Slideshow:
|
|
1
T(S) ~= ------ × T(R)
V(R,a)
1
B(S) ~= ------ × B(R)
V(R,a)
|
σA ≠ c(R) ∪ σA = c(R) = R
<==> σA ≠ c(R) = R − σA = c(R)
|
Therefore: if S = σ A ≠ c (R) :
1
T(S) ~= T(R) × ( 1 - ------ )
V(R,a)
1
B(S) ~= B(R) × ( 1 - ------ )
V(R,a)
|
1
T(S) ~= --- × T(R)
2
1
B(S) ~= --- × B(R)
2
|
1
T(S) ~= --- × T(R)
3
1
B(S) ~= --- × B(R)
3
|
We will go with the text book proposal as estimate for this course.
1
T(S) ~= --- × T(R)
3
1
B(S) ~= --- × B(R)
3
|
as an estimate for S = σ A > c (R) !!!
(The logic is people are always more interested in finding out about less common facts).
B( σC1(R) ) = f1 B( R ) T( σC1(R) ) = f1 T( R ) |
|
S = σC1 and C2(R)
= σC1 ( σC2(R) )
|
|
|
B( σC1(R) ) = f1 B( R ) T( σC1(R) ) = f1 T( R ) |
Problem:
|
σC1 or C2(R) ∪ σ¬(C1 or C2)(R) = R
⇒ σC1 or C2(R) = R − σ¬(C1 or C2)(R)
= R − σ(¬C1)and(¬C2)(R)
|
|
Then:
From: σC1 or C2(R) = R − σ(¬C1)and(¬C2)(R) We have that: T( σC1 or C2(R) ) = T(R) - (1-f1)(1-f2) × T(R) = (1 - (1-f1)(1-f2)) × T(R) |
|