
Technical Report

TR-2014-006

Multi-Target Deployment for eScience Applications

by

Jaroslaw Slawinski, Vaidy Sunderam

Mathematics and Computer Science

EMORY UNIVERSITY

Multi-Target Deployment for eScience Applications
Jaroslaw Slawinski, Vaidy Sunderam

Mathematics & Computer Science Department, Emory University
Atlanta, USA; {jslawin, vss}@emory.edu

Abstract—Streamlined switching between computational re-
sources in order to select the most suitable computational
environment for application execution is a crucial component
of cloud-like computing. However, heterogeneity obstructs multi-
target deployment for complex and multi-dependency scien-
tific and engineering codes and makes this goal intractable.
In this paper, we describe a proposal for a metadeployment
toolkit, called ADAPT, based on reusable recipes that address
appropriate match-up between an application and an execution
platform. Our research aims at exploring challenges posed by
automatic deployment of applications with all their prerequisites
on heterogeneous resources. As some IaaS clouds and grids accept
customized OS images, we explore application-oriented image
assembly to improve deployment for these targets. We explain
how our approach increases “usability” of various resources and
simplifies arcane build of eScience applications.

Index Terms—heterogeneous targets, deployment automation

I. INTRODUCTION

The recent surge in on-demand computational offerings
encourages scientists to experiment with eScience apps on a
broader assortment of resources. Despite unavoidable perfor-
mance degradation in some cases, new platforms attract for
various reasons: instant resource availability (no job queues;
any number of hosts), cost (no upfront expenses), or greater
control (root privileges or direct access). However, users
cannot rely on the user support, which is customary at HPC
centers—traditional execution environments for eScience. Oc-
casionally, eScience software requires porting to enable exe-
cution on a particular resource or, reversely, the available code
of apps may be tuned to hardware-specific capabilities absent
on common platforms. Clearly, more autonomous approach
in app deployment and an improved execution model are
needed; however, these subjects in the context of eScience apps
have not attracted sufficient research attention yet and solving
dependency related issues usually imposes an unnecessary
burden on scientists who may be domain experts in, e.g.,
physics or biology but not necessarily in computer science.

This paper delivers a proposal of a deployment system that
provides an automatic, adaptive, and transparent multi-target
deployment solution. The design employs reusable deployment
recipes that capture expert knowledge related to software
conditioning. Proper chaining of these recipes formulates auto-
matic deployment scripts that probe and soft-condition a target
environment until the considered app is successfully installed.
As a result, users may execute their apps on a wider range of
resources without drudgery pertained to deployment phases.

Research supported in part by NSF Grant OCI-1124418

Our proposal not only enhances usability for computational
offerings but also has the potential to increase productivity
in HPC, by providing systematic and automatic environment
conditioning. Moreover, this approach supports know-how
sharing beyond a narrow group of specialists. We address a
broad spectrum of machine architectures, from computational
clusters, which are optimized by-design for eScience, to single
hosts, Grids, and IaaS clouds, to PaaS services. We believe,
that smooth switching between computational targets, even for
a single app run, may lay a foundation for the long-standing
goal of Computing-as-a-Utility.

II. RELATED CONCEPTS

The excessive effort related to software deployment is a
recurring motif in many projects [27]. Typical build automa-
tion software (e.g., GNU Make [7], CMake [3], Ant [1],
SCons [13], Gradle [8]) is designed to build a single, yet
possibly multiproject, software bundle, such as an individual
library or executable. Such tools target specific programming
languages, such as C/C++, Fortran, or Java, and may require
dependencies that are uncommon in typical eScience environ-
ments. Moreover, locking onto a particular build automation
tool may require porting of the existing build solution for some
dependencies of a particular app. We propose a more general
approach based on the concept of metabuild that enables de-
pendencies in their native deployment formats. Our metabuild
aims at management of existing deployment methods.

The installation of software packages with automatic de-
pendency resolution is addressed by package management
systems, such as RPM [12] or various implementations of
Ports [9], [10]. Selected software is delivered in a form of
standardized packages downloadable from repositories. The
package includes the software payload (either precompiled
or as source code) and a dependency inventory used by an
automatic dependency resolution mechanism. However, even
if eScience apps are distributed as standardized packages, their
up-to-date versions are rarely supported by maintainers and,
in practice, the software has to be built from the source code.
In addition, the build is often proprietary, which may greatly
hamper unification in a chosen build format: the software
often requests specific versions and selective compilation or
patching of its dependencies [23]. The way the package
managers automate installation prevents simple maintenance
of many versions of the same libraries (file conflicts) and, in
practice, disables selective tuning. These issues deter use of
common package systems as an exclusive solution and any
eScience app deployment toolkit must address extraordinary

app build requirements. However, we intend to use target-
specific package systems if they are available, as they simplify
dependency provisioning.

Executing an app on IaaS clouds may seem to be a simple
task as the user can entirely shape execution environments
of instantiated virtual hosts. However, only a fraction of
cloud providers allow users to run an arbitrary OS, whereas
remaining IaaS platforms impose a limited selection of OS’s.
This establishes secondary issues related to heterogeneity in
the system software and, as the result, such clouds do not
differ much from other targets. On the other hand, customized
images significantly improve software provisioning as a client
may bundle the entire software stack within the image. Projects
such as OSCAR [21] or rPath [18] deliver customized OS
images with requested software preinstalled from package
repositories. However, as these images are based on standard
distributions, they easily become overinflated in terms of
required storage and provided services, which may lead to
increased upload overhead and unnecessary service cost. In
order to mitigate this problem and improve the computational
efficiency, we propose another solution for assembling images
for IaaS. Our metabuild generates images for a single run of
an app using a minimalistic Linux distribution for a specific
IaaS platform–app pair.

EasyBuild [20] targets installation of eScience apps by
standardization of common deployment steps, such as down-
loading, configuring, or compilation. Each software compo-
nent handled by EasyBuild is represented as an extensible
Python component implementing all steps required to activate
the software. Further declarative specialization of this script
delivers deployment details for specific software versions and
configurations, such as a required compiler toolchain. Easy-
Build extensively uses Environment Modules [6] to “register”
installations and resolve dependencies. Our approach, instead
of templatizing and standardizing of deployment steps, pro-
motes capturing native commands that users routinely perform
to install any software. Such mapping is more natural for
the users as they may immediately preserve their pragmatic,
software installation-related knowledge. We do not impose any
formalism; users are free to provide their deployment steps in
the form of a snippet in their favorite script language and
tag it for the future reference and use in other metadeploy-
ment scripts.

Configuration management (CM) tools, such as Puppet [22],
Chef [2], or Sprinkle [14], are often used to provide a well-
defined set of software on multifarious targets and support
variety of OS’s, including the Windows family, in a transparent
way. Such tools are beneficial for the system admins who
can automatically and in a reproducible way deploy software
on hosts inside their administrative domains. For these rea-
sons, CM tools are frequently recommended to the users by
IaaS cloud providers who are unwilling to offer support for
customized images. The primary advantage of such projects
is that the user may define the software stack in a semi-
declarative way using predefined actions and properties. CM’s
may provide an additional features, even if it breaks the overall

portability, as bare command execution and mix command-
based operations with other built-in deployment steps. Variety
of eScience software deployment issues causes that the com-
mand execution capability must be used for eScience software,
which weakens usability of CM’s as homogeneous solutions
for many targets. Our tool elevates command execution and
standard output streams processing to key components of the
system: the metadeployment scripts are chains of independent,
task-oriented recipes driven by the error status of previously
executed commands.

III. ADAPT OVERVIEW

The primary goal of this project is to extend the usability
of hardware architectures by enabling execution of unmodified
eScience apps with the assistance of the adaptive middleware
ADAPT (ADaptive Application and Platform Translation).
Apps may be executed on different targets thanks to the
ADAPT middleware that generates situation specific, app–
target adapters [17].

ADAPT proposes a simple model of app execution: in
order to sustain an app (support its run-time), all application
requirements have to meet their corresponding resource capa-
bilities on the selected target. The requirements are recognized
as software dependencies (e.g., compatible routines stored in
dynamic libraries), binary compatibility, communication or in-
teraction capabilities, etc. The resource capabilities are all ca-
pabilities offered by the resource and interfaced by its system
software such as storage, e.g., local file system, inter-process
communication, e.g., present network fabric, or computation,
e.g., opcode sets, concurrency support. The ADAPT middle-
ware performs bidirectional coupling by applying software
environment conditionings to enhance resource capabilities
as well as modifying apps requirements to match to actual
resource capabilities—the same app may require a different
set of adapters in order to be executed on a different resource.

Note, that the app requirements remain constant whereas the
target capabilities vary from machine to machine. As a result,
one target may be ready to build the app instantly, while an-
other target must undergo multi-stage software conditioning in
order to meet the requirements. In order to provide flexibility,
the most suitable method to create an adapter is to extend the
resource capabilities by applying additional software layers;
in extreme cases, the missing resource capabilities may be
virtualized, e.g., by creating a virtual machine, providing a
dynamic binary translation or emulation or outsourced, e.g.,
providing permanent storage capability on a diskless host. By
extending capabilities rather than modifying requirements, our
approach performs the bottom-up adaptation.

In this paper, we focus on provisioning the eScience soft-
ware on various targets. The issues related to data staging
in/out, launching, and monitoring are beyond the scope of
this consideration. We believe that deployment should be fully
automatic; thanks to that, the user experiences no operational
difference between various targets which greatly homogenizes
use of different offerings. Further, this promotes experimen-
tations with eScience apps on targets differing from well-

supported, typical execution platforms. To implement this
vision, ADAPT applies software components on resources in
a layer-by-layer fashion until the requested level of special-
ization is achieved.

IV. METABUILD DESCRIPTION

In this paper, we propose a design of a toolkit to enable
deployment of apps from the eScience class onto a wider range
of computational resources. The eScience soft-conditioning
is particularly difficult as that apps are usually distributed
in the form of source codes, require multifarious, nontrivial,
and numerous dependencies as well as utilize parallel and
distributed programming paradigms. Moreover, as they solve
cutting-edge problems, they often require performance tuning
to efficiently utilize the underlying hardware infrastructure.
Our proposition enhances usability of these apps beyond
on-premises or supercomputer center machines and aims at
offering the software on any (parallel) architectures accessible
for the user, including department clusters, grids, or IaaS
clouds. We aim to embrace the heterogeneity resulting from
using a variety of targets by building eScience apps from
sources. As a result, our solution may extricate users from
the burden related to an unproductive software deployment
phase and promote switching between targets and vendors
for availability or financial reasons, even for a single run of
an app. Moreover, this may help popularize eScience apps
beyond a close community as well as may increase the overall
deployment productivity in traditional eScience environments.

a) Metadeployment Scripts: The ADAPT idea is to use
generic metadeployment scripts that adapt their execution to
a particular deployment scenario defined as the specific app–
target pair; this concept is presented in Figure 1. A metade-
ployment script calls matching deployment recipes retrieved
from a recipe repository and defines the correct order of
dependency provisionings. The script has no explicit software
dependencies—it depends only on a shell and may bootstrap
its dependencies if needed. The users execute such a generic
script for a given target in order to deploy their software:
the script examines requirements and supplies them applying
recipes. In a case of errors during recipe application, the
script tries to fix the issue and reexecute the last command or
rollbacks the invalid recipe and attempts to run an alternative
recipe. On success, the deployment steps may be saved and
reused for another deployment on similar targets.

As we mentioned in Section II, typically, eScience app
distribution packages already include build systems based
on popular toolkits, such as GNU make, CMake, or shell
scripts. The build systems usually specify—more or less
explicitly—requirements, that is, prerequisites such as soft-
ware dependencies or required environment variables. In the
context of ADAPT, the build systems enhance the target with
software capabilities such as libraries, headers, or executables
by building and installing particular software. Another vital
but often hidden information is metadata related to actual
system tools used to build the software, versions of such the
tools, compilation flags, etc. As complex scientific software

typically requires several dependencies, which may have their
requirements, all deployment steps must be carefully chained
and the compatible system tools must be used throughout the
entire deployment process.

We emphasize that since apps already come with own
deployment methods, we do not aim at providing yet another
build system; instead, in order to automate the deployment
we propose to: (1) abstract different deployment methods, (2)
provide straightforward chaining of currently separated and
often manually executed steps, (3) keep track of metadata to
enforce compatibility between software components, and (4)
monitor deployment to detect errors and fix them. This will
help make deployment knowledge reusable, sharable, and self-
documenting, and increase productivity in eScience.

b) Target Environments: eScience apps are typically de-
signed for classical computational resources, viz. workstations,
clusters, and grids. For those systems, an access privilege level
shapes possible interactions between users and a deployment
environment. As a rule, users have limited access to computers
and perform software conditioning in the user space, with
consequences resulting from those limitations, or have to ask
the site admins for support. As our method needs to be
transparent and universal, we shun any external support and
focus on provisioning in the user space; however, this does
not exclude work in the elevated privilege modes if possible.

The infrastructure clouds can be easily specialized with
the use of successive conditioning [26] that yields chunks
of classical resources on-demand so software provisioning
may be easily performed on them in a traditional manner.
However, as several IaaS cloud and grid providers allow the
users providing their operating system images, what gives
superior flexibility even in comparison to privileged access, we
put forward a more specialized approach. Instead of applying
software conditioning on virtual resources running a standard
OS, we will generate an OS image that (1) is tailored both for
the app and the underlying virtualized platform and (2) can be
formed for single execution of a given app. As such the design
may ignore objectives other than the app execution, i.e., we can
reduce the system software to bare, essential functionalities
that are necessary yet sufficient to sustain the execution.
This significantly reduces both the size of the image and the
operating system noise [19]. Thanks to this reduction, we
intend to improve execution performance, decrease the image
upload and boot time, thus lowering the resource utilization
costs. Thus, execution of a program would be as simple as
sending an image file to the target and staging out the results.

c) Operational Scenarios: To deploy an app, users run
its metadeployment script on a selected target and the script
conditions the execution environment using an appropriate
set of recipes, as it is depicted in Figure 2. In the more
general scenario, users may specify a target different from
the current one which initiates “cross-deployment”; thanks
to that, ADAPT may address soft-provisioning of compute
nodes in computer clusters that do not share the situation-
specific OS images for resources that accept custom images.
As the latter topic is more interesting from our research

LibBLibA

Metadeployment
script
#/bin/bash
adapt deploy LibA
adapt deploy LibB
A=(`adapt get LibA`)
B=(`adapt get LibB`)
cd mySaESoft
make LDFLG="-L$A/lib
 -L$B/lib"
 CFLAGS="${B[opt]}"

ErrFix

LibA1

LibA2

LibA3

LibA4

ErrFix1

ErrFix2

ErrFix2

LibB1

LibB2

LibB3

LibB4

LibA2

LibB1

ErrFix1

LibA1

time

Recipe repository (remote) An execution environment on a target

Failed recipeFailed recipe
Successful recipe

LibA5

ErrFix2

LibA

LibB

fix?

redeploy

fix?

rollback

yes

no

LibB1

Fetching recipes

ErrFix

Fig. 1. A generic metadeployment script fetches and applies recipes. It may recover if deployment errors happen. The power of ADAPT is alternative recipes.

Recipe
repository

Meta
deploy
script Virtualized resource

S
0101
0110
1100

0101
0110
1100

0101
0110
1100

TCL
vmlin

uz

ISO

S

User laptop
Inst-
ance

Workstation

Cluster: head node
and working nodes

user

Execute
Deploy

Create&run
Query&fetch

Fig. 2. Users create and execute metadeployment scripts that install software.
App-oriented images are generated for targets accepting customized images.

standpoint, we plan to study this option more carefully. So
far, we have experimented with Tiny Core Linux [4] that
can be remastered to meet specifics of a virtualized platform
and tuned to support performance (e.g., swapping disabled).
To avoid superfluous library payload, we intend to build
an app statically. Consequently, this may limit the binary
requirements to syscalls, thus benefiting performance. Finally,
proper configuration of the image may cause that the app will
start when the instance boots (init) and the instance may
be terminated on the app’s conclusion. In addition, the user
can request extra services, such as sshd, to supplement the
execution with monitoring or control.

V. METADEPLOYMENT DESIGN

The goal of ADAPT deployment is to keep metadeployment
scripts generic so a single deployment script may serve to
a broad assortment of different platforms and their hetero-
geneous configurations. Our solution for that is to (1) offer
target-agnostic deployment commands for metascripts and
(2) provide alternative implementations of particular software
deployments (recipes) that may differ for specific targets
and situation-specific configurations. As a result of such
the general for users and specific for targets approach, we
need a proper (3) identification, classification, and searching
mechanisms to couple the metascript deployment calls with

valid recipes. This is equally important to make this solu-
tion automatic and autonomous to promote the computational
resource usability—for this reason, we also propose (4) an
automatic solver for problems that might arise during de-
ployment processes. The later element allows also relaxing
the design requirements: instead of providing highly detailed
target- and recipe-related descriptions for error-avoiding recipe
coupling mechanisms we propose an error-aware approach that
monitors deployment steps and fixes issues as they occur. The
following paragraphs describe our approach to address the
aforementioned issues in greater detail.

d) Metadeployment Script: eScience software deploy-
ment is complex and requires trained specialists to (1) rec-
ognize and provide software prerequisites and (2) conduct
the actual build steps followed by the software component
activation. However, all human–build environment interactions
may be captured and stored as scripts. Based on these observa-
tions, we propose a twofold design. The first, target-agnostic
header secures all direct software requirements, i.e., deter-
mines locations of already installed prerequisites or deploys,
using ADAPT, new software components; subdependencies are
deployed recursively by ADAPT. The second, terminal part is
app-oriented with the actual installation steps performed; here,
the provided or recommended build technique is used (e.g.,
./configure; make). To parameterize this build, creators
of metascripts can query ADAPT for capabilities of deployed
software dependencies such as locations of installed libraries
or toolkits used to compile the dependency. An example of a
metadeployment script is shown in Listing 1.

Listing 1. A metadeployment script for LifeV simulations [25]
#!/bin/bash
#HEADER: locate or install lifev
adapt deploy lifev
#TERMINAL PART: use actual build steps
1. query direct and indirect capabilities
lib=$(adapt get lifev.lib)
blas=$(adapt get lifev.blas.lib) ...
access also metainfo of capabilities
export CC=$(adapt get lifev.meta.cc.path)
2. download requested software
curl lifev.com/aorta.tar.gz | tar xz; cd aorta
3. native build steps: A. create Makefile.in
sed "s/ˆ\(LIFELIBPATH\).*/\1=‘$lib/;
s/ˆ\(BLASLIBPATH\).*/\1=$blas/; ..."
< Makefile.in.sample > Makefile.in

B. build; fix errors if they happen
adapt monitor make

e) Recipe Design: We design the ADAPT recipes to
implement abstract dependencies provisioning for metade-
ployment scripts. As such a task is internally recursive, we
use the idea of generic metadeployment scripts for soft-
conditioning of subdependencies. From a more abstract point
of view, the recipes support the software component life-cycle;
they (1) specify requirements, offered capabilities, and other
deployment conditions such as target compatibility, (2) probe
execution environments for the software to avoid excessive
installation, (3) stage in the software package, (4) activate the
software, e.g., by using the native build or loading appropriate
environment modules, (5) verify correctness of the deployed
software, and (6) rollback the deployed resources. As a single
software component may be deployed in several ways and
these methods may vary from platform to platform, each app
deployment scenario may be represented by many recipes
that implement these specific situations; similarly, different
versions of the same software should be represented by differ-
ent recipes, e.g., the download URI and deployment package
change. On the contrary, ADAPT deployment procedures used
within metadeployment scripts must abstract those implemen-
tation details and remain generic. To conciliate those opposing
objectives, we propose the object-oriented (OO) recipe design
as this is outlined in Figure 3. We introduce DInterfaces
for abstract descriptions of capabilities and requirements of
software components. A metadeployment script may query
for those abstract definitions when it needs to provide required
software and ADAPT methods select the most suitable recipes
to execute for a given target. To promote semantic expressive-
ness and reusing of recipes, we permit typical OO techniques,
such as inheritance or composition, to express relations among
both interfaces and recipes. Thanks to that, adding a new
version of an app requires a differential update; also one recipe
may use the content of other recipes.

f) Recipe Repository: This is designed to store, search
for, and maintain the recipe scripts. We envision that each
recipe has attached metadata that describes and classifies
it. We intend to use tags and triple tags as the mechanism
to classify the recipes. Tags may characterize software
provided by a particular recipe, identifying its version,
dependencies, or compatible targets, such as Atlas, MPI,
or version=11.0. Another group of tags associated with
the recipes may describe compatibility of their script with
targets, such as CentOS, version>6.0, x86-64, ksh,
or Nvidia-Tesla. Also, more structured classification
mechanisms such as RDF taxonomies [11] may be provided.
When the deploy command (cf. Listing 1) fetches recipes,
it may query the repository as in the following examples:
(1) adapt deploy blas goto for the tag-based search,
(2) adapt deploy sparql:"select ?id where{
?id a LAPACK; compatible ?soft}" [16] for the
RDF-based search. The target related tags are provided
implicitly by the adapt command; however, the user can

B.hlibB

A.h A.out a.cfglibA

DInterface A
definition

DInterface B

Recipe
implementations

Delivered capabilities

DInterface

extends

install()
rollback()

implements

Recipe A1
dwnl=urlA
ver=1.0
script=...
target=x86

Recipe A2
mod=libA2.0
ver=2.0
target=puma

C.h

A'.hlibA' A'.h

DInterface A'
definition

DInterface C

Recipe A1
dwnl=url2
Ver=2.0

AbstRecipe
mod virtual
script=load mod

Recipe A'1
dwnl=urlA'
script="
 A1
 add A'"

Deployment
interfacestest()

probe()
...

Needed
requirements

Fig. 3. The OO recipe design. The recipes are grouped by abstract interfaces
that define capabilities and requirements of software components.

specify another set of target tags to control crossdeployment.
g) Related Issues: A single deployment step may be

multistage and may need several deployment attempts before
the required software is installed. To isolate different software
conditioning tries, it may be required to provide a rollback
mechanism for the resources partially staged by a failed recipe.
It may require journaling of disc operations, similar to what we
studied in [24], to help revert to the state existing before last
changes. Also, we can use chroot/sandboxing techniques to
jail the command execution for an attempt of a deployment
step and “commit” the software installation on success. Sand-
boxing should be also considered for security reasons—as the
recipes are intended to created by a community they may con-
tain malicious snippets or unintentional errors compromising
the system stability. Additional verification mechanisms for
the recipe content may be considered.

VI. TESTS

The first apps that we would like to equip with the ADAPT
deployment are LifeV-based hemodynamic simulations (blood
flow simulations). LifeV is a Computational Fluid Dynam-
ics (CFD) Partial Differential Equation-based (PDE) library
developed by our collaborators at Emory University; the
details about the LifeV software and their scientific library
dependencies are given in [25]. We believe that our approach
will deliver an easy deployment method in a form of portable
scripts for a variety of targets and enable dissemination of our
simulation software beyond our local scientific community.

After prototyping, the research will continue on comparing
different deployment approaches for our hemodynamic simu-
lations using different frameworks, including Chef, Sprinkle,
DoIt [5], and EasyBuild. We are interested in answering the
following research questions: how the eScience app’s atypi-
cal requirements may be expressed in different frameworks,

how flexible is the solution as well as what are user effort
and reusability/portability of once written solutions. After
collecting the experience, we plan to implement the toolkit
and deliver the multi-target deployment mechanism for our
in-house hemodynamic simulations. In our vision, the users
interested in running their simulations with assistance of our
software write or download from our repository ADAPT
deployment metabuild scripts for their targets. Consequently,
this requires to provide several ADAPT recipes for nontrivial
LifeV dependencies. Our aim is to provide an equally easy
build no matter what target was selected by the user: a local
machine, on-premises cluster, or IaaS cloud. Also, we will
challenge our approach with VisIt[15]. This test is interesting
as the monolithic VisIt build script—a shell-based build—
provides an autonomic deployment mechanism. We believe
that our approach will provide an equivalent deployment with
just several generic ADAPT commands and relevant recipes.

The experimental development of ADAPT is available at
http://code.google.com/p/dadapt.

VII. SUMMARY

Our proposal aims at providing ways for automatic software
conditioning with the use of generic, app requirement-aware
metadeployment scripts. App deployment remains challenging,
especially if software needs to be constructed from source
codes. This becomes often an extremely difficult task in the
context of eScience that uses hybrid programming models, ex-
ploits various parallel processing mechanisms, and depends on
multitude and precisely specified dependencies. Multiplying
these issues by the number of heterogeneous targets makes
this problem intractable. This is not rare when users are
locked to a particular target because deployment of an app
is so challenging that they cannot switch other machines;
consequently, they are vulnerable to disadvantages such as
low resource availability or excessive levies. These issues
significantly hinders experiments with other offerings and
emerging technologies as well as obstructs progress in science.

To overcome this, we sketch a design of a pragmatic, multi-
target deployment system that integrates currently separate
deployment phases for an app and its dependencies. We aim to
capture diverse users’ activities leading to an installation of a
software component on a given platform and, next, to process
and reuse such deployment knowledge in other deployment
contexts. With respect to the computational targets, we intend
to deliver a deployment toolkit for a spectrum of machines,
from typical eScience machines to a single workstation and
virtualized platforms. For the latter class of targets, instead
of deploying the software on running instances, we intend
to generate an OS image tuned for a specific scientific app–
virtualized target pair. This eliminates extra deployment steps
required after obtaining a generic instance from the vendors’
multitenant machines or removes necessity of having a set
of preconditioned OS images prepared for a particular app–
machine pair. Situation-specific images also decrease a number
of logical steps required to start an app to just (1) upload the
image, then (2) download the results.

The grand research outcome is to support the Computing-
as-a-Utility—the vision where users may select any compu-
tational resource in order to execute their apps. The Cloud
Computing is the “hardware” part of this idea. The “software”
part may be realized by providing tools that automatically and
transparently mediates between apps and targets, even for a
single run of an app. From a more abstract point of view,
such automatic and autonomous deployment causes that the
users are unable to functionally distinguish different execution
environments and may treat other targets as a natural extension
of their local computer. Consequently, this may fund a viable
model of using Cloud Computing as extendable co-execution
environments.

REFERENCES

[1] The Apache Ant Project. http://ant.apache.org, 2013.
[2] The Chef Project. http://www.opscode.com/chef, 2013.
[3] The CMake Project. http://www.cmake.org, 2013.
[4] The Core Project. http://tinycorelinux.net, 2013.
[5] The DoIt Automation Tool Project. http://pydoit.org/, 2013.
[6] The Environment Modules Project. http://modules.sourceforge.net,

2013.
[7] The GNU Make Project. http://www.gnu.org/software/make, 2013.
[8] The Gradle Project. http://www.gradle.org, 2013.
[9] The OpenBSD Port Project. http://openbsd.org/porting.html, 2013.

[10] The pkgsrc Project. http://www.pkgsrc.org, 2013.
[11] The Resource Description Framework Project. http://www.w3.org/RDF,

2013.
[12] The RPM Package Manager Project. http://rpm.org, 2013.
[13] The SCons Project. http://www.scons.org, 2013.
[14] The Sprinkle Project. https://github.com/sprinkle-tool/sprinkle, 2013.
[15] The VisIt Project. https://wci.llnl.gov/codes/visit, 2013.
[16] W3C Recommendation: SPARQL Query Language for RDF.

http://www.w3.org/TR/rdf-sparql-query, 2013.
[17] J. Bourgeois, V. Sunderam, J. Slawinski, et al. Extending executability of

applications on varied target platforms. In High Performance Computing
and Communications (HPCC), 13th Int. Conference on. IEEE, 2011.

[18] J. Craig. Cloud Coalition: rPath, newScale, and Eucalyptus Systems
Partner on Self-Service Public and Private Cloud. Enterprise Manage-
ment Associates, 2010.

[19] K. B. Ferreira, P. Bridges, and R. Brightwell. Characterizing Application
Sensitivity to OS Interference Using Kernel-Level Noise Injection. In
Proceedings of the 2008 ACM/IEEE conference on Supercomputing, SC
’08, pages 19:1–19:12, Piscataway, NJ, USA, 2008. IEEE Press.

[20] K. Hoste, J. Timmerman, A. Georges, and S. D. Weirdt. Easybuild:
Building software with ease. High Performance Computing, Networking
Storage and Analysis, SC Companion:, pages 572–582, 2012.

[21] C. B. Leangsuksun, L. Shen, T. Liu, and S. L. Scott. Achieving High
Availability and Performance Computing with an HA-OSCAR Cluster.
Future Generation Computer Systems, 21(4), 2005.

[22] J. Loope. Managing Infrastructure with Puppet. O’Reilly Media, Inc.,
2011.

[23] M. Slawinska, J. Slawinski, and V. Sunderam. Portable Builds of HPC
Applications on Diverse Target Platforms. In Parallel & Distributed
Processing (IPDPS). International Symposium on. IEEE, 2009.

[24] M. Slawinska, J. Slawinski, and V. Sunderam. A Practical, SCVM-based
Approach to Enhance Portability and Adaptability of HPC Application
Build Systems. In Int. MultiConf. of Eng. and Comput. Scientists, 2012.

[25] J. Slawinski, T. Passerini, U. Villa, A. Veneziani, and V. Sunderam.
Experiences with Target-Platform Heterogeneity in Clouds, Grids, and
On-Premises Resources. In 26th Int. Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW). IEEE, 2012.

[26] J. Slawinski, M. Slawinska, and V. Sunderam. The Unibus Approach to
Provisioning Software Applications on Diverse Computing Resources.
In 2009 Int. Conf. On High Performance Comp., 3rd Int. Workshop on
Utility and Grid Comp., 2009.

[27] G. Wilson, D. Aruliah, C. Brown, N. Hong, M. Davis, R. Guy, et al.
Best Practices for Scientific Computing. arXiv:1210.0530, 2012.

