Diagonal motion blur with additive Gaussian noise

Next, we add 1% Gaussian noise to the motion blurred image and deblur it with different boundary
conditions. The noisy blurred image is shown in Figure 4.12 and the deblurring results are shown
in Figure 4.13. The corresponding PSNRs and a plot of the errors at each iteration are shown in
Table 5 and Figure 4.14 respectively.

We observe similar results as in the noise-free case. With synthetic boundary conditions, the
texture of the table cloth and chair are restored quite successfully. The facial features are also
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Figure 4.9: Deblurring results on noisy Gaussian blurred “Barbara” with different boundary con-
ditions
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(a) whole image (b) outermost 5 pixels excluded

Figure 4.10: Plot of the deblurring errors vs iteration on noisy Gaussian blurred image.

deblurred image zoom: table zoom: face

Figure 4.11: Deblurring result of Gaussian blurred “Barbara” with the synthetic boundary condi-
tions obtained from the blurred and noisy counterpart. Its PSNR to the original image is 28.5dB.

blurred image zoom: table zoom: face

Figure 4.12: Noisy motion blurred “Barbara” image
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Figure 4.13: Deblurring results on noisy motion blurred “Barbara” with different boundary condi-
tions
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Table 5: PSNRs of deblurring results on noisy motion blurred “Barbara”
Blurred image Zero Periodic Reflective Anti-reflective Synthetic

PSNR 22.7309 22.5497 24.0219 26.4248 24.8341 26.5961
iteration - 2 3 9 7 20

Figure 4.14: Plot of the deblurring errors vs iteration on noisy motion blurred “Barbara”.

restored very well. Overall, there are significantly fewer artifacts in the synthetic boundary condi-
tions results compared to the others. In terms of PSNR, synthetic boundary conditions still give
the highest PSNR, but its difference from the next best boundary conditions (reflective) is smaller
than in the noise-free case.

4.5 Preconditioning

Now we illustrate that preconditioning can significantly accelerate convergence of the iterative
method. We only show results for the Gaussian blurred image with synthetic boundary conditions;
similar results can be obtained with motion blur. The deblurring results with and without precon-
ditioning are shown in Figure 4.15, the corresponding PSNRs are shown in Table 6, and the error
plots are shown in Figure 4.16. Recall that without preconditioning, the minimum error is not
yet attained even at 500th iteration. With preconditioning, the relative error drops very quickly,
attaining its minimum at 20th iteration before increasing a little, and then levels off. In addition,
we obtain a higher PSNR and recover more details, e.g. the texture of the chair.

4.6 Other images

We repeated all of the experiments on several other standard test images (see, e.g., the MATLAB
Image Processing Toolbox) with reflective, anti-reflective and synthetic boundary conditions re-
spectively. The results are shown in Tables 7 and 8. Synthetic boundary conditions almost always
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Figure 4.15: Deblurring results on Gaussian blurred “Barbara” with synthetic boundary conditions.
The first row is obtained without preconditioning at the 500th iteration; the second row is obtained
with preconditioning at the 20th iteration.

Figure 4.16: Plot of the deblurring errors with and without preconditioning.

Table 6: PSNRs of deblurring results with and without preconditioning.
Blurred image Synthetic Synthetic with preconditioning

PSNR 24.5681 28.7532 29.6790
iteration - 500 20
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give the highest PSNRs. Occasionally, synthetic boundary conditions give slightly lower PSNRs
than anti-reflective boundary conditions, such as in the case of deblurring the Gaussian blurred
“Goldhill” image. But in these cases synthetic boundary conditions still produce fewer ringing
artifacts than anti-reflective boundary conditions; see, for example, Figure 4.17.

Table 7: PSNRs of the blurred images (Blurred), deblurred images with reflective (Ref), anti-
reflective (Antiref) and synthetic (Syn) boundary conditions.

Gaussian blur Motion blur
Blurred Ref Antiref Syn Blurred Ref Antiref Syn

Barbara 24.5681 27.4083 28.4664 28.7532 22.7484 27.0792 24.9434 29.1441
Baboon 22.4401 24.3756 25.0833 25.3089 22.0289 26.0322 23.4704 27.8405
Peppers 23.5396 26.5654 27.7779 28.0495 21.4316 25.4560 23.4078 27.5207
Goldhill 24.7255 27.6440 30.3091 29.7711 23.2916 27.9265 25.7929 29.9787

Cameraman 21.2167 26.8596 27.8042 27.8703 20.2303 26.5291 23.8506 29.7191

Table 8: PSNRs of the noisy blurred images (Blurred), deblurred images with reflective (Ref),
anti-reflective (Antiref) and synthetic (Syn) boundary conditions.

Gaussian blur + 1% Gaussian noise Motion blur + 1% Gaussian noise
Blurred Ref Antiref Syn Blurred Ref Antiref Syn

Barbara 24.5383 26.9879 27.0608 26.3866 22.7309 26.4248 24.8341 26.5961
Baboon 22.4176 23.5400 23.5663 23.1965 22.0081 25.0278 23.3752 25.2264
Peppers 23.5193 26.3752 26.7754 26.1722 21.4183 25.1881 23.3622 25.7139
Goldhill 24.6953 26.9863 27.2287 26.1062 23.2693 26.8872 25.5519 26.5859

Cameraman 21.2021 23.3848 23.3603 22.8304 20.2189 24.9255 23.3693 24.9763

5 Conclusions

We have introduced a new approach to choosing boundary conditions for imaging applications.
We described the approach, which we call synthetic boundary conditions, in the context of image
deblurring, and compared its linear algebraic structure, as well as its effectiveness to previously
proposed boundary conditions. All four previously proposed boundary conditions (zero, periodic,
reflective and anti-reflective) fail to continue important image structures like edge directions and
texture outside the viewable region. On the other hand, our synthetic approach can continue these
image structures. Extensive numerical experiments illustrated that synthetic boundary conditions
typically allow for (sometimes significantly) better image reconstructions than other boundary con-
ditions. In the (rare) situations when other boundary conditions performed better than our syn-
thetic approach, the difference was minimal, and visually one could argue that the reconstructions
with synthetic boundary conditions had fewer artifacts. The linear algebraic structure of the new
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Figure 4.17: Deblurring results on noisy Gaussian blurred “Goldhill” with anti-reflective and syn-
thetic boundary conditions.
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boundary condition allows for efficient implementation of iterative image deblurring algorithms,
and construction of effective preconditioners.

References
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