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Abstract—Distributed mobile crowd sensing is becoming a
valuable paradigm, enabling a variety of novel applications built
on mobile networks and smart devices. However, this trend
brings several challenges, including the need for crowdsourcing
platforms to manage interactions between applications and the
crowd (participants or workers). One of the key functions of such
platforms is spatial task assignment which assigns sensing tasks to
participants based on their locations. Task assignment becomes
critical when participants are hesitant to share their locations
due to privacy concerns. In this paper, we examine the problem
of spatial task assignment in crowd sensing when participants
utilize spatial cloaking to obfuscate their locations. We investigate
methods for assigning sensing tasks to participants, efficiently
managing location uncertainty and resource constraints. We
propose a novel two-stage optimization approach which consists
of global optimization using cloaked locations followed by a
local optimization using participants’ precise locations without
breaching privacy. Experimental results using both synthetic and
real data show that our methods achieve high sensing coverage
with low cost using cloaked locations.

I. INTRODUCTION

The widespread prevalence of smart devices has created an
established platform for mobile crowd sensing [1]. Individuals
with sensing and computing devices are able to collect and
contribute valuable data about events or phenomena of interest.
An interesting and valuable class of crowd sensing applications
is Participatory Sensing (PS) [2] in which participants are
actively involved (as versus being autonomous and minimally
involved in opportunistic sensing) to collect and contribute
data as workers1. The goal is to collect data through the
participants about specific targets that could be objects, events,
or phenomena at particular locations during a time period.
Participants might need to travel to the location of the assigned
targets to collect data using their smart devices or phones.
Examples of these systems include crowd-contributed instant
news coverage, trail condition updates after storms [3], and
urban texture documentation [4]. This can be also considered
as one type of location-aware crowdsourcing applications [5]–
[7] in which tasks are distributed to participants with regard
to their locations.

To maximize the coverage of data collection in such crowd-
sourcing systems, a spatial task management server might be
used to distribute sensing tasks to the participants based on
their locations effectively. Several projects have focused on the
optimization of spatial task assignment to improve the sensing
process [4], [9]. However, a major concern of all these systems

1In this paper, we use participants and workers interchangeably since our
methods can be adopted for both voluntary or incentive-based models.

is the location privacy of participants. While participants
can conceal their identity by anonymous contribution, their
location is a required piece of information for effective spatial
task assignment – disclosing which can reveal their identity or
other private attributes. One promising approach to preserve
location privacy is spatial cloaking that has been widely used
in location-based services [10]–[13]. However, spatial cloaking
results in uncertain locations, challenging the task assignment
process.

In this paper, we consider the spatial task assignment
problem in a coordinated crowd sensing setting in which a
tasking server is responsible for managing sensing tasks among
participants who share their cloaked locations rather than their
exact locations. Our goal is to efficiently assign sensing tasks
to participants based on their cloaked locations to achieve
a desired coverage goal with minimized cost, i.e. the total
distance that participants have to travel for their assigned tasks.

Our main contributions are summarized below. First, we
propose a novel two-stage optimization approach for the spatial
task assignment problem in the presence of cloaked locations.
In the first stage, a global optimization problem is solved at the
task assignment server using cloaked locations. Our approach
addresses location uncertainty and can work with different
spatial cloaking methods. In the second stage, participants
individually fine-tune their assignments using their own exact
locations. We formulate formal optimization objectives for
each stage and further show the optimization problems at each
stage are NP-hard. Second, we propose efficient greedy algo-
rithms to solve the optimization problem at each stage. Finally,
we present extensive experiments using real and synthetic data
and show the impact of various parameters on our algorithms
and demonstrate the feasibility and benefit of our approach.

The remainder of this paper is organized as follows. In Sec-
tion II we give an account of previous work. In Section III we
present a comprehensive definition of the problem. This also
includes formal objectives for the problem and computational
complexity analysis for each objective. Our proposed methods
and efficient algorithms to solve the problem are presented
in Section IV. Our new findings and results are described in
Section V. Finally, Section VI gives the conclusions.

II. PREVIOUS WORK

A. Task Management in Mobile Sensing

We categorize task management in mobile crowd sensing
into two major approaches: (i) Autonomous task selection, and
(ii) Coordinated task assignment. In autonomous task selection,



participants select their tasks autonomously from a set of
existing tasks received from a task distribution entity. They
might or might not inform the distributor about their selection
choices. Since the selected tasks are not optimized globally,
these approaches might not be efficient with respect to sensing
cost or global utility. Examples of these approaches may be
found in [14]–[16]. A survey of existing methods in which
participants select a task autonomously without revealing their
identity or location can be found in [17]. Our approach is
different from these works since none of them guarantee the
efficiency of the selected tasks globally.

Coordinated task assignment aims at optimizing the pro-
cess of data sensing by efficient assessment of available
sensing resources to meet the requirements of applications. The
criteria for optimization of task assignment include sensing
costs, coverage of targets of interest, quality, and credibility
of sensed data. Examples of this approach can be found
in [4], [9], [18], [19]. Reddy et al. [9] proposed a coverage-
based task assessment that finds the least costly subset of
participants to achieve the coverage goal. Shirani-Mehr et
al. [4] also proposed a coverage-based task assignment method
for assigning viewpoints to a group of moving participants.
None of these studies considers location privacy restrictions.
In [18], the authors proposed a data acquisition framework for
PS applications that assess sensing resources to answer queries
from different PS applications efficiently. Their assignment
criteria include sensing costs and quality of the query answers
evaluated by the query initiators. However, their proposed
model requires knowledge of the exact location of participants
to assign tasks effectively, hence they only mitigate the privacy
problem by adjusting the duration between consecutive loca-
tion disclosures. Another work [19] proposes a push method
to upload tasks onto mobile phones selectively. Since the
tasking server learns the locations of the participants during
registration, the server is able to track the mobile phones for
a limited time. Hence, participants are required to wait for a
random amount of time before registering again. Our work
differs from these approaches since we use cloaked locations
of participants for task assignments, thereby ensuring that the
server does not learn the exact location of the participants. We
also propose a novel two-stage optimization method to handle
uncertainty.

B. Location Privacy

To protect location privacy of individuals in location-
based services, location obfuscation methods have been studied
widely in the literature (see recent surveys in [13], [20], [21]).
One typical obfuscation method is spatial cloaking or pertur-
bation which hides the user’s location inside a cloaked region
using spatial transformations [22] or a set of dummy locations
[23] in order to achieve uncertainty based privacy [24] or
anonymity based privacy [10], [25]–[29]. Most recently, the
work [11] proposed a location perturbation method based on a
rigorous notion of indistinguishability, which is similar to the
differential privacy concept [30]. In our work, we assume that
the location of each participant is hidden in a cloaked spatial
region with certain probability distribution (can be inferred
probabilities based on perturbed locations) without considering
other details of the underlying obfuscation algorithm. There-
fore, our method can work with any cloaking or perturbation
methods for location privacy. We note that differential privacy

has also been recently applied to anonymize aggregate location
or trajectory data [13], however, these works are not applicable
in location based services setting when individual locations
(albeit can be uncertain) are needed.

III. TWO-STAGE OPTIMIZATION APPROACH

In this section, we first define the spatial task assignment
(STA) problem and then we formulate a version of STA
which deals with cloaked locations (STAC) as a two-stage
optimization problem.

A. Problem Definition

Figure 1 illustrates a high-level design for task management
in a crowd sensing architecture. In our work, we focus on three
main components of this architecture including participants,
applications and the tasking server. The applications are re-
questers of the data acquired via sensors carried/operated by
participants. Our task management service referred to as the
tasking server recruits suitable participants for applications.
To this end, the applications upload their required tasks to the
tasking service. A task includes a set of targets of interest
and required sensing specifications such as type of sens-
ing, required equipment, and sampling frequencies. Similarly,
participants who are registered to this service via a trusted
third-party anonymizer, provide their attributes including their
capabilities such as their smart-device specifications, their
spatial availability as cloaked areas, their temporal availability,
and other restrictions such as their mobility limitations. In this
section, we provide a more formal description of the spatial
task assignment problem with cloaked locations. The summary
of notations is presented in Table I. First, we formally define,

Fig. 1: Task assignment in a crowd sensing architecture.

who is a participant, and what is a cloaked area.

Definition 1: (Participant) A participant pi is an anony-
mously registered user who has a limited travel budget bi, i.e.
the maximum distance a participant can travel. The participant
shares this information as well as her cloaked area ai (defined
later in this section) and her desired sensing time with the
tasking server. The participant’s true location li is considered
private and is not shared with the server.

Definition 2: (Cloaked Area) A cloaked area for a partici-
pant is a pair 〈ai, fi〉, where ai is a spatial region and fi is the
probability density function of the participant at each point in



TABLE I: Notations

pi Participant i
tj Target j
n Number of participants
m Number of targets
bi Travel distance budget of participant i
li Location of the participant i
ai Cloaked area of participant i
kj Required coverage for target j
g Required fraction of task coverage

di,j Distance between the participant i and target j
x First stage assignment matrix
y Second stage assignment matrix
d̂ Expected distance matrix

ai. For simplicity, we refer to the cloaked area as ai in this
paper.

Each participant is able to perform tasks that meet their
restrictions. The following definitions describe what is a task,
its assignment, and its coverage.

Definition 3: (Task) A task specifies a set of targets for
data collection, the location of each target, the required cov-
erage for each target (kj) (i.e. the number of participants to
cover target tj), and the overall coverage goal g (the required
portion of the task coverage defined later in this section).

Definition 4: (Task Assignment) Task assignment is a
mapping of participants to targets in a task shown by a matrix
x where xi,j = 1 if target j ∈ M is assigned to participant
i ∈ N , otherwise xi,j = 0. N := {1, . . . , n} is a collection of
row indexes (or participants), M := {1, . . . ,m} is a collection
of column indexes (or targets).

Definition 5: (Task Coverage) Coverage for a target is
defined as the number of participants assigned to it, normalized
by the required coverage of the target kj . Task coverage (TU )
is defined as the sum of coverage for all the targets in the task
shown in (1). The maximum value of TU for full coverage is
m. Coverage goal for a task denoted as g indicates the required
fraction of task coverage with g ∈ (0, 1].

TU =
∑
j∈M

∑
i∈N xi,j

kj
(1)

Definition 6: (Task Cost) The sensing cost for a pair of
participant and target can be defined based on the travel
distance, sensing duration or the complexity of each sensing.
Since the participants may need to travel to the target location,
we define a cost model which is simply the Euclidean distance
between the participant’s original location and assigned targets
shown as a matrix d. Task cost (TC) is defined as the sum of
all sensing costs for all targets in the task. Our cost model can
be substituted by any other distance-based cost model without
affecting the problem definition.

TC =
∑
j∈M

∑
i∈N

xi,jdi,j (2)

Given a set of participants and a task, we can define the task
assignment problems as follows.

Definition 7: (STA: Spatial Task Assignment) For a set of
participants and the set of targets in a task, the spatial task
assignment problem (STA) formulated below aims at achieving

the task coverage goal with the minimum cost by assigning
targets to qualified participants using their exact locations.

min
x

∑
i∈N

∑
j∈M

di,jxi,j (3)

s.t.
∑
j∈M

∑
i∈N xi,j

kj
≥ gm∑

j∈M

xi,jdi,j ≤ bi

where the minimization objective is to minimize the task
cost TC, defined in (2). The first constraint indicates that the
task coverage TU, defined in (1), has to be greater than or
equal to the required task coverage gm. The second constraint
represents the travel budget of each participant (i.e. the total
travel distance for participant pi can not exceed her travel
budget bi).

Definition 8: (STAC: Spatial Task Assignment with
Cloaked Locations) For a set of participants and the set of
targets in a task, STAC aims at achieving the task coverage
goal with minimum cost by assigning targets to the qualified
participants using their cloaked locations. We formulate this
problem as a two-stage optimization objective in section III-B.

B. Formal Two-stage Optimization Objective

In spatial task assignment with cloaked locations (STAC),
since exact locations of the participants are not provided to the
server, the distance between targets and participants described
by the matrix d, used as the sensing cost matrix, is unavailable
to the tasking server. Therefore the server is required to deal
with location uncertainty and estimate the values of d as an
expected distance matrix d̂. Then, the server can utilize these
expected values to perform the task assignment. However, this
uncertainty introduces inaccuracy in distance estimations and
subsequently in task assignments. Hence, we propose a two-
stage optimization solution to solve STAC. The first stage
optimization problem is a global task assignment problem
(G-STAC) based on uncertain locations solved at the tasking
server, while the second is a local task assignment problem
(L-STAC) solved by each participant. Dividing the assignment
task into two separate problems utilizes participant location
data locally while preserving participant privacy. The goal of
the second stage is to refine and optimize task assignment
results of the first stage by each participant using her exact
location. In this section, we describe each stage in detail and
then propose a formal objective for each problem.

1) G-STAC : First stage optimization objective: The first
stage deals with uncertain locations which leads to uncertain
distances for participant-target pairs. Assuming we had exact
locations, the first-stage optimization objective would be as
shown in (3). However, in absence of exact locations, we need
to estimate distances as d̂. We discuss the estimation process
with more details in Section IV-A.

2) L-STAC : Second stage optimization objective: Our
second stage optimization runs in the participant’s device
locally using the given assignment from the first stage. Since
new information is introduced in the second stage (i.e., exact
locations available in each participant’s device), these assign-
ments can be adjusted and refined for more coverage and/or



lower distance/cost. The reason is that (i) some targets might
have been assigned to the participant by the server based on the
estimated distance, but they are not actually accessible to the
participant as the exact distance may exceed her travel budget;
(ii) some targets are very close to the participant but have been
estimated as being farther and not assigned. If each participant
simply selects the closest targets in the second stage, however,
over-coverage may occur for some of the targets meaning they
might be covered more than required. Therefore, in addition
to minimize the total travel distance with the exact location
in the second stage, we would like to keep the assignments
of the first stage unchanged as much as possible because they
have been globally optimized for the global coverage goal and
cost. The objectives of second stage assignment optimization
of each participant pi, i ∈ N is shown in (4).

min
y

∑
j∈M

di,jyi,j (4)

s.t. |yi − xi| < ε∑
j∈M

yi,j

kj
≥
∑
j∈M

xi,j

kj∑
j∈M

yi,jdi,j ≤ bi

where for each participant pi, xi is the first stage assignment
vector, yi is the second stage assignment vector, di is the dis-
tance vector, bi is the participant’s travel budget, |yi − xi| is the
Hamming distance between two binary vectors xi and yi which
is constrained using a small threshold ε in favor of keeping the
first-stage assignments unchanged as much as possible. The
second constraint guarantees that pi’s contribution to the task
coverage is at least equal to the coverage share assigned to her
in the first stage. The last constraint guarantees that her travel
distance is within her budget.

C. Complexity Analysis

In this section we show that our global and local problems
are NP-hard, by reducing the minimum set cover problem to
G-STAC and L-STAC. The minimum set cover problem is a
well studied NP-hard problem defined as follows.

Definition 9: (Minimum Set Cover Problem [31]) Given
a universe W , a collection S of subsets of W , and a cost
function c : S → R+ find a minimum cost sub-collection of
S that covers each element of W .

Theorem 1: The G-STAC is an NP-hard optimization prob-
lem.

Proof: To prove that G-STAC is NP-hard we show a
polynomial reduction of the minimum set cover problem
(Definition 9) to our problem.

Consider a minimum set cover problem with W = {p1,-
. . . , pn, p∅, t1, . . . , tm, t∅} and S being a set of two-element
subsets of W , i.e., S = {{pi, tj} : pi ∈W, tj ∈W}. Let k > 0
and c : S → R+ be a cost function such that c({pi, tj}) = d̂i,j

(pi 6= p∅ and tj 6= t∅) is an expected distance between tj and
pi. For remaining elements of S the cost function is defined as
follows: c({pi, t∅}) = 0 and c({p∅, tj}) = D, where tj 6= t∅
and D >

∑
i∈N,j∈M c({pi, tj}).

We reduce such instance of the minimal set cover problem
to the G-STAC problem as follows. Let P = {pi : i =

1, . . . , n} be a set of participants and T = {tj : j = 1, . . . ,m}
be a set of targets. A distance between tj and pi is equal
to di,j = c({pi, tj}). We assume G-STAC has an optimal
solution xOPT with minimum cost and full coverage (when
setting g = 100% and k = 1). We derive SOPT ⊂ S
from xOPT for the minimal partial set cover problem as
follows. If tj is assigned to pi in xOPT , i.e. xi,j = 1, then
{pi, tj} ∈ SOPT . If tj is not assigned to any participant in
xOPT , then {p∅, tj} ∈ SOPT . If pi has no target assigned to
it in xOPT , then {pi, t∅} ∈ SOPT . If all targets have been
assigned and each participant has at least one target assigned
to it in xOPT , then {p∅, t∅} ∈ SOPT .

We show by contradiction that SOPT covers set W with
the minimal cost, i.e., any other solution would not have lower
cost. Let us assume by contradiction that there is S′ that
covers W with lower cost. Elements of S′ can be mapped
to assignment pairs of participants to targets, therefore they
define a solution x′ for the G-STAC problem. Since S has a
lower cost than SOPT , then x′ has a lower cost than xOPT .
This is a contradiction with xOPT being the optimal solution
of G-STAC.

Similarly, we can show that L-STAC is NP-hard by a
polynomial reduction of the minimum set cover problem
(Definition 9) to it.

IV. ALGORITHMS

In this section, we propose efficient greedy algorithms to
approximate the optimization objectives for both G-STAC and
L-STAC.

A. First Stage: G-STAC

We first present two methods to deal with location uncer-
tainty in the first stage, then we propose an efficient greedy
algorithm to approximate the optimization objective for G-
STAC based on the greedy solution proposed in [32] for partial
set cover problem.

1) Distance Estimation: As mentioned earlier, we use a
distance-based cost model in our work which defines the
sensing cost as the Euclidean distance between participants
and targets. Therefore, our tasking server is required to
deal with the location uncertainty of the participants to
estimate distances. Queries over uncertain spatio-temporal
data have been extensively studied with many algorithms to
handle queries such as nearest neighbors, top-k, and range
queries [33]. However, most of them aim at ranking the
query answers and cannot be directly adopted in our work
which requires actual distances to optimize the sensing cost.
Knowing the cloaked areas (as the pair of the area and the
probabilistic density function 〈a, f〉), we propose two simple
methods to calculate the expected distances.

i) Centroid-point: In this baseline method, we calculate
the centroid of all points in the cloaked area z ∈ a as the
expected location of the participant and use it to calculate the
expected distances ˆdi,j .

d̂i,j = dist(

∫
z∈ai

zfi(z)dz, lj)

where lj is the location of the target j and the function dist
is the Euclidean distance between two points.



ii) Expected-probabilistic: In this method, for each pair
〈i, j〉 of participant-target, we first calculate the probability of
the target j being accessible by the participant i as ρi,j (i.e.,
the probability that target j is within the travel budget of the
participant i). To calculate this probability, we apply a simple
pruning approach for each participant-target pair and shrinks
the cloaked area ai to a′i which is the area of intersection
between ai and the circle centered at target j with radius bi
(i.e. the distance budget of participant i). Then, having the
probability density function fi, we calculate the probability of
the participant being in a′i which is equal to the probability
of the target j being within the travel budget of participant i
(ρi,j).

ρi,j =

∫
z∈a′

i

fi(z)dz

Finally, we compute d̂i,j as the expected distance between the
target and the intersection area a′i with probability ρi,j .

d̂i,j =

∫
z∈a′

i
dist(z, lj)fi(z)dz∫
z∈a′

i
fi(z)dz

The above estimation methods can work with any cloaking
area or can be discretized to work with a set of perturbed
locations associated with probabilities. Figure 2 illustrates our
estimation approaches when participant location is cloaked in a
circular region with uniform probability distribution function.

Expected

Distance

Target

(a) (b)

Travel 

Budget

Fig. 2: (a) Centroid-point method, (b) Expected-probabilistic
method.

2) Greedy Algorithm: Algorithm 1 represents the pseu-
docode for an efficient greedy algorithm to approximate the
solution of our first stage objective. It iteratively picks the most
cost-effective participant-target pair and updates the current
coverage for the target, until either the coverage goal is met
or all travel budgets of participants are exhausted. Since both
the number of targets to be assigned and all travel budgets do
not increase in time and always have non-negative values, the
number of updates is finite. In each iteration, the algorithm
finds the most cost-effective participant-target pair and assigns
them to each other. For a participant pi, i ∈ N and target
tj , j ∈ M , the cost-effectiveness of assigning them to each-
other is calculated as φ(1)

i,j .

φ
(1)
i,j =

ˆdi,j

min(1− u+
j ,

1
kj

) + ε

which is the ratio of expected distance d̂i,j (cost) to the ex-
pected coverage contributed by this participant. u+ is the vec-
tor of current covered portions of the targets which is initially
all zero. If a target is fully covered, the corresponding value of
this target in u+ becomes 1. The expected coverage contributed
by participant pi for target tj is hence min (1− u+

j ,
1
kj

),
the minimum of remaining required coverage of tj and the
coverage pi can offer for tj . Finding the minimum aims
at preventing over-coverage. The small positive value ε is
added to avoid overflow when the expected coverage by the
participant is zero.

Since one of our distance estimation methods is probabilis-
tic, Algorithm 1 is designed to select the most cost-effective
pair of participant-target 〈i, j〉 with probability ρi,j . For the
Centroid-point method, these probabilities are calculated as

ρi,j =

{
1 d̂i,j ≤ bi
0 d̂i,j > bi

}
For the probabilistic method, ρi,j is calculated as described
in section IV-A1. Algorithm 1 finds the answer in one
pass through all participant-target pairs for the centroid-point
method because the probabilities are either 0 or 1. For the
expected-probabilistic method an upper-bound threshold R is
used in the algorithm to stop the algorithm after R passes
through all possible pairs. While the algorithm will converge
after sufficient number of passes, we use R mainly for experi-
ment purposes and enhanced efficiency. At the end of the first
stage, the covered proportion of targets is updated in u+ based
on the first stage assignments. Therefore, we refer to it as the
expected coverage vector which is passed to the participant in
the second stage along with her first stage assignment and the
set of her accessible targets.

Time Complexity. The time complexity of our distance es-
timation methods are O(nms) where n is the number of
participants, m is the number of targets, and s is the number
of points (sampling points when fi is continuous) in each
participant’s cloaked area. Algorithm 1 runs in O(nm) for
the centroid-point method because the probabilities are either
0 or 1, so the algorithm finds the answer in one pass through
all participant-target pairs. For the expected-probabilistic ap-
proach, the algorithm will run no more than R rounds for all
participant-target pairs, so the the time complexity is O(Rnm).

B. Second Stage: L-STAC

Due to the uncertainty of locations used in the first stage, a
participant might be assigned to targets that are not accessible
while not being assigned to targets that are accessible. The
main goal of the second stage is for each participant to fine-
tune the assignment using her exact location while maintaining
the overall coverage goal. However, the main pitfall in the
second stage is over-coverage of some targets at the cost of
under-coverage of others, i.e. more participants are assigned to
some targets than required, if each participant simply optimizes
its cost by selecting the closest targets in the second stage.
Hence, we have an additional constraint to bound the overall
changes in the assignments implemented by several heuristics
in order to maintain the overall coverage goal without incurring
additional cost. The server provides the expected coverage
vector, the final u+ at the end of G-STAC to all participants.



Algorithm 1 A greedy algorithm for the first stage task
assignment problem

Input: P (set of participants), T (set of targets), b (vector of travel budgets), d̂
(matrix of expected distances), k (vector of required coverage for targets),
g (task coverage goal), ρ (matrix of the access probabilities), R (threshold
on running rounds)

Output: x (matrix of task assignments), u+ (vector of covered portion of
targets)

1: All elements of x and u+ are initialized to 0
2: TC ←− 0
3: r ←− 0
4: while (TC ≤ gm) and (r < R) do
5: if a remaining probable pair exists then
6: Select the most cost-effective target-participant pair from the re-

maining pairs, say indexed at i and j with the probability ρi,j .
7: if a pair is selected then
8: Assign the selected pair as xi,j ←− 1
9: TC ←− min(1− u+

j ,
1

kj
) + TC

10: u+
j ←− min(1− u+

j ,
1

kj
) + u+

j

11: bi ←− bi − d̂i,j

12: if u+
j = 1 then

13: T ←− T \ Tj

14: end if
15: if bi = 0 then
16: P ←− P \ Pi

17: end if
18: else
19: r ←− r + 1
20: end if
21: else
22: Break
23: end if
24: end while

Hence, the u+ at the beginning of second stage optimization
is initialized with the given values from the server.

Algorithm 2 presents the pseudocode for our greedy ap-
proach to approximate the solution of our second stage objec-
tive. This algorithm runs locally on each participant’s device
pi ∈ P , so it has access only to the corresponding participant’s
attributes including her exact location, and the information
provided by the server including the set of candidate targets
τ that may be accessible by the participant (the server can
prune the targets that are not accessible by the participant if the
minimum possible distance between a participant and a target
is larger than bi), and the result of the first stage assignment for
this participant xi. The result of assignments in this algorithm
is stored in yi.

The algorithm at participant pi first initializes all elements
of its assignment vector to 0 (no assignment) and updates
u+ so it only contains the coverage contributed by all other
participants, i.e. by removing the current targets assigned to
pi from the first stage (line 1-8). Similar to Algorithm 1, the
algorithm then iteratively picks the most cost-effective target
and assigns it to pi with some probability which is designed
to avoid over-coverage. In contrast to Algorithm 1, since we
want to satisfy the the first constraint of (4), we penalize each
new assignment which is different from xi,j . Therefore, the
cost-effectiveness score of each assignment in this stage is
calculated as φ(2)

i,j .

φ
(2)
i,j =

di,j

bi
+ |xi,j − 1|

min(1− u+
j ,

1
kj

) + ε

which is the ratio of second stage cost (i.e., the sum of nor-
malized distance and change penalty) to the expected coverage
contributed by this participant for target tj ∈ τ . The expected
coverage contributed by the participant is computed the same
as in the first stage. The other difference of our second stage
algorithm from the first stage concerns the probabilities which
are used to assign targets to participants. For a target j, ρi,j

is calculated as follows,

ρi,j = 1−
φ

(2)
i,j

max
{
φi,j

(2)
}

Using this probability, we aim at avoiding over-coverage of the
targets, but at the same time reducing the chances of costly
assignments. Without this probability, participants would re-
peatedly assign targets until their travel budget is exhausted.
Completely expending the travel budget by all participants can
result in over-coverage with high cost. This effect can be seen
easily in the autonomous task selection methods discussed in
Section II. Using φ(2) to calculate this probability favors more
cost-effective assignments by giving them a higher probability.
Similar to Algorithm 1, for efficiency purposes, an upper-
bound threshold R′ is used in the algorithm to stop the
algorithm after R′ passes through all targets in τ .

Algorithm 2 A greedy algorithm for the second stage task
assignment problem
Input: pi, i ∈ N (the participant), τ (set of accessible targets for pi), xi (first

stage assignments for pi), bi ( pi’s travel budget), k (vector of required
coverages for targets), g the task coverage goal, u+ (vector of covered
portion of targets), R′ (threshold on running rounds)

Output: yi (vector of task assignments for pi)
1: All elements of yi are initialized to 0
2: LC ←− 0 (Local task coverage) AC ←− 0(Assigned task coverage to

this participant)
3: r ←− 0
4: for all the targets in τ do
5: u+

j ←− u
+
j −

xi,j

kj

6: AC ←− AC +
xi,j

kj

7: end for
8: while (LC < AC)and(bi > 0)and(r < R′) do
9: if a remaining probable target exists in τ then

10: if target j is selected then
11: if di,j ≤ bi then
12: Assign the selected target as yi,j ←− 1
13: TC ←− TC + min(1− u+

j ,
1

kj
)

14: u+
j ←− u

+
j + min(1− u+

j ,
1

kj
)

15: bi ←− bi − di,j

16: τ ←− τ \ τj
17: end if
18: else
19: r ←− r + 1
20: end if
21: else
22: Break
23: end if
24: end while

Time Complexity. Algorithm 2 runs no more than R′ rounds
of passing through all targets in τ , so having the number of
all targets as m, the time complexity is O(R′m).

V. EXPERIMENTAL RESULTS

In this section, we evaluate our task assignment methods
experimentally using both real and synthetic datasets. First we



discuss the details of our experiment settings, then we present
and analyze the results.

A. Settings

Datasets. We used a real dataset from Gowalla [34] which
contains check-in information of users of a location-based
social network. The check-ins consist of time and location
coordinates of users at different positions. For our experiments,
we used user and position information during October 2010
in New York city. We used each day as a snapshot for our
task assignment experiment. In all experiments, participants
are selected uniformly from all Gowalla users on each given
day, while targets are picked randomly from all the spots.

We also used Brinkhoff’s Network-based Generator of
Moving Objects [35] to create a set of synthetic dataset of
moving objects (OLE) to test our methods and algorithms.
The map of the city of Oldenburg in Germany is used as the
input to the generator. In OLE, at each time snapshot, the set
of participants is chosen uniformly from the set of moving
objects in the map. In the same way, targets are selected from
the nodes of the road graph of the map.

Evaluation Metrics. Task cost (TC) and task coverage (TU )
are calculated as described in section III. In many settings, the
desired coverage goal (g) may not be achievable, even given
exact locations of the participants, due to the limited number
of participants or travel budgets of the participants. Hence, we
also present a combined cost metric that adds the task cost
(TC) and uncovered targets (gm − TU ) and normalizes the
sum to the range of [0,1] using min-max method. We refer to
this normalized value as penalized cost (PC):

PC =
(gm− TU) + TC

gm+
∑

i bi

The denominator is used for normalization and is equal to the
maximum possible value for the sum of uncovered portion
of the task and the task cost. Thus, a smaller value of PC
represents higher coverage and lower cost, which is considered
a better result. In our experiments, we study the effect of
different parameters such as the number of participants/targets,
coverage goal, and cloaking size on the task cost and coverage.

Parameters. Table II shows the parameter settings for our
simulations with default settings highlighted. In all exper-
iments, we selected the travel budget of the participants
randomly in the range of 1%-3% of the map size. We ex-
perimented with different cloaking models such as circular
and rectangular areas, continuous/discrete instance sampling,
and uniform/normal probability distribution of the instances;
however, since the results were very similar for different
cloaking models, we only present results for a circular model
with continuous uniform distribution of instances. The size
of the cloaking area for each participant is roughly selected
uniformly in the range of 0.01%-1% of the map area. For all
of our experiments with the OLE dataset, we used a part of
the map of Oldenburg highlighted in Figure 3. The reason of
this selection is to provide a more crowded map, compared
to Gowalla which is a sparse dataset with a maximum of 235
participants in each snapshot. The required coverage of each
target (k) is set to one in all experiments because varying
the required target coverage has a similar effect as varying
number of targets. The coverage goal g is selected between

10%-100% of the number of targets, with a default value of
100%. R and R′ vary depending on the size of the cloaking
area, but in general they are selected in the range of [50,200].
We repeated each experiment for 100 times and obtained their
average as our final results.
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Fig. 3: The map of Oldenburg, Germany generated by [35].
The employed section is framed.

Comparisons. We report the results of the following meth-
ods based on the combination of different distance esti-
mation model of the G-STAC (Centroid-point or Expected-
probabilistic) and the optimization stages (one-stage G-STAC-
only or two-stage G-STAC/L-STAC combination).
• CPA1 (baseline): one-stage centroid-point based ap-

proach as a baseline,

• CPA2: two-stage centroid-point based approach to
demonstrate the benefit of the two-stage optimization
compared to the baseline one-stage optimization ap-
proach,

• EPA1: one-stage expected-distance approach to
demonstrate the benefit of probabilistic distance es-
timation over the baseline centroid approach,

• EPA2 (complete proposed solution): two-stage
expected-probabilistic approach,

• NPA (reference solution): we utilized our first stage
optimization solution with zero level of privacy as a
reference solution with no privacy constraint (NPA).
In NPA, we assume the tasking server has access to
exact locations of the participants, therefore it runs
only on the server.

TABLE II: Experimental Settings with Highlighted Default
Values

Parameter Value
Number of Participants 50, 100, 150, 200, 300, 400, 500

Number of Targets 50, 100, 150, 200, 300, 400, 500
Travel Budget 1% - 3% of Map Size
Coverage Goal 10%-100%

Cloaking Model Circular, Rectangle
Cloaking Area 0.01% - 1% of Map Area

B. Results

In this section, we report the results of each experiment for
the two datasets in terms of task cost, coverage, and penalized
cost. The scales for the task coverage and cost are different
for the two datasets due to their different map sizes and level
of sparsity.



1) Impact of Numbers of Participants and Targets: In these
experiments, we study the impact of increasing the number
of participants and targets on the task cost and coverage by:
(a) varying the number of participants while the number of
targets is fixed; and (b) varying the number of targets while
the number of participants is fixed.
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Fig. 4: Task coverage vs cost for different number of partici-
pants, and m = 200 using datasets (a) OLE (b) Gowalla

Figure 4 shows the task coverage versus cost in both
datasets for increasing number of participants with a fixed
number of targets using the default settings. Overlapping
points in some approaches such as baseline indicate that
increasing the number of participants does not affect the task
cost or coverage in some cases. In both datasets, our two-
stage approaches (CPA2 and EPA2) achieve a significantly
higher coverage compared to the one-stage approaches (CPA1
and EPA1). Thanks to the local optimization at the second
stage, they are able to get much closer to the coverage goal
while the ratio of cost and coverage stays roughly the same.
Moreover, the expected-probabilistic approaches outperform
their corresponding centroid-point methods which is more
apparent for CPA2 and EPA2. In OLE, EPA2 achieves more
coverage with the same coverage/cost ratio as CPA2, but in
Gowalla, this ratio is higher for CPA2, which means by using
EPA2, more coverage is obtained at the expense of slightly
higher cost per additional coverage due to the sparsity of the
dataset.
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Fig. 5: Penalized cost for different number of participants, and
m = 200 using datasets (a) OLE (b) Gowalla

Figure 5 shows the penalized cost in both datasets for
increasing number of participants with a fixed number of
targets using the default settings. Increasing the number of
participants results in higher task coverage which causes
lower penalized costs for all of the approaches. In both
datasets, for all combinations of the participants and targets,
the expected-probabilistic approaches outperform their corre-
sponding centroid-point approaches. However, this is more

clear in the OLE dataset due to higher task coverage being
possible. On the other hand, regardless of the distance esti-
mation methods, both two-stage methods outperform the one-
stage methods.
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Fig. 6: Task coverage vs cost for different number of targets,
and n = 200 using datasets (a) OLE (b) Gowalla

Figure 6 shows task coverage versus cost in both datasets
for increasing numbers of targets with a fixed number of
participants using the default settings. Overlapping points in
some approaches such as baseline indicate that increasing the
number of targets does not affect the task cost or coverage
in some cases. In both datasets, our two-stage approaches
(CPA2 and EPA2) achieve higher coverage compared to the
one-stage approaches (CPA1 and EPA1). Moreover, for the
same number of targets, the expected-probabilistic approaches
achieve higher coverage compared to their corresponding
centroid-point methods. All methods are robust preserving a
constant coverage/cost ratio, however, while CPA2 keeps a
ratio comparable to NPA, EPA2 achieves more coverage at
the expense of higher cost per additional coverage.
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Fig. 7: Penalized cost for different number of targets, and n =
200 using datasets (a) OLE (b) Gowalla

Figure 7 shows the penalized cost in both datasets for
increasing numbers of targets with a fixed number of partici-
pants using the default settings. In both datasets, for all com-
binations of participants and targets, the expected-probabilistic
approaches outperform their corresponding centroid-point ap-
proaches and similarly, both two-stage methods outperform the
one-stage methods. For the same experiment settings in OLE
and Gowalla, the difference between penalized cost of different
methods including NPA is smaller in Gowalla.

2) Impact of Coverage Goal: Figure 8 shows task coverage
in both datasets for increasing coverage goal with a fixed
number of participants and targets using the default settings
including 200 participants and 200 targets. In both datasets,
our two-stage approaches (CPA2 and EPA2) achieve higher
coverage compared to the one-stage approaches (CPA1 and
EPA1). Moreover, for the same coverage goal, the expected-
probabilistic approaches achieve higher coverage compared to



their corresponding centroid-point methods. Comparing the
real dataset Gowalla to synthetic OLE, all methods achieve
higher coverage in OLE which can be explained by higher
density and lower sparseness of participants.
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Fig. 8: Relative task coverage for different coverage goal
(relative), n = 200, and m = 200 using datasets (a) OLE
(b) Gowalla
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Fig. 9: Task coverage vs cost for different coverage goal
(relative), n = 200, and m = 200 using datasets (a) OLE
(b) Gowalla

Figure 9 shows task coverage versus cost for the same ex-
periment setting. In both datasets, EPA2 achieves a higher task
coverage for the same coverage goals, with a coverage/cost
ratio very similar to other methods. Overlapping points in each
approach indicate that changing the coverage goal does not
affect the task cost or coverage in some cases.
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Fig. 10: Penalized cost for different coverage goal (relative),
n = 200, and m = 200 using datasets (a) OLE (b) Gowalla

Finally, Figure 10 shows the impact of coverage goal on
penalized cost. EPA2 outperforms the other methods for all
values of coverage goal.

3) Impact of Cloaking Size: Figure 11 shows the impact
of cloaking size on task coverage for a fixed number of
participants and targets. The cloaking size is shown as a
percentage of the map area. By increasing the cloaked size, in

both datasets, EPA2 shows more robustness compared to CPA2
as well as the one-stage methods, indicating that EPA2 is not
affected by cloaking size as much as the other methods. Figure
12 shows the impact of cloaking size on cost and coverage for
the same experiment. Similarly, in both datasets, CPA1, EPA1,
and CPA2 are more affected by cloaking size. Overlapping
points in some approaches such as NPA indicate that changing
the cloaking size does not affect the task cost or coverage in
some cases. Finally, Figure 13 shows the impact of cloaking
size on penalized cost. EPA2 outperforms the other methods
for all cloaking sizes.
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Fig. 11: Task coverage for different sizes of cloaking area,
n = 200, and m = 200 using datasets (a) OLE (b) Gowalla
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Fig. 12: Task coverage vs cost for different sizes of cloaking
area, n = 200, and m = 200 using datasets (a) OLE (b)
Gowalla
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Fig. 13: Penalized cost for different sizes of cloaking area,
n = 200, and m = 200 using datasets (a) OLE (b) Gowalla

VI. CONCLUSIONS AND FUTURE WORK

In this paper we defined and formulated the problem of
spatial task assignment in crowd sensing with cloaked locations
as a novel two-stage optimization problem. We showed the
problem to be NP-hard in each stage, and proposed efficient
greedy algorithms for each stage of the optimization problem.
We studied the impact of parameter values including task



size, participant size, coverage goal and cloaking size on
our methods and showed their effectiveness and robustness.
As a next step, we plan to find approximation algorithms
with performance guarantees and evaluate our methods with
real-time data by implementing a real-world crowd sensing
application using our task assignment approach. We are also
interested in extending our approach to take into account the
trustworthiness of participants in terms of the quality of the
data contributed by them [8].
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