

ORF 307 Network Flows: Algorithms

Robert J. Vanderbei

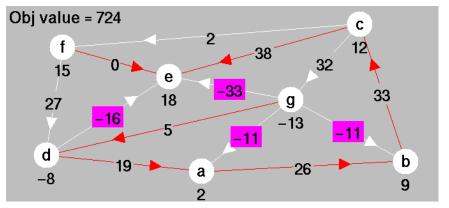
April 5, 2009

Agenda

- Primal Network Simplex Method
- Dual Network Simplex Method
- Two-Phase Network Simplex Method
- One-Phase Primal-Dual Network Simplex Method
- Planar Graphs
- Integrality Theorem

Primal Network Simplex Method

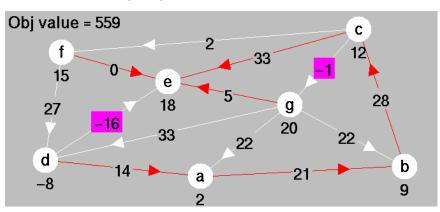
Used when all primal flows are nonnegative (i.e., primal feasible).



Pivot Rules:

Entering arc: Pick a nontree arc having a negative (i.e. infeasible) dual slack.

Entering arc: (g,e) Leaving arc: (g,d)

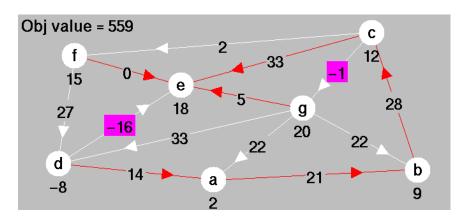


Leaving arc: Add entering arc to make a cycle.

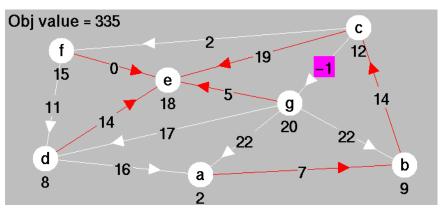
Leaving arc is an arc on the cycle,

pointing in the *opposite* direction to the entering arc, and of all such arcs, it is the one with the *smallest* primal flow.

Primal Method—Second Pivot



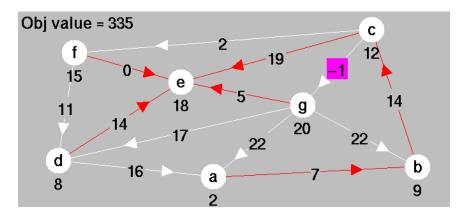
Entering arc: (d,e) Leaving arc: (d,a)



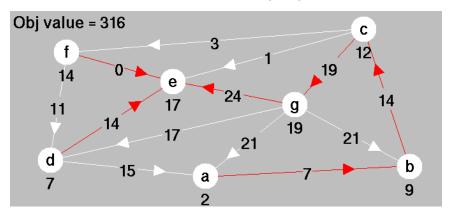
Explanation of leaving arc rule:

- Increase flow on (d,e).
- Each unit increase produces a unit *increase* on arcs pointing in the *same* direction.
- Each unit increase produces a unit decrease on arcs pointing in the opposite direction.
- The first to reach zero will be the one pointing in the opposite direction and having the smallest flow among all such arcs.

Primal Method—Third Pivot



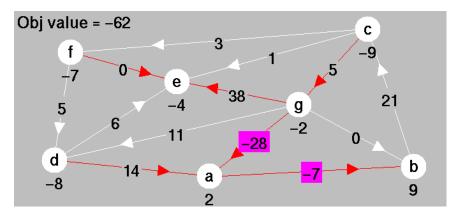
Entering arc: (c,g) Leaving arc: (c,e)



Optimal!

Dual Network Simplex Method

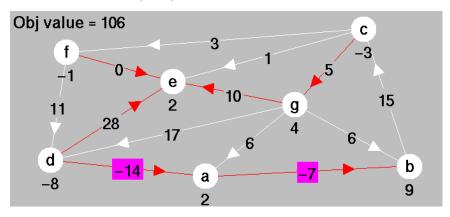
Used when all dual slacks are nonnegative (i.e., dual feasible).



Pivot Rules:

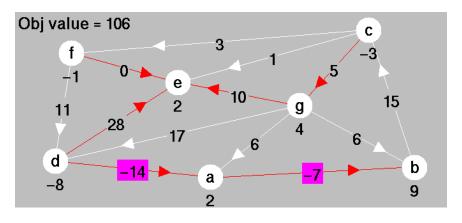
Leaving arc: Pick a tree arc having a negative (i.e. infeasible) primal flow.

Leaving arc: (g,a) Entering arc: (d,e)

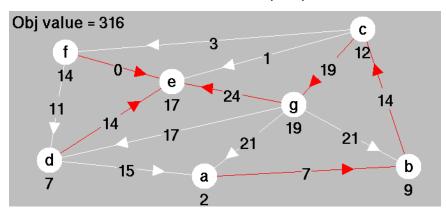


Entering arc: Remove leaving arc to split the spanning tree into two subtrees. Entering arc is an arc reconnecting the spanning tree with an arc in the *oppo*site direction, and, of all such arcs, is the one with the *smallest* dual slack.

Dual Network Simplex Method—Second Pivot



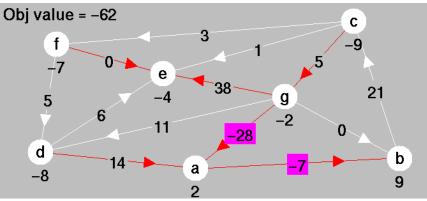
Leaving arc: (d,a) Entering arc: (b,c)



Optimal!

Explanation of Entering Arc Rule

Recall initial tree solution:

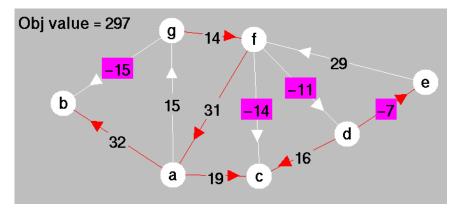


Leaving arc: (g,a) Entering arc: (d,e)

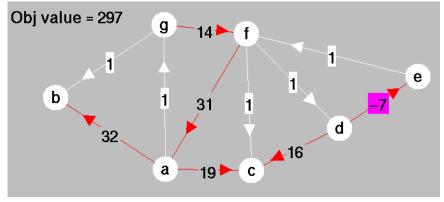
- Remove leaving arc. Need to find a reconnecting arc.
- Consider some reconnecting arc. Add flow to it.
- If it reconnects in the same direction as leaving arc, such as (f,d), then flow on leaving arc decreases.
- Therefore, leaving arc's flow can't be *raised* to zero.
- Therefore, leaving arc can't leave.
 No good.
- Consider a potential arc reconnecting in the opposite direction, say (b,c).
 - Its dual slack will drop to zero.
 - All other reconnecting arcs pointing in the same direction will drop by the same amount.
 - To maintain nonnegativity of all the others, must pick the one that drops the least.

Two-Phase Network Simplex Method

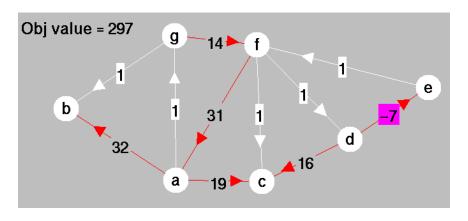
Example.



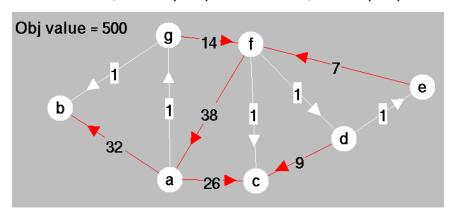
- Turn off display of dual slacks.
- Turn on display of artificial dual slacks.



Two-Phase Method-First Pivot

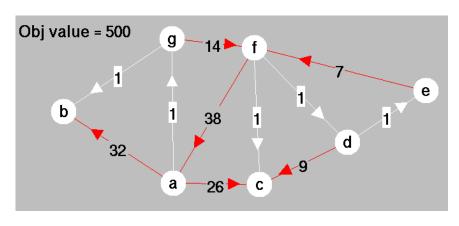


Use dual network simplex method. Leaving arc: (d,e) Entering arc: (e,f)

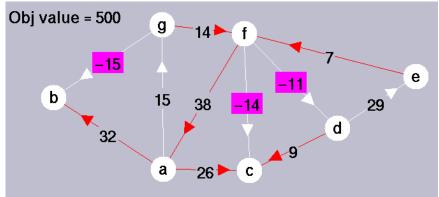


Dual Feasible!

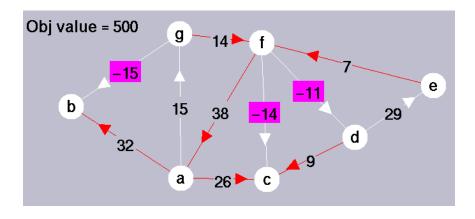
Two-Phase Method-Phase II



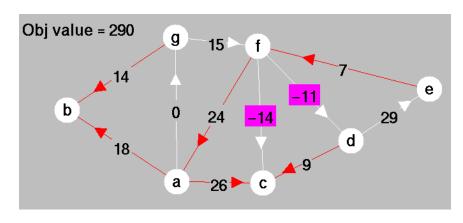
- Turn off display of artificial dual slacks.
- Turn on display of dual slacks.



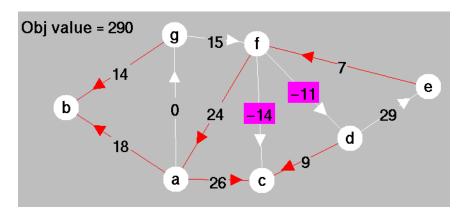
Two-Phase Method-Second Pivot



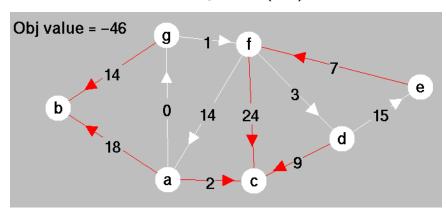
Entering arc: (g,b)Leaving arc: (g,f)



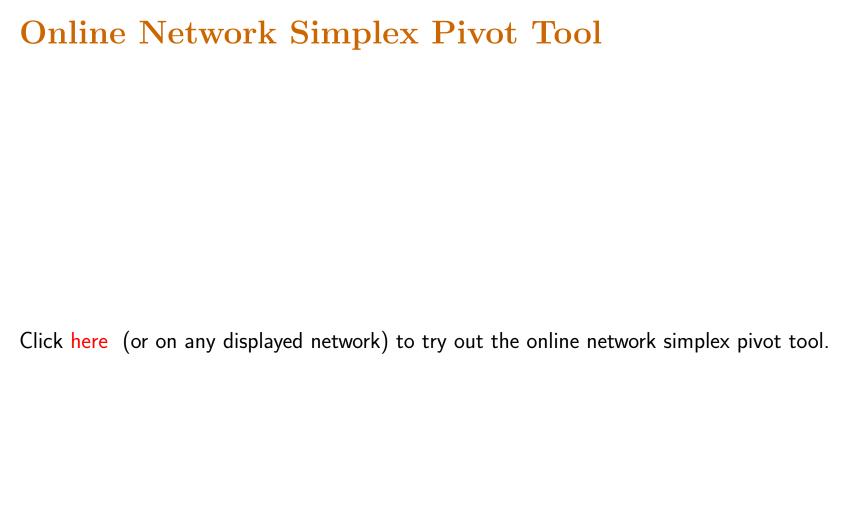
Two-Phase Method-Third Pivot



Entering arc: (f,c) Leaving arc: (a,f)

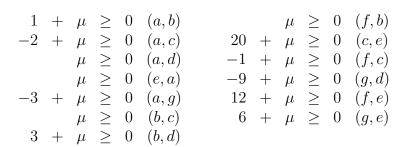


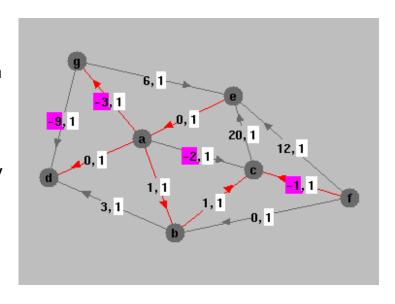
Optimal!



One-Phase Primal-Dual Method

- ullet Artificial flows and slacks are multiplied by a parameter μ .
- In the Figure, $_{6,1}$ represents $6+1\mu$.
- Question: For which μ values is dictionary optimal?
- Answer:



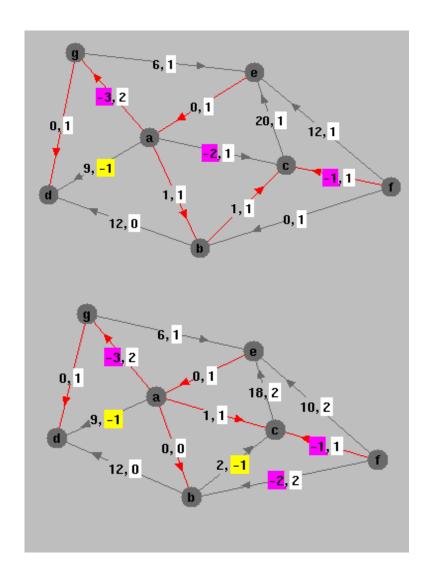


- That is, $9 \le \mu < \infty$.
- Lower bound on μ is generated by arc (g,d).
- Therefore, (g,d) enters.
- Arc (a,d) leaves.

Second Iteration

- Range of μ values: $2 \le \mu \le 9$.
- Entering arc: (a,c)
- Leaving arc: (b,c)

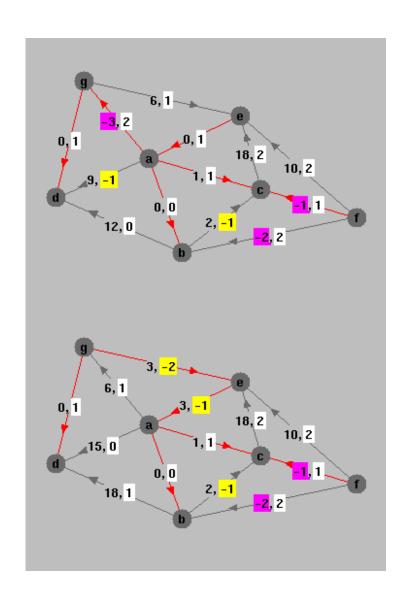
New tree:



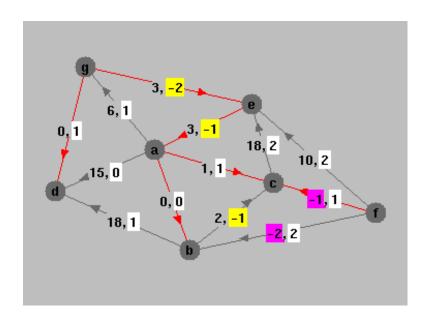
Third Iteration

- Range of μ values: $1.5 \le \mu \le 2$.
- Leaving arc: (a,g)
- Entering arc: (g,e)

New tree:



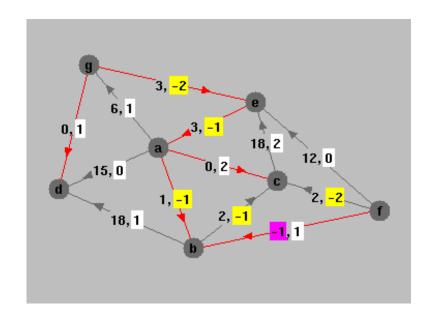
Fourth Iteration



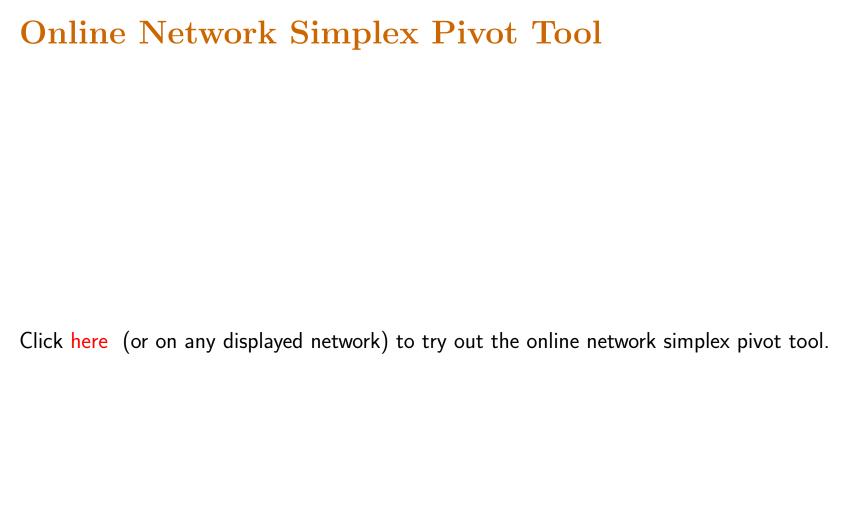
- Range of μ values: $1 \le \mu \le 1.5$.
- A tie:
 - Arc (f,b) enters, or
 - Arc (f,c) leaves.
- Decide arbitrarily:
 - Leaving arc: (f,c)
 - Entering arc: (f,b)

Fifth Iteration

- ullet Range of μ values: $1 \le \mu \le 1$.
- Leaving arc: (f,b)
- Nothing to Enter.



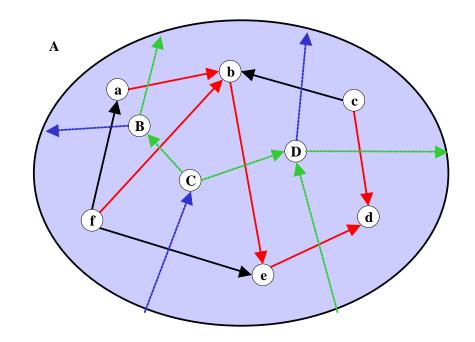
Primal Infeasible!



Planar Networks

Definition. Network is called planar if can be drawn on a plane without intersecting arcs.

Theorem. Every planar network has a dual—dual nodes are faces of primal network.



Notes:

- Dual node A is "node at infinity".
- Primal spanning tree shown in red.
- Dual spanning tree shown in blue (don't forget node A).

Theorem. A dual pivot on the primal network is exactly a primal pivot on the dual network.

Integrality Theorem

Theorem. Assuming integer data, every basic feasible solution assigns integer flow to every arc.

Corollary. Assuming integer data, every basic optimal solution assigns integer flow to every arc.