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Abstract—Traditional workload labels such as
“archival” and “HPC” are poorly understood and
inconsistently applied. As usage of systems has evolved,
the language to describe this usage has stagnated. To
better understand how workload type translates into
system design requirements, we use a combination of
longitudinal analysis and statistical feature extraction to
categorize workload traces and study how the properties
of classical workload types, such as the “write-once,
read-maybe” assumption for archives, have evolved over
time.

Once this step is complete, we intend to move to
active classification of workloads to replace these broad,
poorly specified categories with quantitative metrics that
can be used to improve metrics such as power, availabil-
ity, and performance by mathematically relating storage
algorithms with workload properties.

I. INTRODUCTION

Storage systems research is the study of trade-offs
between security, reliability, availability, and perfor-
mance. Many systems and algorithms in storage are de-
signed with particular workload properties in mind that
guide this tradeoff; exploiting properties that workload
types are assumed to have while relaxing restrictions
on features, such as strong metadata consistency, that
particular workloads are assumed to not need due to
their patterns of access. Currently, workloads are labeled
with monikers such as “archival” or “enterprise” with
only the loosest guidelines of what these terms translate
to in terms of expectations and requirements. While
systems have evolved and become increasingly multi-
tenant and multi-application, our methods of catego-
rization and labeling have been neglected. As a result,
researchers are designing systems optimized for non-
existent archetypes of workloads, making the translation
of research between labs or from academia into industry
even more difficult.

Consider, as an analogy, labels on beer. There are
broad labels like “lager” and “stout”, but within these
is huge variation that relies on the ingredients and
methods of production. For example, one stout may
have chocolate, while another does not. They taste very
different, but are both labeled as “stout”. Similarly,
in storage, the top level labels are useful for quick
categorization, but more precision is needed to make
good decisions. As a more concrete example, consider

archival storage systems. Many academic “archival”
storage systems assume that data is “write once, read-
maybe/never” [17], [15], [21], but that assumption
breaks down in long-tail workloads such as accesses to
Facebook’s image store [10] or government databases
with frequent data migration [3]. This ambiguity makes
it difficult to determine how a system will perform given
a particular workload, e. g., many archival systems rely
on stereotypical properties. This issue is exacerbated by
the shift towards shared storage systems, where many
workload types may be interleaved, making any general
categorization difficult, if not impossible.

Early results support our assertions that workloads
with the same high-level classification can have different
properties. We examine workload statistics across pu-
tative archival, enterprise, user, and high performance
workloads, and demonstrate that the feature space is
large, and even within like dimensions there is high
variance even within features incident across workloads
of the same type. These issues highlight the vital need
for a quantitative taxonomy of storage workloads. That
is, methods of numerically analyzing and qualifying
workload labels and characteristics that are consistent
and comparable. Until this is done, we are incapable of
designing, or even validating, workload aware storage
systems. In our work, we tackle two areas. First, we
look at existing workload studies to show that our cur-
rently labeling and analysis approaches are inadequate
for truly useful labels. Second, we propose a set of
quantitative analyses techniques to both identify relevant
features of workloads, and ultimately to characterize
the interleaved workload components of a modern-scale
multi-user, multi-application storage system.

II. BACKGROUND AND RELATED WORK

Even from a qualitative standpoint, workload la-
bels are, at best, vague. Consider the term “archival”.
Venti considered archiving to be more akin to long-
running backups/versioning [15]. Adams et al. con-
sidered archives to be long-term historical and sci-
entific data [3], while the authors of the Pergamum
system considered archival data to have the “write-
once, read-maybe” semantics typified by financial com-
pliance data [17]. Similarly, Chen et al. showed that
there is wide feature disparity in the space of user
traces [4]. “HPC” workloads have transitioned from



Fig. 1. Qualitative illustration of how traces gathered at different
layers give us different insights into the system.

only performance constraints to both performance and
power constraints [9]. Finally, Wildani et al. showed
that workloads in a multi-use system may be inter-
leaved [20].

Adding further complication to this issue is how
the capture level of the trace influences the analysis.
Traces from lower levels of the system stack often have
a great amount of detail, but can be unwieldy and
lack context, that is the semantic details behind what
is driving a particular operation. Traces from higher
in the stack (e. g., application logs), are often rich
in this context. They can give deep insight into the
desired result from a user perspective, but lack details
into how the lower level system is actually handling the
request and propagating it through the system. Figure II
illustrates. While it is important to understand systems
from different perspectives, this makes it very hard, if
not impossible, to compare and validate two systems
that may be identical in workload, but captured data at
different layers. Thus, the method and layer of capture
is a critical aspect of any taxonomy and quantification.

This issue has been noted by others as well. Chen et
al. pointed out that the mechanism for trace collection
has an outsize impact on the eventual classification of
the trace [4]. To take an extreme example, a database
workload that is traced after all of the sequential ac-
cesses have been removed is essentially noise, whereas
the same workload traced at a lower level of the storage
stack shows a recognizable access pattern [6]. As such,
the encoding of workload statistics must be level-aware;
traces should only be compared against traces taken
at similar levels unless a quantitative mapping exists
between classes at different points in the storage stack.

While feature classification is a significant problem
for localized storage, the same classification issues
that plague even those simpler use-cases become com-
pounded in shared cloud systems. In the cloud, and
even in some single-use systems, many workload types
may be interleaved, making any general categoriza-
tion difficult with the currently available qualitative or

single-descriptor vocabulary in systems for describing
workloads. If workloads are described solely quantita-
tively, however, the problem of separating workloads
becomes analogous to separating any set of signals that
share a noisy channel, and thus becomes amenable to
blind source separation techniques such as independent
component analysis (ICA). The rigorous classification
is necessary because, once the inputs are separated,
retracing to understand what the workload was doing
is nearly impossible, whereas classifying the workload
based on its feature profile is a straightforward side
effect of ICA.

Another feature of quantitative workload analysis
is adaptability. Once we transition to a more granular,
unified model of workload characterization, we will be
able to better detect changes in the usage patterns of
workloads as they inevitably shift over time. Cherkasova
and Gupta [5] characterize the evolution of two enter-
prise workloads, and even with such a small sample
set see significant variation over time in the number of
unique clients and popularity of new files. If we replace
a single workload label with a set of features, we can
track shifts in features individually over time and adapt
the system to best fit the workload.

Chen et al. [4] performed a feature-based analysis
of enterprise storage traces to examine storage traces
at multiple layers in the storage stack as well as to
perform feature-based trace analysis. They claim that
feature selection requires domain knowledge, which we
disagree with based on the work of [14], which showed
that features derived from one workload were general-
izable to new systems that lacked domain-specific data.
While they support a multi-variate analysis of work-
load features, the k-means analysis they perform makes
several assumptions about the distribution of workload
features that do not generalize to other datasets. This is
a fundamental limitation of the k-means clustering algo-
rithm [1]; we discuss alternative unsupervised learning
methods in Section II-A.

A. Methodologies

We propose two methods that together will allow
us to create a quantitative taxonomy of workloads.
First, we are conducting a longitudinal meta-analysis of
published workloads to categorize what features persist
between workload types and track the evolution of
statistics such as read/write ratios or user activity. We
use historical data and citations to learn what features
are most relevant when discussing traces, and are com-
paring traces from a variety of systems along these
axes to formulate quantitative definitions and understand
the feature variance for what are considered “archival,”
“enterprise,” or “high performance” workloads.

Second, within and across the various types of
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Fig. 2. Histogram of popular features collected from 29 workloads

TABLE I. COMMON WORKLOAD FEATURES

Type Year Avg.File #Reads #Writes

Size (MB) per day per day

User [7] 1981 .012 – –

User [16] 1991 – 207000 57000

User [7] 1993 .022 – –

User [7] 1997 .027 – –

User [16] 2000 – 303000 71000

User [8] 2001 – 350000 438000

User [8] 2001 – 19290000 5930000

User [7] 2005 .327 – –

User [12] 2007 – 14847 144447

User [7] 2008 .531 – –

User [7] 2008 .37 – –

User [11] 2010 – 34593.52 814773.19

Enterprise [16] 2000 – 1270000 231000

Enterprise [16] 2000 – 2320000 150000

Enterprise [7] 2008 19.3 – –

HPC [18] 2003 3 – –

HPC [3] 2007 1 – –

HPC [7] 2008 10.3 – –

HPC [7] 2008 15.6 – –

HPC [7] 2008 9.6 – –

Archive [7] 2008 29.0 – –

Archive [7] 2008 21.7 – –

Archive [7] 2008 10.4 – –

Archive [7] 2008 5.2 – –

Archive 2010 – 1326137 595661

workloads, we explore the possibilities for common
metrics and terminology. While current qualitative la-
bels are convenient for discussion, we extend these
types through statistical analysis and machine learning,
particularly using blind source separation and feature
selection techniques to classify and separate workload
streams. A multi-user, multi-application workload is
similar to a noisy party: there are many different “con-
versations” happening in the room, and we would like
to separate the speakers out by features such as age,
gender, or volume. Independent components analysis
isolates individual non-Gaussian signals within a shared
data pipeline by selecting a set of candidate signals
and then minimizing the mutual information across said
signals.

In addition to a machine-learning based feature
selection, we can use domain information to better
understand what features are most critical for workload
classification. Figure 2 is an incidence histogram of the

(a) “Archival” traces from the same year have a wide variation
in average file size.
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(b) “User space” traces vary widely in read/write ratio over time
(jitter added to y-axis)

Fig. 3. Trace features vary both over time and across types.

most prevalent features from 29 traces that we gathered
details of from previous workload studies. Table I lists
relevant details of these workloads. Based on the feature
distribution, we can conclude that reported features that
are easy to collect, such as year and origin, are likely
to be prominent, followed by basic statistics such as
daily reads and writes. However, of the trace analyses
we studied, the vast majority of features reported were
only reported for one trace in our sample, indicating
that there is a need for a common, continuous language
for describing workload statistics.

Another technique for feature identification to pur-
sue would be to track what features of a published
trace followup studies rely on when citing the work.
The concept is similar to web ranking [13], where
repeated references to a particular concept indicate that
that concept is a good “keyword” or descriptor for a
document, which in this case is a proxy for the workload
the document describes.

III. ANALYSIS

Figures 3(a) and 3(b) show the discrepancy be-
tween the descriptors used for storage workloads and
the characteristics of the workloads themselves. The
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meaning of terms changes both over time and across
different instantiations. For example, several “archival”
datasets collected in the same year (Figure 3(a)) show
vastly different average file sizes. Similarly, designing
a workload in user space that relies on the balanced
read/write ratio of older workloads is a mistake in
modern systems (Figure 3(b)), but the terminology
describing the workload remains unchanged.

There are a number of reasons why it is difficult to
compare and categorize workloads based on aggregate
statistics. Captured workload data are often based on
the requirements of the local administrator, and thus
it is highly variable between studies and the presence
of particular features is not necessarily correlated with
feature importance.

While it is unsurprising that the definitions of
trace types has changed over time, the variation in
“archival” or “user” workload characteristics between
traces collected in the same year is a strong indication
of the need to create a more portable and permanent
descriptive language to classify workloads. Additionally,
the diversity of features reported in the trace studies that
we examined indicates that trace classification will be
both high dimensional and sparse.

IV. CONCLUSION

In this work, we have argued that the trace charac-
terization currently used by the storage community is
flawed and lacking in rigor. Workloads with the same
classification vary widely, and there is no consensus on
what features are important to report when categorizing
workloads. Additionally, workload characteristics differ
based on where the tracing is instrumented.

Having a rigorous, extensible, easily communicable
workload characterization will provide several benefits
to the systems community. The characterization will
provide a metric for communicating precise require-
ments, helping designers architect systems that are
well adapted for the expected workload. Additionally,
dynamic categorization of workloads will allow storage
providers to develop better SLAs that tie performance
expectations to storage characteristics. Finally, we pro-
pose that a quantitative characterization is the first
step towards more realistic workload simulation and
modeling. Currently, we are working to automate feature
extraction from static and dynamic workload traces. To
date, we have shown that static workload traces can be
clustered usefully by features [19], and have evidence
that these features are identifiable with component anal-
ysis. This is critical because organizations are much
more comfortable sharing static snapshots than they are
full traces, and the more data we can integrate into our
analysis the stronger it will be.
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