0 1 0 1
+ 0 + 0 + 1 + 1
--- --- --- ---
0 1 1 10
^
|
+--- carry
In decimal In binary
*** * = indicate that previous
5 00000101 bit addition produced a carry
+ 7 + 00000111
---- ----------
12 00001100
In decimal In binary
** * * = indicate that previous bit addition
145 10010001 produced a carry
+ 61 + 00111101
------- ----------
206 11001110
0 1 0 1
- 0 - 0 - 1 - 1
--- --- --- ---
0 1 *1 0
^
|
+--- BORROW !
In decimal In binary
* * = indicate that previous
9 00001001 bit subtraction produced
- 5 - 00000101 a borrow
---- ----------
4 00000100
In decimal In binary
** * * = indicate that previous bit subtraction
149 10010101 produced a borrow
- 41 - 00101001
----- ----------
108 01101100
0 1 0 1
x 0 x 0 x 1 x 1
--- --- --- ---
0 0 0 1
5 00000101
x 3 x 00000011
---- -----------
15 00000101
00000101*
-----------
00001111 = 15
10010101 (= 149 dec)
x 00101001 (= 41 dec)
----------
10010101
00000000*
00000000**
10010101***
00000000****
10010101*****
00000000******
00000000*******
----------------
001011111011101 (= 6109 = 149*41)
In decimal: In binary:
03 (quotient) 00000011 (quotient)
------- ------------------
3 / 10 11 / 00001010
9 11
---- ---
1 (remainder) 100
11
---
1 (remainder)
In decimal:
0082 (quotient = 82(10))
---------
27 / 2237
0
---
22
0
---
223
216
----
77
54
---
23 (remainder = 23(10))
In binary:
27(10) = 11011(2)
2237(10) = 100010111101(2)
000001010010 (quotient = 82(10))
-------------------
11011/ 100010111101
0
---
10
00
---
100
000
----
1000
0000
-----
10001
00000
------
100010
11011
-------
1111
0000
-------
11111
11011
-------
1001
0000
------
10011
00000
------
100110
11011
-------
10111
00000
------
10111 (remainder = 23(10))