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Abstract. The splay tree, a self-adjusting form of binary search tree, is developed and analyzed. The 
binary search tree is a data structure for representing tables and lists so that accessing, inserting, and 
deleting items is easy. On an n-node splay tree, all the standard search tree operations have an amortized 
time bound of O(log n) per operation, where by “amortized time” is meant the time per operation 
averaged over a worst-case sequence of operations. Thus splay trees are as efficient as balanced trees 
when total running time is the measure of interest. In addition, for sufficiently long access sequences, 
splay trees are as efficient, to within a constant factor, as static optimum search trees. The efftciency of 
splay trees comes not from an explicit structural constraint, as with balanced trees, but from applying a 
simple restructuring heuristic, called splaying, whenever the tree is accessed. Extensions of splaying give 
simplified forms of two other data structures: lexicographic or multidimensional search trees and link/ 
cut trees. 

Categories and Subject Descriptors: E. 1 [Data]: Data Structures-trees; F.2.2 [Analysis of Algorithms 
and Problem Complexity]: Nonnumerical Algorithms and Problems--sorting and searching 

General Terms: Algorithms, Theory 

Additional Key Words and Phrases: Amortized complexity, balanced trees, multidimensional searching, 
network optimization, self-organizing data structures 

1. Introduction 
In this paper we apply the related concepts of amortized complexity and self- 
adjustment to binary search trees. We are motivated by the observation that the 
known kinds of efficient search trees have various drawbacks. Balanced trees, such 
as height-balanced trees [2, 221, weight-balanced trees [26], and B-trees [6] and 
their variants [5, 18, 19,241 have a worst-case time bound of O(log n) per operation 
on an n-node tree. However, balanced trees are not as efficient as possible if the 
access pattern is nonuniform, and they also need extra space for storage of balance 
information. Optimum search trees [ 16,20,22] guarantee minimum average access 
time, but only under the assumption of fixed, known access probabilities and no 
correlation among accesses. Their insertion and deletion costs are also very high. 
Biased search trees [7, 8, 131 combine the fast average access time of optimum 
trees with the fast updating of balanced trees but have structural constraints even 
more complicated and harder to maintain than the constraints of balanced trees. 
Finger search trees [ 11, 14, 19, 23, 241 allow fast access in the vicinity of one or 
more “lingers” but require the storage of extra pointers in each node. 
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These data structures are all designed to reduce the worst-case time per operation. 
However, in typical applications of search trees, not one but a sequence of 
operations is performed, and what matters is the total time the sequence takes, not 
the individual times of the operations. In such applications, a better goal is to 
reduce the amortized times of the operations, where by “amortized time” we mean 
the average time of an operation in a worst-case sequence of operations. 

One way to obtain amortized efficiency is to use a “self-adjusting” data structure. 
We allow the structure to be in an arbitrary state, but during each operation we 
apply a simple restructuring rule intended to improve the efficiency of future 
operations. Examples of restructuring heuristics that give amortized efficiency are 
the move-to-front rule on linear lists [9, 301 and path compression in balanced 
trees [33, 371. 

Self-adjusting data structures have several possible advantages over balanced or 
otherwise explicitly constrained structures: 

(i) In an amortized sense, ignoring constant factors, they are never much worse 
than constrained structures, and since they adjust according to usage, they 
can be much more efficient if the usage pattern is skewed. 

(ii) They need less space, since no balance or other constraint information is 
stored. 

(iii) Their access and update algorithms are conceptually simple and easy to 
implement. 

Self-adjusting structures have two potential disadvantages: 

(i) They require more local adjustments, especially during accesses (look-up 
operations). (Explicitly constrained structures need adjusting only during up- 
dates, not during accesses.) 

(ii) Individual operations within a sequence can be expensive, which may be a 
drawback in real-time applications. 

In this paper we develop and analyze the splay tree, a self-adjusting form of 
binary search tree. The restructuring heuristic used in splay trees is splaying, which 
moves a specified node to the root of the tree by performing a sequence of rotations 
along the (original) path from the node to the root. In an amortized sense and 
ignoring constant factors, splay trees are as efficient as both dynamically balanced 
trees and static optimum trees, and they may have even stronger optimality 
properties. In particular, we conjecture that splay trees are as efficient on any 
sufficiently long sequence of accesses as any form of dynamically updated binary 
search tree, even one tailored to the exact access sequence. 

The paper contains seven sections. In Section 2 we define splaying and analyze 
its amortized complexity. In Section 3 we discuss update operations on splay trees. 
In Section 4 we study the practical efficiency and ease of implementation of 
splaying and some of its variants. In Section 5 we explore ways of reducing the 
amount of restructuring needed in splay trees. In Section 6 we use extensions of 
splaying to simplify two more complicated data structures: lexicographic or mul- 
tidimensional search trees [15, 251 and link/cut trees [29, 341. In Section 7 we 
make some final remarks and mention several open problems, including a formal 
version of our dynamic optimality conjecture. The appendix contains our tree 
terminology. 

The work described here is a continuation of our research on amortized com- 
plexity and self-adjusting data structures, which has included an amortized analysis 
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of the move-to-front list update rule [9, 301 and the development of a self-adjusting 
form of heap [31]. Some of our results on self-adjusting heaps and search trees 
appeared in preliminary form in a conference paper [28]. A survey paper by the 
second author examines a variety of amortized complexity results [35]. 

2. Splay Trees 
We introduce splay trees by way of a specific application. Consider the problem of 
performing a sequence of access operations on a set of items selected from a totally 
ordered universe. Each item may have some associated information. The input to 
each operation is an item; the output of the operation is an indication of whether 
the item is in the set, along with the associated information if it is. One way to 
solve this problem is to represent the set by a binary search tree. This is a binary 
tree containing the items of the set, one item per node, with the items arranged in 
symmetric order: If x is a node containing an item i, the left subtree of x contains 
only items less than i and the right subtree only items greater than i. The symmetric- 
order position of an item is one plus the number of items preceding it in symmetric 
order in the tree. 

The “search” in “binary search tree” refers to the ability to access any item in 
the tree by searching down from the root, branching left or right at each step 
according to whether the item to be found is less than or greater than the item in 
the current node, and stopping when the node containing the item is reached. Such 
a search takes 8(d) time, where d is the depth of the node containing the accessed 
item. 

If accessing items is the only operation required, then there are better solutions 
than binary search trees, e.g., hashing. However, as we shall see in Section 3, binary 
search trees also support several useful update operations. Furthermore, we can 
extend binary search trees to support accesses by symmetric-order position. To do 
this, we store in each node the number of descendants of the node. Alternatively, 
we can store in each node the number of nodes in its left subtree and store in a 
tree header the number of nodes in the entire tree. 

When referring to a binary search tree formally, as in a computer program, we 
shall generally denote the tree by a pointer to its root; a pointer to the null node 
denotes an empty tree. When analyzing operations on binary search trees, we shall 
use n to denote the number of nodes and m to denote the total number of 
operations. 

Suppose we wish to carry out a sequence of access operations on a binary search 
tree. For the total access time to be small, frequently accessed items should be near 
the root of the tree often. Our goal is to devise a simple way of restructuring the 
tree after each access that moves the accessed item closer to the root, on the 
plausible assumption that this item is likely to be accessed again soon. As an O(l)- 
time restructuring primitive, we can use rotation, which preserves the symmetric 
order of the tree. (See Figure 1.) 

Allen and Munro [4] and Bitner [lo] proposed two restructuring heuristics (see 
Figure 2): 

Single rotation. After accessing an item i in a node x, rotate the edge joining x 
to its parent (unless x is the root). 

Move to root. After accessing an item i in a node x, rotate the edge joining x to 
its parent, and repeat this step until x is the root. 
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FIG. 2. Restructuring heuristics. The node accessed is u. 

Unfortunately, neither of these heuristics is efficient in an amortized sense: for 
each, there are arbitrarily long access sequences such that the time per access is 
O(n) [4]. Allen and Munro did show that the move-to-root heuristic has an 
asymptotic average access time that is within a constant factor of minimum, but 
only under the assumption that the access probabilities of the various items are 
fixed and the accesses are independent. We seek heuristics that have much stronger 
properties. 

Our restructuring heuristic, called splaying, is similar to move-to-root in that it 
does rotations bottom-up along the access path and moves the accessed item all 
the way to the root. But it differs in that it does the rotations in pairs, in an order 
that depends on the structure of the access path. To splay a tree at a node x, we 
repeat the following splaying step until x is the root of the tree (see Figure 3): 

Splaying Step 
Case 1 (zig). If p(x), the parent of x, is the tree root, rotate the edge joining x with p(x). 

(This case is terminal.) 
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FIG. 3. A splaying step. The node accessed is x. Each case has a symmetric 
variant (not shown). (a) Zig: terminating single rotation. (b) Zig-zig: two 
single rotations. (c) Zig-zag: double rotation. 

Case 2 (zig-zig). If p(x) is not the root and x and p(x) are both left or both right children, 
rotate the edge joining p(x) with its grandparent g(x) and then rotate the edge joining 
x with p(x). 

Case 3 (zig-zag). If p(x) is not the root and x is a left child and p(x) a right child, or vice- 
versa, rotate the edge joining x with p(x) and then rotate the edge joining x with the 
new p(x). 

Splaying at a node x of depth d takes 8(d) time, that is, time proportional to 
the time to access the item in x. Splaying not only moves x to the root, but roughly 
halves the depth of every node along the access path. (See Figures 4 and 5.) This 
halving effect makes splaying efficient and is a property not shared by other, simpler 
heuristics, such as move to root. Producing this effect seems to require dealing with 
the zig-zig and zig-zag cases differently. 

We shall analyze the amortized complexity of splaying by using a potential 
function [3 1, 351 to carry out the amortization. The idea is to assign to each possible 
configuration of the data structure a real number called its potential and to define 
the amortized time a of an operation by a = t + G’ - a, where t is the actual time 
of the operation, @ is the potential before the operation, and a’ is the potential 
after the operation. With this definition, we can estimate the total time of a 
sequence of m operations by 

f tj = jf, (Uj + @j-l - 3) = jE, Uj + a’0 - @‘m, 
j=l 
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where tj and a, are the actual and amortized times of operation j, +O is the initial 
potential, and +j for j L 1 is the potential after operation j. That is, the total actual 
time equals the total amortized time plus the net decrease in potential from the 
initial to the final configuration. If the final potential is no less than the initial 
potential, then the total amortized time is an upper bound on the total actual time. 
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To define the potential of a splay tree, we assume that each item i has a positive 
weight w(i), whose value is arbitrary but fixed. We define the size s(x) of a node x 
in the tree to be the sum of the individual weights of all items in the subtree rooted 
at x. We define the rank Y(X) of node x to be log s(x).’ Finally, we define the 
potential of the tree to be the sum of the ranks of all its nodes. As a measure of the 
running time of a splaying operation, we use the number of rotations done, unless 
there are no rotations, in which case we charge one for the splaying. 

LEMMA 1 (ACCESS LEMMA). The amortized time to splay a tree with root t at a 
node x is at most 3( r(t) - r(x)) + 1 = O(log(s(t)/s(x))). 

PROOF. If there are no rotations, the bound is immediate. Thus suppose there 
is at least one rotation. Consider any splaying step. Let s and s’, r and r’ denote 
the size and rank functions just before and just after the step, respectively. We 
show that the amortized time for the step is at most 3(r’(x) - r(x)) + 1 in case 1 
and at most 3(r’(x) - r(x)) in case 2 or case 3. Let y be the parent of x and z be 
the parent of y (if it exists) before the step. 

Case 1. One rotation is done, so the amortized time of the step is 

1 + r’(x) + r’(y) - r(x) - r(y) since .only x and y 
can change rank 

5 1 + r’(x) - r(x) since r(y) I r’(y) 
5 1 + 3(r’(x) - r(x)) since r’(x) 2 r(x). 

Case 2. Two rotations are done, so the amortized time of the step is 

2 + r’(x) + r’(y) + r’(z) 
- r(x) - r(y) - r(z) since only x, y, and z 

can change rank 
= 2 + r’(y) + r’(z) - r(x) - r(y) since r’(x) = r(z) 
5 2 + r’(x) + r’(z) - 2r(x) since r’(x) 2 r’(y) 

and r(y) 2 r(x). 

We claim that this last sum is at most 3(r’(x) - r(x)), that is, that 2r’(x) - r(x) - 
r’(z) 2 2. The convexity of the log function implies that log x + log y for x, y > 0, 
x + y I 1 is maximized at value -2 when x = y = i. It follows that r(x) + r’(z) - 
2r’(x) = log(s(x)/s’(x)) + log(s’(z)/s’(x)) 5 -2, since s(x) + s’(z) 5 s’(x). Thus 
the claim is true, and the amortized time in case 2 is at most 3(r’(x) - r(x)). 

Case 3. The amortized time of the step is 

2 + r’(x) + r’(y) + r’(z) 
- 44 - r(y) - r(z) 

5 2 + r’(y) + r’(z) - 2r(x) since r’(x) = r(z) 
and r(x) I r(y). 

We claim that this last sum is at most 2(r’(x) - r(x)), that is, that 2r’(x) - r’(y) - 
r’(z) I 2. This follows as in case 2 from the inequality s’(y) + s’(z) 5 s’(x). Thus 
the amortized time in case 3 is at most 2(r’(x) - r(x)) I 3(r’(x) - r(x)). 

The lemma follows by summing the amortized time estimates for all the splaying 
steps, since the sum telescopes to yield an estimate of at most 3(r’(x) - r(x)) + 1 
= 3(r(t) - r(x)) + 1, where r and r’ are the rank functions before and after the 
entire splaying operation, respectively. Cl 

’ Throughout this paper we use binary logarithms. 
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The analysis in Lemma 1 shows that the zig-zig case is the expensive case of a 
splaying step. The analysis differs from our original analysis [28] in that the 
definition of rank uses the continuous instead of the discrete logarithm. This gives 
us a bound that is tighter by a factor of two. The idea of tightening the analysis in 
this way was also discovered independently by Huddleston [ 171. 

The weights of the items are parameters of the analysis, not of the algorithm: 
Lemma 1 holds for any assignment of positive weights to items. By choosing 
weights cleverly, we can obtain surprisingly strong results from Lemma 1. We shall 
give four examples. Consider a sequence of m accesses on an n-node splay tree. In 
analyzing the running time of such a sequence, it is useful to note that if the 
weights of all items remain fixed, then the net decrease in potential over the 
sequence is at most CYZ’=l log(W/w(i)), where W = CEI w(i), since the size of the 
node containing item i is at most Wand at least w(i). 

THEOREM 1 (BALANCE THEOREM). The total access time is O((m + n)log 
n + m). 

PROOF. Assign a weight of l/n to each item. Then W = 1, the amortized access 
time is at most 3 log n + 1 for any item, and the net potential drop over the 
sequence is at most n log n. The theorem follows. Cl 

For any item i, let q(i) be the access frequency of item i, that is, the total number 
of times i is accessed. 

THEOREM 2 (STATIC OPTIMALITY THEOREM). If every item is accessed at least 
once, then the total access time is 

0 m + i q(i)log -$ 
i 

. 
i=l ( )) 

PROOF. Assign a weight of q( i)/m to item i. Then W = 1, the amortized access 
time of item i is O(log(m/q(i))), and the net ootential drop over the sequence is at 
most C:=, log(m/q(i)). The theorem follows. 0 

Assume that the items are numbered from 1 through n in symmetric order. Let 
the sequence of accessed items be i,, iz, . ’ . . ) lm. 

THEOREM 3 (STATIC FINGER THEOREM). Iff is anyfixed item, the total access 
timeisO(nfogn+m+~,“=lZOg(~ij-fJ + 1)). 

PROOF. Assign a weight of l/( 1 i - f ] + 1)2 to item i. Then W 5 2Cr==1 l/k2 = 
O(l), the amortized time of the jth access is O(log( ] ij - f I + l)), and the net 
potential drop over the sequence is O(n log n), since the weight of any item is at 
least l/n*. The theorem follows. 0 

We can obtain another interesting result by changing the item weights as the 
accesses take place. Number the accesses from 1 to m in the order they occur. For 
any access j, let t(j) be the number of different items accessed before access j since 
the last access of item ij, or since the beginning of the sequence ifj is the first of 
item ij. (Note that t(j) + i is the position of item ij in a linear list maintained by 
the move-to-front heuristic [30] and initialized in order of first access.) 

THEOREM 4 (WORKING SET THEOREM). The total access time is O(n log n + 
m + Clm,, log(t(j) + 1)). 
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PROOF. Assign the weights 1, l/4, l/9, . . . , l/n* to the items in order by first 
access. (The item accessed earliest gets the largest weight; any items never accessed 
get the smallest weights.) As each access occurs, redefine the weights as follows. 
Suppose the weight of item ij during access j is l/k2. After access j, assign weight I 
to ij, and for each item i having a weight of 1/(k’)2 with k’ < k, assign weight 
l/(k’ + l)* to i. This reassignment permutes the weights 1, l/4, l/9, . . . , l/n’ 
among the items. Furthermore, it guarantees that, during access j, the weight of 
item ij will be l/(Q) + 1)2. We have W= C&i l/k2 = O(l), so the amortized time 
of accessj is O(log(t(j) + 1)). The weight reassignment after an access increases 
the weight of the item in the root (because splaying at the accessed item moves it 
to the root) and only decreases the weights of other items in the tree. The size of 
the root is unchanged, but the sizes of other nodes can decrease. Thus the weight 
reassignment can only decrease the potential, and the amortized time for weight 
reassignment is either zero or negative. The net potential drop over the sequence 
is O(n log n). The theorem follows. Cl 

Let us interpret the meaning of these theorems. The balance theorem states that 
on a sufficiently long sequence of accesses a splay tree is as efficient as any form of 
uniformly balanced tree. The static optimality theorem implies that a splay tree is 
as efficient as any fixed search tree, including the optimum tree for the given access 
sequence, since by a standard theorem of information theory [l] the total access 
time for any fixed tree is d(m + J$f’=l q(i)log(m/q(i))). The static finger theorem 
states that splay trees support accesses in the vicinity of a fixed finger with the 
same efficiency as finger search trees. The working set theorem states that the time 
to access an item can be estimated as the logarithm of one plus the number of 
different items accessed since the given item was last accessed. That is, the most 
recently accessed items, which can be thought of as forming the “working set,” are 
the easiest to access. All these results are to within a constant factor. 

Splay trees have all these behaviors automatically; the restructuring heuristic is 
blind to the properties of the access sequence and to the global structure of the 
tree. Indeed, splay trees have all these behaviors simultaneously; at the cost of a 
constant factor we can combine all four theorems into one. 

THEOREM 5 (UNIFIED THEOREM). The total time of a sequence of m accesses 
on an n-node splay tree is 

0 
( 
n log II + m + $ log min 

j=l { 
Gy 1i.i -fl + 1, t(j) + 1 , 

J 1) 

where f is any fixed item. 

PROOF. Assign to each item a weight equal to the sum of the weights assigned 
to it in Theorems 2-4 and combine the proofs of these theorems. 0 

Remark. Since ] ij -f ] < n, Theorem 5 implies Theorem 1 as well as Theorems 
2-4. If each item is accessed at least once, the additive term n log n in the bound 
of Theorem 5 can be dropped. 

3. Update Operations on Splay Trees 
Using splaying, we can implement all the standard update operations on binary 
search trees. We consider the following operations: 

access(i, t): If item i is in tree t, return a pointer to its location; otherwise, return 
a pointer to the null node. 
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FIG. 6. Splaying after an unsuccessful access of item 80. 

insert( i, t): Insert item i in tree t, assuming that it is not there already. 

delete(i, t): Delete item i from tree t, assuming that it is present. 

join( t ,, t2): Combine trees t, and t2 into a single tree containing all items from 
both trees and return the resulting tree. This operation assumes that 
all items in t, are less than all those in t2 and destroys both t, and t2. 

spfit( i, t): Construct and return two trees tl and t2, where tl contains all items 
in t less than or equal to i, and t2 contains all items in t greater than 
i. This operation destroys t. 

We can carry out these operations on splay trees as follows. To perform ac- 
cess(i, t), we search down from the root oft, looking for i. If the search reaches a 
node x containing i, we complete the access by splaying at x and returning a pointer 
to x. If the search reaches the null node, indicating that i is not in the tree, we 
complete the access by splaying at the last nonnull node reached during the search 
(the node from which the search ran off the bottom of the tree) and returning a 
pointer to null. If the tree is empty, we omit the splaying operation. (See Figure 6.) 

Splaying’s effect of moving a designated node to the root considerably simplifies 
the updating of splay trees. It is convenient to implement insert and delete using 
join and split. To carry out join(t,, t2), we begin by accessing the largest item, say 
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FIG. 8. Implementation of insertion and deletion using join 
and split: (a) insert(i, t). (b) delete(i, t). 

i, in tl. After the access, the root of tl contains i and thus has a null right child. We 
complete the join by making t2 the right subtree of this root and returning the 
resulting tree. To carry out split(i, t), we perform access(i, t) and then return the 
two trees formed by breaking either the left link or the right link from the new root 
oft, depending on whether the root contains an item greater than i or not greater 
than i. (See Figure 7.) In both join and split we must deal specially with the case 
of an empty input tree (or trees). 

To carry out insert(i, t), we perform spZit(i, t) and then replace t by a tree 
consisting of a new root node containing i, whose left and right subtrees are the 
trees tl and t2 returned by the split. To carry out deZete(i, t), we perform ac- 
cess(i, t) and then replace t by the join of its left and right subtrees. (See Figure 8.) 

There are alternative implementations of insert and delete that have slightly 
better amortized time bounds. To carry out insert(i, t), we search for i, then replace 
the pointer to null reached during the search by a pointer to a new node containing 
i, and finally splay the tree at the new node. To carry out delete(i, t), we search for 
the node containing i. Let this node be x and let its parent be y. We replace x as a 
child of y by the join of the left and right subtrees of x, and then we splay at y. (See 
Figure 9.) 
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In analyzing the amortized complexity of the various operations on splay trees, 
let us assume that we begin with a collection of empty trees and that every item is 
only in one tree at a time. We define the potential of a collection of trees to be the 
sum of the potentials of the trees plus the sum of the logarithms of the weights of 
all items not currently in a tree. Thus the net potential drop over a sequence of 
operations is at most CiEu log(w(i)/w’(i)), where U is the universe of possible items 
and w and w’, respectively, are the initial and final weight functions. In particular, 
if the item weights never change, the net potential change over the sequence is 
nonnegative. 

For any item i in a tree t, let i- and i+, respectively, denote the item preceding 
i and the item following i in t (in symmetric order). If i- is undefined, let w(i-) = 
co; if i+ is undefined, let w(i+) = 03. 

LEMMA 2 (UPDATE LEMMA). The amortized times of the splay tree operations 
have the following upper bounds, where W is the total weight of the items in the 
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tree or trees involved in the operation: 

access( i, t): 1 
W 

3 log - 
( ) w(i) 

+1 if i is in t; 

3 log 
( 

W 
min{w(i-), w(i+)] ) 

+1 if i is not in t. 

join(t,, t2): + O(l), where i is the last item in tl. 

split(i, t): 1 
W 

3 log - 
( ) w(i) 

+ O(l) if i is in t; 

3 log 
( 

W 
min(w(i-), w(i+)) 1 

+ O(l) if i is not in t. 

insert( i, t): 

delete(i, t): 

3 log 
W - w(i) 

min(w(i-), w(i+)] )+log(-$)+CV). 

3 log(-$) + 3 log(W;i:;i)) + O(1). 

Increasing the weight of the item in the root of a tree t by an amount 6 takes at 
most log( 1 +6/W) amortized time, and decreasing the weight of any item takes 
negative amortized time. 

PROOF. These bounds follow from Lemma 1 and a straightforward analysis of 
the potential change caused by each operation. Let s be the size function just before 
the operation. In the case of an access or split, the amortized time is at most 3 
log(s(t)/s(x)) + 1 by Lemma 1, where x is the node at which the tree is splayed. If 
item i is in the tree, it is in x, and s(x) 2 w(i). If i is not in the tree, either i- or i+ 
is in the subtree rooted at x, and s(x) z min(w(i-), w(i+)). This gives the bound 
on access and split. The bound on join is immediate from the bound on access: 
the splaying time is at most 3 log(s(t,)/w(i)) + 1, and the increase in potential 
caused by linking tl and t2 is 

10p(i”“s;,~“‘) 5 3 log($). 

(We have W = s(tJ + s(t2).) The bound on insert also follows from the bound on 
access; the increase in potential caused by adding a new root node containing i is 

log(s(t)$;i)) = log&). 

The bound on delete is immediate from the bounds on access and-join. Cl 
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Remark. The alternative implementations of insertion and deletion have the 
following upper bounds on their amortized times: 

insert( i, t): 2 log w-w(i) )+log(+$+MI). 
min( Ni-), w(i+>) 

delete(i, t): 3 log 
W - w(i) 

mini w(i-), w(i)) 
+ O(1). 

These bounds follow from a modification of the proof of Lemma 1. For the case 
of equal-weight items, the alternative forms of insertion and deletion each take at 
most 3 log n + O(1) amortized time on a n-node tree. This bound was obtained 
independently by Huddleston [ 171 for the same insertion algorithm and a slightly 
different deletion algorithm. 

The bounds in Lemma 2 are comparable to the bounds for the same operations 
on biased trees [7, 8, 131, but the biased tree algorithms depend explicitly on the 
weights. By using Lemma 2, we can extend the theorems of Section 2 in various 
ways to include update operations. (An exception is that we do not see how to 
include deletion in a theorem analogous to Theorem 3.) We give here only the 
simplest example of such an extension. 

THEOREM 6 (BALANCE THEOREM WITH UPDATES). A sequence of m arbitrary 
operations on a collection of initially empty splay trees takes O(m + J$Z, log nj) 
time, where nj is the number of items in the tree or trees involved in operation j. 

PROOF. Assign to each item a fixed weight of one and apply Lemma 2. Cl 

We can use splay trees as we would use any other binary search tree; for example, 
we can use them to implement various abstract data structures consisting of sorted 
sets or lists subject to certain operations. Such structures include dictionaries, which 
are sorted sets with access, insertion, and deletion, and concatenatable queues, 
which are lists with access by position, insertion, deletion, concatenation, and 
splitting [3, 221. We investigate two further applications of splaying in Section 6. 

4. Implementations of Splaying and Its Variants 
In this section we study the implementation of splaying and some of its variants. 
Our aim is to develop a version that is easy to program and efficient in practice. 
As a programming notation, we shall use a version of Dijkstra’s guarded command 
language [ 121, augmented by the addition of procedures and “initializing guards” 
(G. Nelson, private communication). We restrict our attention to successful ac- 
cesses, that is, accesses of items known to be in the tree. 

Splaying, as we have defined it, occurs during a second, bottom-up pass over an 
access path. Such a pass requires the ability to get from any node on the access 
path to its parent. To make this possible, we can save the access path as it is 
traversed (either by storing it in an auxiliary stack or by using “pointer reversal” 
to encode it in the tree structure), or we can maintain parent pointers for every 
node in the tree. If space is expensive, we can obtain the effect of having parent 
pointers without using extra space, by storing in each node a pointer to its leftmost 
child and a pointer to its right sibling, or to its parent if it has no right sibling. (See 
Figure 10.) This takes only two pointers per node, the same as the standard left- 
child-right-child representation, and allows accessing the left child, right child, or 
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FIG. 10. Leftmost-child-right-sibling representation of the original tree in Fig- 
ure 6. 

parent of any node in at most two steps. The drawback of this representation is 
loss of time efficiency. 

We shall assume that parent pointers are stored explicitly; however, our programs 
can easily be modified to use other ways of retrieving the access path. The following 
procedure is a straightforward implementation of splaying. To avoid an explicit 
test for p(x) = null, we assume that &null) = l&null) = right(nul1) = null. 

procedure splay(x); 
(p(nul1) = fej(nul1) = righZ(nul1) = null] 
do x = lej( p(x)) + 

if g(x) = null + rotate right (p(x)) 
1 p(x) = leji( g(x)) + rotate rig&( g(x)); rotate rig&( p(x)) 
1 p(x) = right( g(x)) -+ rotate right(p(x)); rotate left(p(x)) 

fi 
I x = right(p(x)) + 
if g(x) = null + rotate leff( p(x)) 
I p(x) = rig&( g(x)) + rotate lej( g(x)); rotate left(p(x)) 

i ~(-4 = kftk(x)) + rotate le#(p(x)); rotate right(p(x)) 

od (p(x) = null) 
end splay; 

The grandparent function g is defined as follows: 

function g(x); 
CT= P(PW 

end g; 

The procedure rotate left(y) rotates the edge joining y and its right child. The 
procedure rotate right(y), whose implementation we omit, is symmetric. 

Remark. In the following procedure, the initializing guard “x, z: x = right(y) 
and z = p(y),” which is always true, declares two local -variables, x and z, and 
initializes them to right(y) and p(y), respectively. 
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procedure rotate left(y); 
if x, z: x = right(y) and z = p(y) + 

if z = null + skip 
) left(z) = y + left(z) := x 
1 right(z) = y + right(z) := x 

ii; 
left(x), right(y) := y, left(x); 
P(X), P(Y) := z, x; 
if right(y) = null + skip 1 right(y) # null + p(right( y)) := y fi 

fi 
end rotate left; 

667 

Inspection of the splay program raises the possibility of simplifying it by omitting 
the second rotation in the zig-zag case. The resulting program, suggested by M. D. 
McIlroy (private communication), appears below. 

procedure simple splay(x); 
(p(nul1) = l&null) = right(nul1) = null) 
do x = left(p(x)) + 

if p(x) = left( g(x)) + rotate rig&( g(x)) 
fly # .WWN + skip 

Gate right(p(x)) 
( x = right(p(x)) + 
if p(x) = right( g(x)) + rotf2te left( g(x)) 
fl P(X) # rk%W) -, skw 

date left( p(x)) 
od( p(x) = null) 

end simple splay; 

An amortized analysis of simple splaying shows that Lemma 1 holds with a 
constant factor of 3.16+ in place of three. Thus the method, though simpler than 
the original method, has a slightly higher bound on the number of rotations. 

The advantage of implementing splaying using rotation as a primitive is that we 
can encapsulate all the restructuring, including any required updating of auxiliary 
fields, in the rotation procedures. The disadvantage is that many unnecessary 
pointer assignments are done. We can achieve greater efficiency by eliminating the 
superfluous assignments by expanding the rotation procedures in-line, simplifying, 
and keeping extra information in the control state. 

A bottom-up splaying method is appropriate if we have direct access to the node 
at which the splaying is to occur. We shall see an example of this in Section 6. 
However, splaying as used in Sections 2 and 3 only occurs immediately after an 
access, and it is more efficient to splay on the way down the tree during the access. 
We present a top-down version of splaying that works in this way. 

Suppose we wish to access an item i in a tree. During the access and concurrent 
splaying operation, the tree is broken into three parts: a Zeft tree, a middle tree, and 
a right tree. The left and right trees contain all items in the original tree so far 
known to be less than i and greater than i, respectively. The middle tree consists 
of the subtree of the original tree rooted at the current node on the access path. 
Initially the current node is the tree root and the left and right trees are empty. To 
do the splaying, we search down from the root looking for i, two nodes at a time, 
breaking links along the access path and adding each subtree thus detached to the 
bottom right of the left tree or the bottom left of the right tree, with the proviso 
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A B 

(4 

(b) 
B C 

(cl 

FIG. I 1. Top-down splaying step. Symmetric variants of cases 
are omitted. Initial left tree is L, right tree is R. Labeled nodes are 
on the access path. (a) Zig: Node y contains the accessed item. (b) 
Zig-zig. (c) Zig-zag. 

A B 
A B 

FIG. 12. Completion of top-down splaying. Node x contains the 
accessed item. 

that if we take two steps down in the same direction (left-left or right-right) we do 
a rotation before breaking a link. More formally, the splaying operation consists of 
repeatedly applying the appropriate case among those shown in Figure 11 until 
none applies, then reassembling the three remaining trees as shown in Figure 12. 
A similar top-down restructuring method, but without the rotations and 
consequently with poor amortized efficiency, was proposed by Stephenson [32]. 

The following program implements this method. The program uses three local 
variables, t, f, and r, denoting the current vertex, the last node in symmetric order 
in the left tree, and the first node in symmetric order in the right tree, respectively. 
The updating of these variables occurs in the primitive procedures. These are rotate 
le@ and rotate right, which rotate the edge joining t and its right or left child, 
respectively; link left and link right, which break the link between t and its left or 
right child and attach the resulting tree to the left or right tree, respectively; and 
assemble, which completes the splaying by performing the assembly of Figure 12. 
The program contains an initializing guard that declares 1 and r and initializes 



Self-Adjusting Binary Search Trees 669 

them both to null. After the first left link, the right child of null is the root of the 
left tree; after the first right link, the left child of null is the root of the right tree. 

procedure top-down splafii, t); 
if I, r: I= r = null + 

lej(nul1) := right(nul1) := null; 
do i < item(t) + 

if i = item(left(t)) + link right 
1 i c item(left(t)) + rotate right; link right 

$ i > item(leji(t)) + link right; link left 

1 i > item(t) + 
if i = item(right(t)) + link left 
1 i > item(right(t)) + rotate left; link left 

fl i < item(right(t)) + link left; link right 

od(i = item(t)); 
assemble 

ti 
end top-down splay; 

Implementations of rotate left, link left, and assemble appear below; rotate right 
and link right, whose definitions we omit, are symmetric to rotate left and link left, 
respectively. 

procedure link left; 
t, I, right(l) := right(t), t, t 

end link left; 

procedure rotate left; 
t, right(t), left(right(t)) := right(t), leJ(right(t)), t 

end rotate left; 

procedure assemble; 
left(r), right(l) := right(t), left(t); 
left(t), right(t) := right(null), left(nul1) 

end assemble; 

We can simplify top-down splaying as we did bottom-up splaying, by eliminating 
the second linking operation in the zig-zag case. The resulting program is as 
follows: 

procedure simple top-down splay(i, t); 
if 1, r: I= r = null -+ 

left(null) := right(nul1) := null; 
do i c item(t) + 

if i < item(left(t)) ---, rotate right 
4. i 2 item(left(t)) + skip 

l&k right 
1 i > item(t) + 
if i > item(right(t)) + rotate left 
d. i 5 item(right(t)) + skip 

l&k left 
od(i = item(f)); 
assemble 

fi 
end simple top-down splay; 
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Lemma 1 holds for both top-down splaying methods with an unchanged constant 
factor of three. It is easy to modify the program for either method to carry out the 
various tree operations discussed in Section 3. For these operations a top-down 
method is more efficient than a bottom-up method, but the choice between the 
top-down methods is unclear; the simple method is easier to program but probably 
somewhat less efficient. Experiments are needed to discover the most practical 
splaying method. 

5. Semi-adjusting Search Trees 
A possible drawback of splaying is the large amount of restructuring it does. In this 
section we study three techniques that reduce the amount of restructuring but 
preserve at least some of the properties of splay trees. As in Section 4, we shall 
restrict our attention to successful accesses. 

Our first idea is to modify the restructuring rule so that it rotates only some of 
the edges along an access path, thus moving the accessed node only partway toward 
the root. Semisplaying, our restructuring heuristic based on this idea, differs from 
ordinary bottom-up splaying only in the zig-zig case: after rotating the edge joining 
the parent p(x) with the grandparent g(x) of the current node x, we do not rotate 
the edge joining x with p(x), but instead continue the splaying from p(x) instead of 
x. (See Figure 13.) 

The effect of a semisplaying operation is to reduce the depth of every node on 
the access path to at most about half of its previous value. If we measure the cost 
of a semisplaying operation by the depth of the accessed node, then Lemma 1 
holds for semisplaying with a reduced constant factor of two in place of three. 
Furthermore, only one rotation is performed in the zig-zag case, but two steps are 
taken up the tree. 

Like splaying, semisplaying has many variants. We describe only one, a top- 
down version, related to a method suggested by C. Stephenson (private commu- 
nication). Think of performing a semisplaying operation as described above, 
bottom-up, except that if the access path contains an odd number of edges, perform 
the zig case at the bottom of the path instead of at the top. We can simulate this 
variant of semisplaying top-down, as follows. As in top-down splaying, we maintain 
a left tree, a middle tree, and a right tree. In addition we maintain a top tree and a 
node top in the top tree having a vacant child. The relationship among the trees is 
that all items in the left tree are less than the accessed item i and also less than 
those in the middle tree; all items in the right tree are greater than i and also greater 
than those in the middle tree; and all items in the left, middle, and right trees fall 
between the item in top and the item in its predecessor in the top tree if the vacant 
child of top is its left, or between the item in top and the item in its successor in 
the top tree if the vacant child of top is its right. Initially the left, right, and top 
trees are empty and the middle tree is the entire original tree. 

Let i be the item to be accessed. Each splaying step requires looking down two 
steps in the middle tree from the root and restructuring the four trees according to 
whether these steps are to the left or to the right. If i is in the root of the middle 
tree, we combine the left, middle, and right trees as in the completion of top-down 
splaying (see Figure 12) and then make the root of the combined tree (which 
contains i) a child of top, filling its vacancy. This completes the splaying. On the 
other hand, if i is not in the root of the middle tree, we carry out a zig, zig-zig, or 
zig-zag step as appropriate. 
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FIG. 13. A semisplaying step. Symmetric variants of cases are omit- 
ted. In each case, the starred node is the current node of the splaying 
operation. (a) Zig. (b) Zig-zig. (c) Zig-zag. 

The zig and zig-zag cases are exactly as in top-down splaying; they do not affect 
the top tree. The zig-zig case is as illustrated in Figure 14. Suppose that the access 
path to i contains the root x of the middle tree, its left child y, and the left child of 
y, say z. We perform a right rotation on the edge joining x and y. Then we assemble 
all four trees as in the terminating case, making node y (now the root of the middle 
tree) a child of top and making the left and right trees the left and right subtrees of 
y. Finally, we break the link between z and its new parent, making the subtree 
rooted at z the new middle tree, the rest of the tree the new top tree, and the old 
parent of z the new top. The left and right trees are reinitialized to be empty. 

A little thought will verify that top-down semisplaying indeed transforms the 
tree in the same way as bottom-up semisplaying with the zig step, if necessary, 
done at the bottom of the access path. Lemma 1 holds for top-down semisplaying 
with a constant factor of two. 

Whether any version of semisplaying is an improvement over splaying depends 
on the access sequence. Semisplaying may be better when the access pattern is 
stable, but splaying adapts much faster to changes in usage. All the tree operations 
discussed in Section 3 can be implemented using semisplaying, but this requires 
using the alternative implementations of insertion and deletion. Also, the join and 
split algorithms become more complicated. The practical efficiency of the various 
splaying and semisplaying methods remains to be determined. 

Another way to reduce the amount of restructuring in splay trees is to splay only 
sometimes. We propose two forms of conditional splaying. For simplicity we 
restrict our attention to a sequence of successful accesses on a tree containing a 
fixed set of items. One possibility is to splay only when the access path is abnormally 
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FIG. 14. Zig-zig case of a top-down 
semisplaying step. The symmetric var- 
iant is omitted. The initial left, right, 
and top trees are L, R, and T, respec- 
tively. Nodes x, y, and z are on the 
access path. Tree A is the new middle 
tree, the new left and right trees are 
empty, and the rest of the nodes form 
the new top tree. 
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long. To define what we mean by “abnormally long,” consider any variant of 
splaying (or semisplaying) such that Lemma 1 holds with a constant factor of c. 
Suppose every item i has a fixed weight w(i), and let c’ be any constant greater 
than c. We call an access path for item i long if the depth of the node containing i 
is at least c’log( W/w(i)) + cl/c, and short otherwise. (Recall that W is the total 
weight of all the items.) 

THEOREM 7 (LONG SPLAY THEOREM). If we splay only when the access path is 
long and do no restructuring when the access path is short, then the total splaying 
time is O(Ct,log( W/w(i)), that is, proportional to the amortized time to access 
each item once. The constant factor in this estimate is proportional to c’/(c’ - c). 
Thus the total restructuring time is independent of m, the number of accesses. 

PROOF. Consider a splaying operation on a node of depth d 2 c’log( W/w(i)) + 
cl/c. Let 4 and $‘, respectively, be the potential before and after the splaying. Since 
c’/c > 1, the actual time of the splaying is d, and we have by Lemma 1 that d + 
4 - 4 5 c log( W/w(i)) + 1. Thus the splaying reduces the potential of the tree by 
at least d - c log( W/w(i)) - 1. This means that if we amortize the potential 
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reduction over the entire splaying operation, each unit of time spent causes a 
potential drop proportional to at least 

d - c log( W/w(i)) - 1 , I _ c log( W/w(i)) + 1 
d 

- 
c’log( W/w(i)) + c’/c 

cl-$ 
C 

This means in particular that such a splaying operation can only decrease the 
potential. Since any access along a short access path causes no restructuring and 
thus no change in potential, the total splaying time over the sequence is proportional 
to at most c’/(c’ - c) times the overall potential drop. The overall potential drop 
is at most CY=r log( W/w(i)), giving the theorem. Cl 

We have as a simple application of Theorem 7 that if we splay only when 
the access path is of length at least c’log n + c’/c, then the total splaying time is 
O(n log n). 

This form of conditional splaying has two drawbacks: it requires two passes over 
each long access path (one pass just to determine whether to splay), and the decision 
whether to splay requires knowing the item weights, which must be predetermined 
on the basis of known or assumed properties of the access sequence. Thus the 
method is antithetical to the philosophy of self-adjustment. 

Another form of conditional splaying, which does not depend on the item 
weights, is to splay during the first j - 1 accesses, and just before the jth access to 
stop splaying completely, using the tree resulting from all the splaying operations 
as a static search tree. The intuition behind this idea is that if splaying is efficient 
in an amortized sense, then the average state of the data structure ought to be a 
good one. Under appropriate assumptions, we can prove this. Suppose that each 
item i has a fixed access probability pi and that all accesses are independent. For 
any search tree T, we define the average access time of T to be ELI pidi, where di 
is the depth of the node containing item i. 

THEOREM 8 (SNAPSHOT THEOREM). Suppose we begin with any initial tree, 
carry out a sequence of m accesses, and randomly stop splaying just before access 
j, with probability l/m for each possible value of j. Then the search tree result- 
ingfrom the sequence of splaying operations has an expected average access time of 
O((n log N/m + C?=I Pi&( l/Pi)). 

PROOF. For any access sequence (Y and any item i, let 1 (Y 1 be the length of CI 
(number of accesses), and let Lyi be the access sequence consisting of (Y followed by 
an access of i. Let pa be the probability of (Y, that is, the product of the probabilities 
of all the accesses. Let t&3) be the total time required to carry out the sequence of 
accesses p using splaying, assuming that we have first performed the sequence of 
accesses a! using splaying. (If the subscript (Y is missing, we take (Y to be the empty 
sequence.) Let T, be the average access time of the tree formed by performing the 
sequence of accesses (Y using splaying. (If CY is the empty sequence, T, is the average 
access time of the initial tree.) 

We wish to estimate the quantity ClaI<, p,T,/m. We have T, = CL’=l pit,(i), 
which means that the quantity to be estimated is Claifam p&(i)/m. We have 

C Pat(a) + ,az P&(i) = ,,Z+ PJ(Cfi), 
lCYl=~--l m m 
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from which it follows by induction on m that 

c Paita(i)= 1 P&4 for mrl. 
lail5m m I+~ m 

Taking w(i) = pi + 1 /n for each item i, we have by Lemma 1, for any sequence 
(Y, that 

t(a) = 0 n log n + m + i log 
j=l 

where a(j) is the item accessed during access j in sequence CY. In this estimate the 
constant factor is independent of (Y. Thus the expected value of the average access 
time is 

0 

( 

n log n 
- + c . 

m 
pa 

lal=m ( 
5 log(~) 

j=l 1) 

For a fixed item i, let us accumulate all terms in the double sum such that 
4i) = i. For any fixed access j, the sum of terms for all sequences CY such that 
4.i) = i is pilog( l/pi)/m. Since there are m possible values of j, the sum for all 
terms such that a(j) = i is pJog( l/pi). We conclude that the expected average 
access time is O((n log n)/m + CL pilog( l/pi))* Cl 

Theorem 8 and the information-theoretic result quoted in Section 2 imply that 
if we carry out a sequence of Q(n log n) accesses and splay only during the first 
j - 1 accesses for a random value ofj, we are likely to produce a search tree whose 
average access time is within a constant factor of minimum. The only property of 
splay trees used to prove Theorem 8 is their amortized efficiency. Thus the theorem 
generalizes to any self-adjusting data structure that is efficient in an amortized 
sense. For example, the move-to-front update rule for sequential search [30], if 
stopped after a sufficiently large random number of accesses, produces a list whose 
expected average access time is within a constant factor of minimum. 

Permanent cessation of restructuring has two drawbacks: there is a small chance 
that the resulting static data structure will be inefficient; and, if the access pattern 
changes, an originally efficient static structure can lose its efficiency. Thus this 
method is probably practical only in situations where the probabilistic assumptions 
needed to prove Theorem 8 hold. 

6. Two Applications of Splaying 
In this section we discuss two uses of splaying in data structures more elaborate 
than search trees. These applications derive from the observation that if we are 
content with amortized efficiency, then splay trees can generally be used in place 
of the much more cumbersome biased search trees [7, 8, 131 with no degradation 
in running time and considerable simplification. 

Our first application is to lexicographic or multidimensional search trees [ 15, 
251, which are related to digital search trees and tries [22]. Let Z be a totally ordered 
alphabet. Suppose we wish to store a set of strings S over Z so that repeated access 
operations will be efficient. As a primitive to support accesses, we allow the 
comparison of any two symbols in Z at unit cost. 

We can represent such a set of strings by a lexicographic search tree. This is a 
ternary tree (every node has a left child, a middle child, and a right child, each 
possibly null) containing one symbol in each of its nodes, with the following 
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FIG. 15. A lexicographic search tree for the words at, as, bat, bats, bog, boy, caste, 
cats, day, dog, donut, door. Squares denote terminal nodes. 

properties (see Figure 15): 

(i) The nodes of the tree correspond exactly to the prefixes of the strings in S in 
the following sense: If we traverse any path in the tree down from the root, 
concatenating all the symbols in the nodes from which we leave by a middle 
edge (an edge to a middle child), then we obtain a prefix, and all possible 
prefixes are uniquely obtainable in this way. 

(ii) If we descend from a node x to a node y by a path containing no middle 
children, then the symbol in x is less than the symbol in y if and only if the 
first step from x to y is to a right child. 

We store in each node of a lexicographic search tree a terminal bit indicating 
whether the corresponding prefix is actually a string in S. These bits are only 
needed if S contains a pair of strings, one of which is a prefix of the other. We can 
eliminate such pairs by adding a special “end of string” symbol to the end of every 
string. We call each node corresponding to a string in S a terminal node. 

If we think of the middle edges as dashed and the remaining edges as solid, then 
property (ii) is the same as saying that the connected components defined by the 
solid edges, which we call solid subtrees, are binary search trees whose items are 
symbols in 2. The entire lexicographic search tree is a hierarchy consisting of these 
binary search trees joined by the dashed edges. The middle depth of a solid subtree 
(the number of dashed edges on the path from the root to the subtree) determines 
the symbol position for which the solid subtree is to be used as a search tree. 

We can use a lexicographic search tree to access the set of strings it represents as 
follows. Let u be any string, and for any position i let a(i) be the ith symbol in U. 
We begin with the current node x equal to the root and with the current position 
i equal to 1 and repeat the following step until we have matched all the symbols in 
u or we have reached null by running off the bottom of the tree (in the latter case 
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rotate 
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- 
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FIG. 16. Rotation of the solid edge joining nodes x and y in a 
lexicographic search tree. 

e 

i 

a 

FIG. 17. Splaying at a node a in a lexicographic splay tree. Subtrees of 
nodes along the access path are deleted for clarity. 

the access fails): 

Search Step. If u( i) is less than the symbol in x, replace x by left(x). If u( i) is greater than the 
symbol in x, replace x by right(x). If a(i) equals the symbol in x and i is not the last position 
in x, replace x by middle(x) and i by i + 1. (The ith symbol in string u has been matched.) 
Otherwise (u(i) equals the symbol in x and i is the last position in U) terminate the search, 
with success if x is a terminal node and failure if not. 

The time for an access, either successful or unsuccessful, is bounded by the 
length of (T plus the number of left and right edges traversed. Thus, to minimize 
the access time we want to keep the depths of the solid subtrees small. 

Lexicographic search trees are susceptible to the same restructuring primitive as 
binary search trees, namely rotation, which takes O(1) time, rearranges left and 
right children but not middle children, and preserves properties (i) and (ii). (See 
Figure 16.) Thus we can extend the standard binary search tree techniques to 
lexicographic search trees. In particular, we can use an extension of splaying as a 
restructuring heuristic after each access. We call the resulting data structure a 
lexicographic splay tree. To splay at a node x, we proceed up the access path from 
x, one or two nodes at a time, carrying out splaying steps, with the additional 
proviso that whenever x becomes a middle child, we continue from p(x) instead of 
from x. That is, we splay along each part of the access path that is within a solid 
subtree. (See Figure 17.) 

After splaying at a node x, the path from the root to x contains only dashed 
edges. (Since rotations do not disturb middle children, they do not change the 
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middle depth of any node.) We can easily extend the amortized analysis of Section 
2 to lexicographic splay trees. We associate with each string g E S an arbitrary 
positive weight w(u), define the size s(x) of a node x in the tree to be the sum of 
the weights of the strings whose terminal nodes are (not necessarily proper) 
descendants of S, define the rank of x to be r(x) = log s(x), and finally define the 
potential of a tree to be the sum of the ranks of its nodes. 

LEMMA 3 (ACCESS LEMMA FOR LEXICOGRAPHIC SPLAY TREES). Splaying a tree 
with root t at a node x takes @d,(x) + log(s(t)/s(x))) amortized time, where d,,,(x) 
the middle depth of x. 

PROOF. An easy extension of the proof of Lemma 1. Cl 

Lemma 3 implies that the amortized time to access a string c in a lexicographic 
splay tree is 0( 1 u 1 + log( W/w(a))), where W is the total weight of all the strings 
represented by the tree. (Recall that 1 (r ] is the length of u.) All the results of Section 
2 extend to lexicographic splay trees, with the modification that accessing a string 
u has an extra additive 0( 1 u 1) overhead. We can easily implement insertion, 
deletion, and even join and split on lexicographic splay trees. We obtain amortized 
time bounds similar to those in Section 3, again with an extra additive term for 
the string length. Since all these extensions are straightforward, we leave them as 
exercises. See references [8], [ 151, [22], and [25] for further discussion of lexico- 
graphic search trees, related data structures, and their uses. 

Our second and most complicated application of splaying is to the link/cut trees 
of Sleator and Tarjan [29]. The link/cut tree problem is that of maintaining an 
abstract data structure consisting of a forest of rooted trees, each node of which 
has a real-valued cost, under a sequence of the following six kinds of operations 
(see Figure 18). We regard each tree edge as directed from child to parent. 

find cost(v): Return the cost of node v. 
find root(v): Return the root of the tree containing node v. 
find min( v): Return the node of minimum cost on the path from v to r, the 

root of the tree containing r. In the case of ties, choose the node 
that is closest to r. 

add cost(v, x): Add real number x to the cost of every node on the path from v 
to the root of the tree containing r. 

link( v, w): Add an edge from v to w, thereby making v a child of w in the 
forest. This operation assumes that v is the root of one tree and w 
is in another tree. 

cut(v): Delete the edge from v to its parent, thereby dividing the tree 
containing v into two trees. This operation assumes that v is not a 
tree root. 

Link/cut trees have important applications in algorithms for various network 
optimization problems, including the maximum flow and minimum cost flow 
problems [27, 29, 341. In discussing link/cut trees we shall denote the total number 
of nodes by n and the total number of operations by m. An obvious way to represent 
such trees is to store with each node its cost and a pointer to its parent. With this 
representation, each find cost, link, or cut operation takes 0( 1) time, and each find 
root, find min, and add cost operation takes O(n) time. By using a hierarchy of 
biased search trees [7, 8, 131 to represent each link/cut tree, Sleator and Tarjan 
obtained a data structure with an O(log n) time bound per operation. Here we 
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(b) 

FIG. 18. Link/cut tree operations. (a) Two rooted trees. Numbers in nodes 
are costs. Operation find cost(j) returns 2, find Mn(j) returns d. (b) Trees 
after add cost(j, -2), link(m, d), cut(e). 

present a much-streamlined data structure that uses splay trees in place of biased 
trees and achieves an O(log n) amortized time bound per operation. A preliminary 
version of this structure appears in a monograph by the second author [34]. 

We represent each link/cut tree T by a virtual tree T/containing the same nodes 
as T but having different structure. Each node of I/ has a left child and a right 
child, either or both of which may be a null, and zero or more middle children. As 
in the case of lexicographic search trees, we call an edge joining a middle child to 
its parent dashed and all other edges solid. Thus the virtual tree consists of a 
hierarchy of binary trees, which we call solid subtrees, interconnected by dashed 
edges. The relationship between T and I/ is that the parent in T of a node x is the 
symmetric-order successor of x in its solid subtree in I’, unless x is last in its solid 
subtree, in which case its parent in T is the parent of the root of its solid subtree 
in V. (See Figure 19.) In other words, each solid subtree in I/ corresponds to a path 
in T, with symmetric order in the solid subtree corresponding to linear order along 
the path, from first vertex to last vertex. 

Remark. In the preliminary version of this data structure [ 341, symmetric order 
in a solid subtree of V corresponds to reverse order along the corresponding path 
in T. The present definition is equivalent but more natural. 

To represent V, we store pointers in each node x to its parent p(x) in I’, its left 
child left(x), and its right child right(x). These pointers allow us not only to move 
up and down the tree but also to determine in 0( 1) time whether a given node x 
is the root of V or a left, middle, or right child: we merely compare x to Zeft(p(x)) 
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and right(p(x)). To complete the representation we must store information about 
the node costs. For each node x, let cost(x) be the cost of x, and let min cost(x) be 
the minimum cost of any descendant of x in the same solid subtree. The min cost 
function will allow us to perform find min easily. Instead of storing cost and min 
cost explicitly, which makes the add cost operation expensive, we store these 
functions in difference form. To be precise, we store the following two values in 
each node x (see Figure 19): 

-( 

cost(x) if x is the root 
Acost = of a solid subtree of V, 

cost(x) - cost(p(x)) otherwise; 

Amin = cost(x) - min cost(x). 

Note. We have Amin L 0 for any node x. 

To carry out the link/cut tree operations efficiently using virtual trees, we use a 
form of splaying that moves a designated node to the root of its virtual tree. There 
are two 0( I)-time restructuring primitives that are applicable to virtual trees. The 
first is rotation, which, as in the case of lexicographic splay trees, rearranges left 
and right children and leaves middle children alone. The following formulas define 
the necessary updating of Acost and Amin after a rotation. Let the edge being 
rotated join a vertex v to its parent w, let a and b be the children of v before the 
rotation, and let b and c be the children of w after the rotation. The unprimed and 
primed functions, respectively, denote values before and after the rotation. (See 
Figure 20.) 

Acost’ (v) = Acost + Acost( 
Acost’ (w) = -Acost( v), 
Acost’ (b) = Acost + Acost( 
Amin’ = max{O, Amin - Acost’( Amin - Acost(c 
Amin’ = max(0, Amin - Acost( Amin’ - Acost’(w 

All other values are unaffected by the rotation. 
The second restructuring primitive is splicing. If w is the root of a solid subtree 

and v is any middle child of w, we can make v the left child of w and the old left 
child, if any, a middle child by defining left(w) = v. (See Figure 2 1.) This requires 
the following updating of Acost and Amin, where u is the old left child of w, and 
the unprimed and primed functions, respectively, denote values before and after 
the splice: 

Acost’ (v) = Acost - Acost( w), 
Acost’ = Acost + Acost( 
Amin’ = max(O, Amin - Acost’( Amin(right(w)) - Acost(right(w))]. 

We describe the splaying operation as a three-pass bottom-up process. Let x be 
the node at which the tree is to be splayed. During the first pass, we walk up the 
virtual tree from x to the root, splaying within each solid subtree exactly as in 
lexicographic splay trees. After the first pass, the path from x to the root consists 
entirely of dashed edges. During the second pass, we again walk from x up to the 
root, this time splicing at each proper ancestor of x so as to make x and all its 
ancestors (except the root) left children. After the second pass, x and the root are 
in the same solid subtree. During the third pass, we walk from x up to the root, 
splaying in the normal fashion. After the third pass, x is the root of the entire 
virtual tree. (See Figure 22,) 
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10 a 

x 

3 b 

FIG. 19a. Virtual tree representing a link/cut tree: Actual tree. Numbers in nodes are costs. 
Dashed edges separate paths corresponding to solid subtrees in virtual tree. 

Although splaying is defined as consisting of three passes, it can be carried out 
in a single bottom-up pass using four-node lookahead, and a one-pass implemen- 
tation will be most efftcient in practice. During the third pass, only zig and zig-zig 
splaying steps can occur: since all remaining ancestors of x except the root are left 
children, the zig-zag case is impossible. 

We can analyze the amortized time for splaying using an extension of the 
argument in Section 2. Since we are only interested in proving an amortized bound 
of O(log n) for splaying, we assign a weight of one to every node. We define the 
size of a node to be the number of its descendants in its virtual tree (every node 
counts one since it has a weight of one), the rank of a node to be the binary 
logarithm of its size, and the potential of a virtual tree to be twice the sum of the 
ranks of its nodes. Note that this definition does not distinguish among middle, 
left, and right children. 

As a measure of the time to splay at a node x, we use the original depth of x, 
which is equal to the number of rotations done. The amortized time for the first 
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FIG. 19b. Virtual tree representing a link/cut tree: Virtual tree. First 
and second numbers in nodes are Acost and Amin, respectively. 

FIG. 20. Rotation of edge joining nodes v and w in a virtual tree. Subtrees of 
nodes a, b, and c are deleted for clarity. 

pass is at most 6 log n + k, where k is the depth of x after the first pass. This bound 
follows from Lemma 1 by summing the splay times within each solid subtree; the 
sum telescopes to give the bound. Note that the constant factor is six instead of 
three because we have doubled the potential, but this does not affect the additive 
k term, which counts the number of times the zig case occurs, at most once per 
solid subtree. Since pass two does no rotations and does not change the potential 
(it only exchanges middle and left children), it has an amortized time of zero. To 
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FIG. 21. A splice operation in a virtual tree. Node w is the root of a solid 
subtree. Node v becomes the left child of node w. 
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FIG. 22. A splaying operation at node a in a virtual tree. Subtrees of 
nodes along the access path are deleted for clarity. (a) First pass: splaying 
inside each solid subtree. (b) Second pass: splicing. (c)Third pass: splaying 
along final solid path. 

account for the extra k rotations in pass one, we charge two for each of the k 
rotations in pass three. (This is the reason for doubling the potential.) Lemma 1 
implies that the amortized time for pass three is at most 6 log n + 2, even at a 
cost of two per rotation. Thus the total amortized time for all three passes is 
12 log n + 2 = O(log n). The constant factor of 12 can be reduced to 8 by combin- 
ing the Lemma 1 analysis with a separate analysis of the number of splice opera- 
tions [29, 341. 
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FIG. 23. Everting a link/cut tree at node j. 

We can easily implement all the link/cut tree operations using splaying. To carry 
out find cost(v), we splay at node v and return cost(v). To carry out find root(v), we 
splay at v, follow right pointers until reaching the last node, say w, in the solid 
subtree containing v, splay at w, and return w. To carry out$nd min(v), we splay 
at v, use the Acost and Amin fields to walk down from v to the last minimum-cost 
node after v in the same solid subtree, say w, splay at w, and return w. To carry 
out add cost( v, x), we splay at v, add x to Acost( and subtract x from Acost(Zej( v)) 
if left(v) # null. To carry out Zink(v, w), we splay at v and at w and make v a mid- 
dle child of w (by defining p(v) to be w). To carry out cut(v), we splay at v, add 
Acost to Acost(right(v)), and break the link between v and right(v) by defining 
p(right(v)) = null and right(v) = null. All these operations have an O(log n) 
amortized time bound. The initial potential (for a forest of one-node trees) is zero, 
and the potential remains nonnegative throughout any sequence of operations. 
Thus there is no net potential drop over a sequence of operations, and the total 
actual time is bounded by the total amortized time, which is O(m log n). 

Our splaying method for virtual trees has several variants. For example, during 
the third pass we can use Allen and Munro’s move-to-root heuristic instead of 
splaying [4]. This simplifies the program and preserves the @log n) time bound, 
although a separate analysis is needed to bound splices [29, 341. The third pass can 
even be eliminated entirely, although this complicates the implementation of the 
link/cut tree operations. The most practical variant of virtual tree splaying remains 
to be determined. 

By suitably extending the virtual tree data structure, we can carry out other 
operations on link/cut trees in O(log n) amortized time. The most important of 
these is evert(v), which makes node v the root of its tree by reversing the path from 
v to the original root. (See Figure 23.) To implement this operation, we need to 
store an additional bit in each node indicating whether the meaning of its left and 
right pointers is reversed. (This bit must be stored in difference form.) We can also 
modify the structure so that the edges rather than the nodes have costs. If storage 
space is expensive, we can reduce the number of pointers needed per node from 
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three to two by using the representation of Figure 10. Sleator and Tarjan’s paper 
[29] contains additional details about these results and several applications of 
link/cut trees. 

7. Remarks and Open Problems 
In this paper we have developed three new self-adjusting data structures: self- 
adjusting forms of binary search trees, lexicographic search trees, and link/cut 
trees. All of these structures are based on splaying, a restructuring heuristic that 
moves a designated node to the root of a tree through a sequence of rotations that 
approximately halves the depths of all nodes along the original path from the 
designated node to the root. Our structures are simpler than the corresponding 
balanced structures and at least as efficient in an amortized sense (to within a 
constant factor). The simplicity and adaptive behavior of our structures makes 
them potentially very useful in practice. For example, splay trees seem well-suited 
for implementation of first-tit storage allocation [21, 221, having an amortized 
bound of O(log n) per allocation or deallocation while possibly being even more 
efficient in practice. We intend to implement a splay-tree-based storage allocator 
and compare it to the “roving pointer” method of Knuth [21]. 

Our results illustrate but certainly do not exhaust the power of the twin paradigms 
of amortization and self-adjustment. Remaining open problems include the devel- 
opment of new forms of self-adjusting data structures and a tighter analysis of the 
total running time of a sequence of access operations on a splay tree. In particular, 
we may ask whether there is a self-adjusting form of B-tree, namely, a self-adjusting 
search tree with at most b children per node and an O(logbn) amortized access 
time. Furthermore, we believe but cannot prove that the following three results 
hold for splay trees. 

CONJECTURE 1 (DYNAMIC OPTIMALITY CONJECTURE). Consider any sequence 
of successful accesses on an n-node search tree. Let A be any algorithm that carries 
out each access by traversing the path from the root to the node containing the 
accessed item, at a cost of one p/us the depth of the node containing the item, and 
that between accesses performs an arbitrary number of rotations anywhere in the 
tree, at a cost of one per rotation. Then the total time to perform all the accesses 
by splaying is no more than O(n) plus a constant times the time required by algo- 
rithm A. 

CONJECTURE 2 (DYNAMIC FINGER CONJECTURE). The total time to perform 
m successful accesses on an arbitrary n-node splay tree is O(m + n + CE;’ 
lOg( I ij+l - ill + l), wherefor 1 % i % m the jth access is to item i, (we denote items 
by their symmetric-order position). 

CONJECTURE 3 (TRAVERSAL CONJECTURE). Let T, and T2 be any two n-node 
binary search trees containing exactly the same items. Suppose we access the items 
in T, one after another using splaying, accessing them in the order they appear in 
Tz in preorder (the item in the root of TZ first, followed by the items in the leji 
subtree of T2 in preorder, followed by the items in the right subtree of T2 in preorder). 
Then the total access time is O(n). 

The dynamic optimality conjecture, if true, implies that splay trees are a form 
of universally efficient search tree: in an amortized sense and to within a constant 
factor, no other form of search tree can beat them. Our faith in the conjecture is 
based on the truth of the corresponding result for the move-to-front list update 
rule [30]. 
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The dynamic optimality conjecture implies both the dynamic finger conjecture 
and the traversal conjecture. This can be shown by a study of the power of rotations 
in binary search trees, which is a research topic in itself and which we are currently 
exploring. The closest we have come to proving any of these conjectures is to 
establish the following special case of the traversal conjecture [36]. 

THEOREM 9 (SCANNING THEOREM). Given an arbitrary n-node splay tree, the 
total time to splay once at each of the nodes, in symmetric order, is O(n). 

Appendix. Tree Terminology 

A rooted tree T is either empty or consists of a single node t, called the root, and a 
set of zero or more rooted trees TI, Tz, . . . , Tk that are node-disjoint and do not 
contain t. The roots tl, . . . , tk of T,, . . . , Tk are the children oft; t is the parent of 
tl, . . . , tk. We generally denote the parent of a node x by p(x) and the grandparent 
of x (its parent’s parent) by g(x); we denote an undefined parent or grandparent by 
the special node null. Two nodes with the same parent are siblings. The degree of 
a node is the number of its children. A path of length I- 1 in a tree is a sequence 
ofnodesx,,~~, . . . . XI such that xi+1 is a child of xi for 1 5 i < 1. The path goes 
from xl down to XI and from xt up to x1. The depth of a node x is the length of the 
path from the root down to x. A node x is an ancestor of a node y, and y is a 
descendant of x, if there is a path from x down to y. (Every node is an ancestor 
and a descendant of itself.) The subtree rooted at a node x is the tree whose root is 
x containing all the descendants of x. A forest is a collection of node-disjoint trees. 

A binary tree is a rooted tree in which each node x has at most two children, a 
left child, left(x), and a right child, right(x). We denote a missing left or right child 
by null. The left subtree of a node x in a binary tree is the subtree rooted at the left 
child of x; the right subtree is defined symmetrically. The left path in a binary tree 
is the path to, tl, t2, . . . , tl such that to is the root, ti+l = left(ti) for 1 5 i 5 1 - 1, 
and left(tJ = null. The right path is defined symmetrically. 
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