Reasons not to deploy RED 1

Martin May®, Jean Bolot®, Christophe Diot*, and Bryan Lyles*

o INRIA
mmay,bolot@sophia.inria.fr

Abstract— In this paper we question the benefits of
RED by using a testbed made of two CISCO 7500 routers
and up to 16 PCs to observe RED performance under a
traffic load made of FTP transfers, together with HTTP
traffic and non responsive UDP flows. The main results
we found were, first, that RED with small buffers does
not improve significantly the performance of the network,
in particular the overall throughput is smaller than with
Tail Drop and the difference in delay is not significant.
Second, parameter tuning in RED remains an inexact
science, but has no big impact on the end-to-end perfor-
mance. We argue that RED deployment is not straight
forward, and we strongly recommend more research with
realistic network settings to develop a full quantitative
understanding of RED. Nevertheless, RED allows us to
control the queue size with large buffers.

I. INTRODUCTION

To the question: "would you implement RED on
your network?", our preferred carrier answered with
some kind of surprise: "why? why would I drop per-
fectly good packets when there is no obvious reason to
do so, and why would I change a really simple mech-
anism (i.e.tail drop) that works perfectly for a more
complex mechanism for which I have no proof it works
better".

Consequently, we decided to take a public implemen-
tation of RED (CISCO IOS 12.0 [7]) and to run some
experiments on a local testbed. We use Chariot 2.2 [4]
load generator to simulate a classic Internet traffic with
a decent number of connections. OQur experiments high-
light the impact of network traffic conditions, router
settings, and RED parameter choice on the end2end
transmission performance with RED.

Parameter choice in RED seems to be hard since
the inventors periodically changes their recommended
RED parameters [2]. Even more, Van Jacobson recently
claimed, that any parameter setting (as long as the con-
trol law is monotone, non-deceasing and covers the full
range of 0 to 100% drop rate) will work and will improve
the system performance [5].

Many of the intuitions which have driven this work
have derived from previous experiences with the gener-
ation of congestion control feedback, for example, the
ABR work in the ATM Forum. In particular, we note
that the Forum found that systems which generate feed-

x SPRINT Labs
cdiot,lyles@sprintlabs.com

back based on the bulk behavior of traffic have param-
eters which are sensitive to the exact network configu-
ration and traffic mix. In the case of the development
of ABR this led to a long period of parameter opti-
mizations, and ultimately to the development of sys-
tems which gave per flow feedback.

II. EXPERIMENTAL PLATFORM

Significant numbers of papers on RED have been
published based on simulation studies. While simula-
tion is a core tool for network protocol investigation,
the traffic generated by most of the simulators is quite
different from real network traffic (most simulations use
infinite greedy TCP source, RTT is constant, and sim-
ulation limits the number of connections). Therefore,
in this study we used Chariot, a network load genera-
tor to generate, manage and synchronize a whole set of
traffic connections on different endpoints (PCs running
MS Windows NT4.0) where the traffic more closely ap-
proximated real network traffic. Chariot simulates e.g.,
FTP connections (with the setup phase and for differ-
ent file sizes), file server traffic, HTTP traffic from and
towards a web server, or real-time audio and video traf-
fic. All these transfers were using the real TCP or UDP
implementations on the endpoints.

The setup we used is illustrated in Figure 1.

PC1
10 Mbit/s
PC2 —
%) Rvr 1
1 =
Q0
=
o
I —
B ; Rvr 2
PC n— 10 Mbit/s
Cisco 7500
Fig. 1. Testbed Setup

Our traffic was made of 80% of TCP connections
and 20% of UDP flows ... 60% of the TCP traffic was
generated by FTP sources sending files of variable sizes
about 100000 bytes. The missing 40% is HTTP traffic
for text (small transfers) and pictures (large transfers).

III. PARAMETER SETTING FOR RED WITH ONE
ROUTER

In this section, we evaluate performance of RED and
we compare these results to those obtained when using
tail drop with the same network traffic. Unfortunately,
[3] offers little guidance on how to set configuration pa-
rameters. We found the best guidance in the CISCO
I0S online documentation:

"Note: The default WRED parameter values are
based on the best available data. CISCO recommends
that you do not change the parameters from their de-
fault values unless you have determined that your ap-
plications would benefit from the changed values. "

Thus, we tried to understand how to tune RED pa-
rameters for our applications.

Before we describe our experimental observation, we
provide a short reminder on RED, and the correspon-
dence between RED IOS parameters and parameters
found in the RED manifesto [1].

RED randomly drops or marks arriving packets when
the average queue length exceeds a minimum thresh-
old. The drop probability increases with increasing av-
erage queue length up to a maximal dropping proba-
bility. When the average queue size reaches an upper
threshold all packets are dropped. The average queue
size is calculated with an exponential weighted mov-
ing average, where a variable a defines the weight for
the past queue size values. The CISCO IOS allows to
set the following 4 parameters: the minimum threshold
ming,, the maximum threshold max;,, the maximum
drop probability maz,, and the averaging parameter .

In the following we examine the end2end perfor-
mance of our network with varying RED parameters.
Therefore, we used different RED setups by varying
mazx,, the size of the dropping interval (max s, —ming,),
the buffer size, and the averaging parameter a.. To eval-
uate the performance of RED we measured 3 values
of interest: the average throughput (T hroughput), the
number of bytes sent (BytesSent = 1000), and the per-
centage of UDP packets lost (%U D Pdrop).

A. The mazimum drop probability mazx,

This parameter should be chosen reasonably so that
sufficient drops occur between miny, and maxy,. [3] as
well as [7] recommends a value no larger than 0.1. We
used values from 1/100 to 1 and compared those with
a simple tail drop buffer management.

In table I we used a default RED setting with an
outgoing buffer size of 40 packets (default value for all
CISCO interface cards) and set min — th = 10 and
maxy, = 30. The value for the averaging of the queue
size is set to a = 0.002.

maz, | Throughput | Bytes Sent | % UDP drop

1/100 8.471 626,326 9.110
1/10 8.304 623,830 9.244
1 8.294 618,534 9.713
TABLE 1. Performance for a buffer size of 40 packets and varying
mazy

Our next experiment was similar, but this time we
used larger buffers in the router. In particular, we set
ming, = 30 and max:, = 130 for a buffer size of 200
packets. For the small buffer the increase of the drop

maz, | Throughput | Bytes Sent | % UDP drop

1/100 8.474 632,347 1.529

1/10 8.337 622,844 1.693

1 8.476 628,231 2.180

TD 8.395 629,244 5.431
TABLE II. Performance for a buffer size of 200 packets and

varying maxp

probability results in a minor increase of the TCP per-
formance without changing the UDP drop rate. The
overall router throughput is not changing significantly.
With the larger buffer the observations are different.
TCP performance does not seem to be a simple func-
tion of the setting of max,. Interestingly, the UDP
drop rate is higher with tail drop. So it appears that
Tail Drop penalizes non-responsive traffic to a greater
extent than RED.

B. Varying the size of the dropping interval (maxip, —
ming,)

In the second test, we varied the size of the dropping
interval. This is to avoid the deterministic dropping
when the maximum threshold is reached. Floyd recom-
mends max, = 2 % ming, in [3].

Again we compared the performance with a small (40
packets) and a large (200 packets) buffer. For both tests
we set the drop probability to a constant maz, = 1/10.

Interval | Throughput | Bytes Sent | % UDP drop

5 to 10 8.347 620,423 9.921

5 to 20 8.472 623,331 9.684

5 to 30 8.384 624,533 9.306
TABLE III. Performance for a buffer size of 200 packets and

varying mazy

The same results for a buffer size of 200 packets a
presented table IV. Again, we observe that a variation
of the dropping interval, i.e. the difference between the
mazy, and the ming, does not influence the system
performance for TCP as well as for UDP traffic. As

Interval | Throughput | Bytes Sent | % UDP drop Buffer Size | Throughput | Bytes Sent | % UDP drop
20 to 50 8.501 632,736 2.000 RED 40 8.331 623,630 9.429
20 to 100 8.480 632,942 2.013 RED 100 8.408 629,335 6.407
20 to 150 8.470 631,543 2.685 RED 150 8.579 632,037 4.825
TD 8.395 629,244 5.431 RED 200 8.480 633,037 3.325
TABLE 1IV. Performance for a buffer size of 200 packets and TD b = 50 8.253 622,307 12.495
varying mazp TD b= 200 8.395 629,244 5.431

with the first set of experiments, we observe that Tail
Drop increases the dropping probability for the UDP
traffic.

C. Fairness

In the following we examined the fairness of RED vs.
Tail Drop. Because the traffic consisted of a mixture of
different connections with different durations and start-
ing times, we did not calculate a fairness index but in-
stead used the throughput of each connection as a rough
measure. OQur macroscopic definition of fairness we use
here is that all the connections of the same type will get
approximately the same throughput.

Figure 2 shows the goodput realized by the differ-
ent TCP connections we used. We used two different
types of FTP/TCP sources, one sending small files, the
second sending large files. Since we use only one source
type per test all connections should get the same aver-
age goodput (see the horizontal line in the plot).

RED large files

Mean Throughput .

Throughput in Mbitsisec

L L L L
o 10 20 30 a0 50 60 70 80 20
Source #

Fig. 2. Throughput for the TCP connections with RED and Tail
Drop

These results do not show much difference between
the realized throughput with RED and Tail Drop. Nei-
ther RED nor Tail Drop results in “fair” throughput for
all connections. There are at least two connections get-
ting more than twice (or less than the half) of the mean

TABLE V. Performance for a buffer size of 200 packets and
varying mazxp

goodput. This might be due to the fact that RED in-
creases the probability that a packets get dropped. If
this occurs during the slow start phase it is very hard
to recover from this loss. Therefore, with RED some
connections might observe less throughput than others.

D. Increase the buffer size

Next, we examined the RED performance for differ-
ent buffer sizes. Therefore we compared the TCP and
UDP performance for big and small buffers. Unlike in
the previous tests, this time, we did not change the
values for the minimum (ming, = 10) and maximum
(max, = 30) thresholds, but only the total buffer size.

Here we can see a nice RED property. First, the
number TCP packets sent is increasing when we in-
crease the buffer size. Second, the bigger the buffer,
the fewer drops we can see for the UDP traffic. Third,
the drop rate for the UDP traffic is much higher with
TD then with RED. This is in contrary to the RED pa-
per, where unresponsive traffic should suffer more with
RED then with TD.

E. Impact of the averaging parameter «

Here, we examine how different averaging settings
impact the performance of RED. The CISCO routers
calculate the average queue size with the following for-
mula:

avg; = avg;—1(1 — ziw) + queuelength(%)
The recommended value in [3] is @ = 0.002. For a
CISCO router this corresponds to 7 = 9.

In Table VI, we used 5 different settings for the aver-
aging, namely 7 = 1 which is the instantaneous queue
length, m = 4, 7 = 8 close to the recommended value,
m =12, and pi = 16 no averaging. We used the follow-
ing RED parameters: minimum Threshold min:, = 10
and maximum Threshold max;, = 30 The maximum
drop probability was max, = 1/10. The buffer size was
set to 100

The authors of RED claimed always that the averag-
ing is a very important feature of the RED algorithm.

Buffer Size | Throughput | Bytes Sent | % UDP drop Setup | Throughput | Bytes Sent | % UDP drop
=1 8.325 624,737 6.773 red-red 8.595 651,635 16.393
m=4 8.476 625,738 6.782 red-td 8.558 666,721 25.093
m™=2_8 8.468 628,941 6.728 td-red 8.305 646,920 16.538
T =12 8.473 625,742 6.021 td-td 8.173 652,204 23.724
=16 8.390 627,520 5.933 TABLE VII. Performance for a buffer size of 40 packets with
TD b =100 8.480 625,828 7.667 different network setups

TABLE VI. Performance for a buffer size of 200 packets and

varying mazxp

This smoothing will avoid the bias against bursty traf-
fic. Finally our tests show some opposite results. First,
with RED we get more drops for the bursty traffic. Sec-
ond, the influence of the weighting factor is minimal (or
not visible). It seems that the multiplexing of 90 sources
smoothes the traffic in a way that the averaging of the
queue size has no effect on the TCP nor the UDP per-
formance.

IV. THE MULTIPLE ROUTER CASE

Setting up the parameters in one single router is al-
ready complicated. Tuning RED parameters in a het-
erogeneous multi-router, multi-ISP environment is even
more complex. In this section we want to discuss the
problems that might occur when RED will be incremen-
tally deployed in an existing network. Specifically, how
RED and non-RED routers perform in concert.

Therefore we added a second router in our local
testbed and connected a new Ethernet line to it. The
PCs connected to this network together with some of
the PC connected to the first router are now used to cre-
ate cross traffic and increase the load of the two routers
(see also Figure 3.

PC1 —
10 Mbit/s
PC2 —
@ Rvr 1
- =
o
=
S
B 10 Mbit/s
i Rvr 2
PCn—| 10 Mbit/s

Cisco 7500

Fig. 3. Testbed Setup for two routers

With this network setup we examined the end2end
performance of the flows traversing both routers. We
were interested in how the network setup will influence
this performance and if an incremental deployment we
increase or degrade the measures of interest. In Table
VII we used a buffer size of 40 packets with RED and
tail drop. In case of RED we used the following setting:
ming, = 10, mazy, = 30, and maz, = 1/10.

Table VII shows the same measures for a buffer size
of 200 packets and the following RED setting: ming, =
30, mazy, = 130, and maz, = 1/10. For both tests we
used « = 0.002 for the averaging.

Setup | Throughput | Bytes Sent | % UDP drop
red-red 8.511 654,944 14.488
red-td 8.482 654,237 14.915
td-red 8.417 651,038 14.920
td-td 8.648 654,148 14.741

TABLE VIII. Performance for a buffer size of 200 packets with
different network setups

This results show an interesting result. While the
buffers are small, the incremental deployment is prob-
lematic. Changing from a pure tail drop environment
to a heterogeneous RED and tail drop network has got
an important influence. E.g., UDP traffic losses varying
from 16% up to 25%!

The situation is completely different when using
larger buffers. Even more, the pure tail drop network
performs best compared with the heterogeneous or pure
RED networks.

The problem of parameter tuning gets very impor-
tant when networks like those used in this section are
connected without an agreement between the concerned
ISPs. Probably, a single ISP or a single misconfigured
router can determine the performance for the whole net-
work e.g., by using a setup that degrade the perfomance
of the UDP traffic while the other ISP is interested in
inceasing UDP throughput.

V. DISCUSSION

The above results prove, at least for the CISCO I0S
implementation of RED, that our preferred carrier’s ret-
icenses were justified. RED, given the current experi-
mental settings, does not exhibit much better perfor-
mance than Tail Drop. In the case of UDP traffic, it
seems that TD is more aggressive than RED with re-
gard to policing non responsive flows.

We have also shown that the RED parameters have
a minor impact on the performance with small buffer.
There Using RED with large buffers indeed can improve
the systems performance but then choosing good RED

settings is not straight forward. In a multi router case
this is differnent. For an incremental deployment, small
buffers are very sensitive for the end2end performance.

It might be argued that we merely evaluated a par-
ticular RED implementation which perhaps does not
fully implement RED. This is, to our understanding,
another proof that RED is difficult to calibrate, and
that deploying it on a carrier backbone in the current
state of understanding would be a mistake.

We believe that, due to the dynamics of the param-
eters that influence RED, a static RED cannot provide
better results than tail drop in the general case.

We therefore recommend the use of more sophisti-
cated active buffer management schemes like the one
proposed in [6]. It is shown that a fair queuing envi-
ronment outperform RED and can give predictable fair
bandwidth sharing to all flows.

More complete experiments on larger test environ-
ments and heterogeneous RT'Ts are required. We in-
tend to carry out these experiments in the future. We
also intend to complete our evaluation with extensive
simulations.

REFERENCES

[1] Jon Crowcroft and et al. Recommendations on queue manage-
ment and congestion avoidance. Technical report, End2end
‘Working Group, 1997.

[2] Sally Floyd. Random early detec-
tion gateways. http://ftp.ee.lbl.gov/floyd/red.html, August
1993.

[3] Sally Floyd and Van Jacobson. Random early detection gate-
ways for congestion avoidance. Transaction on Networking,
1993.

[4] Ganymede Software Inc. Chariot 2.2.
http://www.ganymedesoftware.com /html/chariot.htm, 1998.

[5] Van Jacobson. Notes on using red for queue management and
congestion avoidance. Nanog Workshop, 1998.

[6] Bernhard Suter, T. V. Lakshman, Dimitrios Stiliadis, and
Abhijit Choudhury. Efficient active queue management for
internet routers. 1997.

[7] Cc1sCO
Systems. Ios configuration guide. http://www.cisco.com/,
1998.

