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Abstract 
In large data warehousing environments, it is often advantageous 
to provide fast, approximate answers to complex aggregate queries 
based on statistical summaries of the full data. In this paper, we 
demonstrate the difficulty of providing good approximate answers 
for join-queries using only statistics (in particular, samples) from 
the base relations. We propose join synopses as an effective 
solution for this problem and show how precomputing just one 
join synopsis for each relation suffices to significantly improve the 
quality of approximate answers for arbitrary queries with foreign 
key joins. We present optimal strategies for allocating the available 
space among the various join synopses when the query work load 
is known and identify heuristics for the common case when the 
work load is not known. We also present efficient algorithms for 
incrementally maintaining join synopses in the presence of updates 
to the base relations. Our extensive set of experiments on the TPC- 
D benchmark database show the effectiveness of join synopses and 
various other techniques proposed in this paper. 

1 Introduction 
Traditional query processing has focused solely on providing 
exact answers to queries, in a manner that seeks to minimize 
response time and maximize throughput. However, in large 
data recording and warehousing environments, providing 
an exact answer to a complex query can take minutes, or 
even hours, due to the amount of computation and disk UO 
required. 

There are a number of scenarios in which an exact 
answer may not be required, and a user may prefer a fast, 
approximate answer. For example, during some drill-down 
query sequences in ad-hoc data mining, initial queries in the 
sequence are used solely to determine what the interesting 
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queries are [HHW97]. An approximate answer can also 
provide feedback on how well-posed a query is. Moreover, it 
can provide a tentative answer to a query when the base data 
is unavailable. Another example is when the query requests 
numerical answers, and the full precision of the exact answer 
is not needed, e.g., a total, average, or percentage for which 
only the first few digits of precision are of interest (such as 
the leading few digits of a total in the millions, or the nearest 
percentile of a percentage). Finally, techniques for fast 
approximate answers can also be used in a more traditional 
role within the query optimizer to estimate plan costs; such 
an application demands very fast response times but not 
exact answers. 

Motivated by the above reasons, we study the issue of pro- 
viding approximate answers to queries in this paper. Our 
goal is to provide an estimated response in orders of magni- 
tude less time than the time to compute an exact answer, by 
avoiding or minimizing the number of accesses to the base 
data. Our work is tailored to the typical data warehousing 
environments, which have a few “central” fact tables con- 
nected via foreign-key relationships to multiple dimension 
tables. In such a scenario, it is very common to pose aggre- 
gate queries that join the fact table with the dimension tables 
on their respective foreign-keys. For example, 13 of the 17 
queries in the TPC-D benchmark involve foreign-key joins. 
In this paper, we present novel techniques for providing ap- 
proximate answers to such queries ‘. 

We show, both theoretically and empirically, that schemes 
for providing approximate join aggregates that rely on using 
random samples of base relations alone suffer from serious 
disadvantages (Section 3). Instead, we propose the use of 
precomputed samples of a small set of distinguished joins 
-referred to as join synopses-in order to compute approx- 
imate join aggregates (Section 4). Our key contribution is 
to show that for queries with foreign-key joins, it is pos- 
sible to provide good quality approximate join aggregates 
using a very small number of join synopses. An important 
issue arising out of the use of several sets of statistics is 
the careful allocation of a limited amount of space among 

‘We use the term “approximate join aggregates” to refer to such 
answers. 
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them. When a query workload characterization is available, 
we show how to desi,gn an optimal allocation for join syn- 
opses that minimizes the overall error in the approximate 
answers computed. We discuss heuristic allocation strate- 
gies that work well when the workload is not known (Sec- 
tion 5). A critical issue in approximate query answering is 
that of providing confidence bounds for the answers. Such 
bounds give the user valuable feedback on how reliable an 
answer is. In addition to discussing how traditional methods 
for providing confidence bounds (for example, based on Ho- 
effding bounds or the Central Limit Theorem [Haa97]) apply 
to join synopses, we propose a novel empirical technique 
for computing confidence bounds based on extracting sub- 
samples from samples (Section 6). We also show how join 
synopses can be incrementally maintained in the presence 
of updates (Section 7). Finally, we present the results of a 
detailed experimental study on the performance of the tech- 
niques we propose. Using the TPC-D benchmark, we show 
the advantages of join synopses over samples of base rela- 
tions in computing approximate join aggregates with good 
confidence bounds. We also show that join synopses can 
be maintained efficiently and with minimal overheads (Sec- 
tion 8). 

Previous work related to approximate query answering 
is presented in Section 9. Due to limited space, we omit 
the proofs of all theoretical results from this paper and 
refer the reader to a full version of this paper for all the 
details [AGPR99b]. 

The research in this paper was conducted as part of our 
efforts to develop an efficient decision support system based 
on approximate query answering, called Aqua [GMP97a]. A 
brief introduction of Aqua is presented in the next section. 

2 The Aqua System 

The goal of Aqua is to improve response times for queries 
by avoiding accesses to the original data altogether. Instead, 
Aqua maintains smaller-sized statistical summaries, called 
synopses, on the warehouse and uses them to answer queries. 
Currently, these statistics take the form of various types of 
samples and histograms on the data in the data warehouse. 
A key feature of Aqua is that the system provides probabilis- 
tic error/confidence bounds on the answer, based on the Ho- 
effding and Chebychev formulas [AGPR99b]. Currently, the 
system handles arbitrarily complex SQL queries applying 
aggregate operations (zlvg, sum, count, etc .) over 
the data in the warehou.se. 

Aqua has three key c:omponents: 

l Statistics Collection: This component of Aqua is 
responsible for colllecting all the synopses which Aqua 
uses to answer queries posed by the user. In this paper, 
we propose new techniques to augment this component 
to accurately answer multi-way foreign key join queries 
(Section 4). 

Figure 1: The Aqua architecture. 

Query Rewriting: Aqua achieves response time speed 
ups by rewriting queries posed by the user to instead use 
the synopses. This module is responsible for parsing 
the input SQL query and generating an appropriately 
translated query. Additionally, the rewriting involves 
appropriate scaling of certain operators to take into 
account the size of the synopses vis a vis the orig;inal 
data. 

Maintenance: This component is responsible for keep- 
ing the synopses up to date in the presence of updates 
to the underlying data. In Section 7, we extend our 
prior work and propose novel techniques for incremen- 
tally maintaining join synopses. 

The high-level architecture of the Aqua system is shown 
in Figure 1. It is designed as a software tool that can sit atop 
any commercial DBMS (currently, Oracle) managing a data 
warehouse. Initially, Aqua takes as an input from the ware- 
house administrator the space available for synopses and if 
available, hints on important query and data characteristics.2 
This information is then used by the statistics collector to 
precompute a suitable set of synopses on the data, which are 
stored as regular relations in the DBMS. 

Figure 2 shows a screen shot of the current web user 
interface for Aqua. It shows the actual and approximate 
answers along with error bounds for a 4-way join query. 
The good quality of the approximate answers is in part 
due to the use of join synopses to answer foreign key join 
queries. The figure also shows the times taken to generate 
the two answers. Further details on Aqua are available 
in [GMP97a, AGPR99b, AGPR99al. 

In the rest of the paper, we motivate the need for 
join synopses and present optimal allocation schemes and 
maintenance techniques for them. 

3 The Problem with Joins 

A natural set of synopses for an approximate query engine 
would include uniform random samples of each base relation 
in the database. We refer to these as base samples. The 
use of base samples to estimate the output of a join of 

2 Work is also in progress to automatically extract this information from 
a query workload and adapt the statistics dynamically. 
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Figure 2: Aqua User Interface 

two or more relations, however, can produce a poor quality 
approximation. This is for the following two reasons: 

1. Non-Uniform Result Sample: In general, the join of 
two uniform random base samples is not a uniform 
random sample of the output of the join. In most cases, 
this non-uniformity significantly degrades the accuracy 
of the answer and the confidence bounds. 

2. Small Join Result Sizes: The join of two random 
samples typically has very few tuples, even when the 
actual join selectivity is fairly high. This can lead to both 
inaccurate answers and very poor confidence bounds 
since they critically depend on the query result size. 

Consider the first problem. In order for the join of the 
base samples to be a uniform random sample of the actual 
join, the probability of any two joined tuples to be in the 
former should be the same as their probability in the latter. 
(This is a necessary, but not a sufficient condition.) We will 
use a simple counter example to show that this is not always 
the case. 

Consider the (equality) join of two relations R and S on an 
attribute X. The distribution of X values in the two relations 
are given in Figure 3. The edges connect joining tuples. 
Consider joining base samples from R and S. Assume that 
each tuple is selected for a base sample with probability l/r. 
From Figure 3, we see that al and a2 are in the join if and 
only if both a tuples are selected from R and the one a 
tuple is selected from S. This occurs with probability l/r3, 
since there are three tuples that must be selected. On the 
other hand, al and bl are in the join if and only if the four 
tuples incident to these edges are selected. This occurs with 

Figure 3: Join of samples is not a sample of joins 

probability only l/r 4. This contrasts with the fact that in 
a uniform random sample of the actual join, the probability 
that both al and a2 are selected equals the probability that 
both al and bl are selected. 

We now highlight the second problem of small output 
sizes. Consider two relations, A and B, and base samples 
comprising of 1% of each relation. The size of the foreign 
key join between A and B is equal to the size of A. However 
the expected size of the join of the base samples is .Ol% of 
the size of A, since for each tuple in A, there is only one 
tuple in B that joins with it, and that tuple is in the sample 
for B with only a 1% probability. In general, consider a k- 
way foreign key join and k base samples each comprising 
l/r of the tuples in their respective base relations. Then the 
expected size of the join of the base samples is l/r” of the 
size of the actual join. In fact the best known confidence 
interval bounds for approximate join aggregates based on 
base samples are quite pessimistic [Haa97]. 

Thus, it is in general impossible to produce good quality 
approximate answers using samples on the base relations 
alone, a fact that we further demonstrate in our experiments. 
Since nearly all queries in the warehousing context involve 
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complex queries with large number of (foreign-key) joins, 
it is critical to solve this problem. In the next section we 
provide a solution for this problem. 

4 Join Synopses 

In this section we present a practical and effective solution 
for producing approximate join aggregates of good quality. 
At a high level, we p.ropose to precompute samples of join 
results, making quality answers possible even on complex 
joins. A naive way to jprecompute such samples is to execute 
all possible join queries of interest and collect samples of 
their results. However, this is not feasible since it is too 
expensive to compute and maintain. Our main contribution 
is to show that by computing samples of the results of a small 
set of distinguished joins, we can obtain random samples of 
all possible joins in the schema. We refer to samples of these 
distinguished joins as join synopses. Our technique works 
for the star and snowflake schemas typically found in data 
warehousing [Sch97]. More precisely, we propose a solution 
for queries with onlyjbreign key joins, which are defined as 
follows. 

Definition 4.1 Foreign Key Join: A a-way join r1 W ~2, 
~1 # r-2, is a foreign key join if the join attribute is a 
foreign key in r-1 (i.e., a key in ra). For k 2 3, a k- 
way join is a k-way foreign key join if there is an ordering 
rl,r2,..., rk of the relations being joined that satisfies the 
following property: fx i = 2,3, . . . , k, si-1 W ri is a 2- 
way foreign key join, where si-1 is the relation obtained by 
joining rl,rz,. . . ,ri.-l. 

In order to develop this solution, we model the database 
schema by a graph wiuh a vertex for each base relation and 
a directed edge from a vertex u to a vertex v # u if there 
are one or more attributes in u’s relation that constitute a 
foreign key for w’s relation. The edge is labeled with the 
foreign key. Figure 4 shows the corresponding graph for 
the TPC-D schema. We restrict our attention in this work to 
acyclic (schema-)graphs, which are common in warehousing 
environments. 

From the figure, it can be seen that C W N and L W 
0 W C are 2-way and 3-way foreign key joins respectively. 
Note that two 2-way foreign key joins involving a common 
relation does not imply that a 3-way join among them would 
also be a foreign key join. For example, though C W N and 
S W N are foreign key joins, C W N W S is not a foreign 
key join, by Definition 4.1. 

The key result we prove is that there is a one-one 
correspondence between a tuple in a relation r and a tuple 
in the output of any foreign key join involving r and the 
relations corresponding to one or more of its descendants in 
the graph. This provides us with the technical tool for join 
synopses: a sample S, of a relation r can be used to produce 
another relation J(S,.~~-called a join synopsis of r-that 
can be used to provide random samples of any join involving 
r and one or more of its descendants. 

N 

region 

R 

Figure 4: Directed graph for the TPC-D schema. 

We now move to the technical development of the results. 
Consider the directed acyclic graph G corresponding tab the 
schema of a database. We show two key lemmas about the 
properties of such graphs. 

Lemma 4.1 The subgraph of G on the k nodes in any k-way 
foreign key join must be a connected subgraph with a single 
root node. 

We denote the relation corresponding to the root node as 
the source relation for the k-way foreign key join. 

Lemma 4.2 There is a l-l correspondence between tuples 
in a relation r1 and tuples in any k-way foreign key join with 
source relation r-1. 

From Lemma 4.1, we have that each node can be the 
source relation only for k-way foreign key joins involving 
its descendants in G. For each relation r, there is some 
maximum foreign key join (i.e., having the largest number 
of relations) with r as the source relation. For example., in 
Figure 4, C W N W R is the maximum foreign key join with 
source relation C. 

Definition4.2 Join synopses: For each node u in G, 
corresponding to a relation r-1, define J(u) to be the output 
of the maximum foreign key join r-1 W r2 W . . . W r, with 
source ri. (If u has no descendants in G, then IC =: 1 
and J(u) = q.) Let S,, be a uniform random sam.ple 
of r-1. Define a join synopsis, J(S,), to be the outpu,t of 
S, W 7-2 W . . . W r,. The join synopses of a schema consists 
of J(S,,) for all u in G. . 

To emphasize the sampling nature of join synopses, we will 
sometimes refer to them as join samples. 

For example, in the TPC-D schema, the join synopsis for 
R is simply a sample of R whereas for C it is the join of N, 
R, and a sample of C. Next, we show that the join synopsis 
of a relation can be used to obtain a uniform random sample 
for a large set of queries. 
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Theorem 4.3 Let ~1 W . . . W rk, k > 2, be an arbitrary 
k-way foreign key join, with source relation ~1. Let u be 
the node in G corresponding to rl, and let S, be a uniform 
random sample of rl. Let A be the set of attributes in 
Tl,--., rk. Then, the following are true: 

l J(S,) is a uniform random sample of J(U), with ($1 
tuples. (From Lemma 4.2.) 

8 Tl w a-- W Tk = ‘ITAJ(U), i.e., the projection of J(u) 
on the attributes in ~1 , . . . , Tk. (Trivially true from the 
definition of J(u) given in the above de$nition.) 

l ~AJ(&) is a uniform random sample of q W . . . W Tk 
(= ?TAJ(U)), with IS,1 tuples. (Follows from the above 
two statements.) 

Thus we can extract from our synopsis a uniform random 
sample of the output of any k-way foreign key join, k 2 2. 
For example, the join synopsis on L in the TPC-D schema 
can be used to obtain a sample of any join involving L 
(which is true for most queries in the benchmark). The next 
lemma shows that a single join synopsis can be used for a 
large number of distinct joins, especially for the star-like 
schemas common in data warehouses. Here, two joins are 
distinct if they do not join the same set of relations. 

Lemma 4.4 From a single join synopsis for a node whose 
maximum foreign key join has K relations, we can extract a 
uniform random sample of the output of between K - 1 and 
2K-1 - 1 distinctforeign key joins. 

Note that since Lemma 4.2 fails to apply in general for 
any relation other than the source relation, the joining tuples 
in any relation T other than the source relation will not in 
general be a uniform random sample of T. Thus distinct join 
synopses are needed for each node/relation. 

Since tuples in join synopses are the results of multi-way 
joins, a possible concern is that they will be too large because 
they have many columns. To reduce the columns stored 
for tuples in join synopses, we can eliminate redundant 
columns (for example, join columns) and only store columns 
of interest. Small relations can be stored in their entirety, 
rather than as part of join synopses. To further reduce the 
space required for join synopses, we can renormalize the 
tuples in a join synopsis into its constituent relations and 
remove duplicates. To the extent that foreign keys are many- 
to-one, this will reduce the space, although the key will then 
be replicated. Of course, with renormalization, when a tuple 
in S,, is deleted, one has to delete any joining tuples in 
the constituent relations as well. This can be done either 
immediately or in a lazy fashion in a batch. The following 
lemma places a bound on the size of a renormalized join 
synopsis. 

Lemma 4.5 For any node u whose maximum foreign key 
join is a rc-way join, the number of tuples in its renormalized 
join synopsis J(SU) is at most KIS,~. 

Example 4.1 Consider the TPC-D schema in Figure 4. In 
the TPC-D benchmark database, the relations N and R, 
corresponding to Nation and Region, have 25 and 5 tuples 
in them, respectively. Therefore, we can store them in their 
entirety without considering any samples for them. We can 
therefore remove them from the graph. We are left with the 
nodes L, PS, 0, C, P, and S. For each of these relations, 
the system needs to store a join synopsis corresponding to 
the join for which the relation is a source. 

We now briefly highlight the space overhead for join 
synopses in TPC-D. The number of relations in the maxi- 
mum foreign key join corresponding to each of these nodes 
(denoted by the letter K above) is 6,3,2,1,1, and 1 for 
L, PS, 0, C, P and S respectively. Let us now make two 
simplifying assumptions: (1) the size of the tuples in each 
base relation is the same; and (2) the number of tuples, 
n, allocated to each of the join synopses is the same. By 
Lemma 4.5, the total number of tuples in the synopsis is at 
most INI + IRI + C, n,lS,I = 30 + 14n. Thus we can ob- 
tain, for every possible join in the TPC-D schema, a uniform 
random sample of 1% of each join result, from a collection 
of join synopses that in total use less than 15% of the space 
needed for the original database! Note also that we can fur- 
ther reduce the size of the join synopses by taking advantage 
of the fact that many foreign keys are many-to-one. 8 

To summarize, we have shown that it is possible to create 
compact join synopses of a schema with foreign key joins 
such that we can obtain a random samples of any join in the 
schema. In the next section, we present a detailed analysis 
of deciding the size of the join synopses taking into account 
tuple size, query frequency, etc. 

5 Allocation 

In this section, we present optimal strategies for allocating 
the available space among the various join synopses when 
certain properties of the query work load are known and 
identify heuristics for the common case when such proper- 
ties are not known. 

5.1 Optimal strategies 

We consider the following high-level characterization of a 
set, S, of queries with selects, aggregates, group bys and 
foreign key joins. For each relation, Ri, we determine the 
fraction, fi, of the queries in S for which Ri is either the 
source relation in a foreign key join or the sole relation in a 
query without joins. For example, for the 17 queries in the 
TPC-D benchmark, L is the source or sole relation for 14 
queries and PS is the source or sole relation for 3 queries, 
and hence the fraction fi equals 14/17 for L, equals 3/17 
for PS, and equals zero for all other relations. 

We seek to select join synopsis (join sample) sizes SO as 
to minimize the average relative error over a collection of 
aggregate queries, based on this characterization of the set 
of queries. This can be done analytically by minimizing the 
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average relative error bounds (i.e., confidence intervals) over 
the collection. Although this seems to imply that the optimal 
sample size allocation is specific to the type of error bounds 
used, we will show that a large class of error bounds share 
a common property that we will exploit for this purpose. 
Namely, we observe that the error bounds for COUNT, SUM, 
and AVG based on thee commonly-used Hoeffding bounds 
and/or Chebychev bounds, including the new approaches 
discussed in Section 6, all share the property that the error 
bounds are inversely proportional to fi, where n is the 
number of tuples in the Goin) sample. (Details on these 
bounds are discussed in Section 6.) 

Thus the average relative error bound over the queries is 
proportional to 

T&T (1) 

where ni is the number of tuples allocated to the join sample 
for source relation Ri . 

Our goal is to select the ni so as to minimize Equation 1 
for a given bound, N, on the total memory allotted for 
join synopses. For each source relation Ri, let si be the 
size of a single join synopsis tuple for i. Then we require 
xi nisi 5 N. We show that the optimal allocation selects 
ni to be proportional to (fi/si)2’3: 

Theorem 5.1 Given N, and fi and si for all relations Ri, 
taking 

/ :. 1 213 

where N’ = N/(x;; fj2’3sj1’3), minimizes Equation I 
subject to Ci nisi 2 IV. 

Note that the above analysis has ignored predicate se- 
lectivities. We observe that the relative error bounds for 
COUNT, SUM, and AVG based on the commonly-used Ho- 
effding bounds and/or Chebychev bounds, including our 
new approaches, are either proportional to l/@i or propor- 
tional to l/q&i, where q is the selectivity. In the absence of 
a characterization of the query work load in terms of pred- 
icate selectivities, we assume that the selectivities are inde- 
pendent of the relation:s. (Incorporating a selectivity charac- 
terization can readily be done, although the analysis is more 
detailed.) ZJnder this alssumption, our analysis above holds 
good for any mix of se.lectivities. 

Finally, note that t:he sample sizes can be adapted to 
a changing query load by maintaining the frequencies fi, 
and reallocating among the join samples as the frequencies 
change. 

5.2 Heuristic strategies 

We next consider three strategies for allocating join synopses 
that can be used in the absence of query work load informa- 
tion. These can be used as starting points for the adaptive 
procedure proposed above. 

EqJoin divides up the space allotted, N, equally amongst 
the relations. Each relation devotes all its allocated space 
to join synopses. (For relations with no descendants in 
the schema, this equates to a sample of the base relation.) 

CubeJoin divides up the space amongst the relations in 
proportion to the cube root of their join synopsis tuple 
sizes. Each relation devotes all its allocated space to join 
synopses. 

PropJoin divides up the space amongst the relations 
in proportion to their join synopsis tuple sizes. Each 
relation devotes all its allocated space to join synop.ses, 
and hence each join synopsis has the same number of 
tuples. 

Thus for EqJoin, CubeJoin, and PropJoin, the number of 
tuples for a join synopsis with tuple size Si is inversely pro- 
portional to Sir Sf13, and 1, respectively. When the euror 
bounds are inversely proportional to fi, CubeJoin mini- 
mizes the average relative error bounds when all frequen- 
cies fi are assumed to be equal (Theorem 5.1), and PropJoin 
minimizes the maximzrm error bound when all frequencies fi 
are nonzero. 

These allocation strategies using join samples can be 
compared against similar strategies that use only base 
samples: (a) EqBase is like EqJoin on base samples, i.e., 
it devotes all its allocated space to samples of the base 
relations; (b) CubeBase is like CubeJoin on base samples; 
and (c) PropBase is like PropJoin on base samples. 

The experimental results in Section 8 quantify the advan- 
tage of the join samples strategies over the base samples 
strategies for representative queries. 

6 Improved Accuracy Measures 

A critical issue in approximate query answering of aggrega- 
tion queries is that of providing confidence bounds for the 
answers. There are several popular methods for deriving 
confidence bounds for approximate answers obtained from 
samples; these are based on Central Limit Theorem (CLT) 
bounds, Chebychev bounds, and/or Hoeffding bounds. An 
important advantage of using join synopses is that que:ries 
with foreign key joins can be treated as queries without joins 
(i.e., single-table queries). Known confidence bounds for 
single-table queries are much faster to compute and much 
more accurate than the confidence bounds for multi-talble 
queries (see, e.g., [Haa96]). 

In the full paper [AGPR99b13, we summarize methods for 
single-table queries and then present a detailed analysis that 
demonstrates the precise trade-o@ among these methods, as 
well as a method based on subsampling, which we describe 
next. 

Consider the following estimation approach, which we 
call chunking: 

3See also [GM99a] for extensions and further analysis. 
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Partition the sampled tuples in a join synopsis into Ic 
subsets (subsamples), which we call “chunks”, and for 
each chunk j, compute an estimator, ej, based on the 
sample points in the chunk. 

Report an estimate and a bound based on the ej. 

Previous work (see, e.g., [AMS96]) has shown that confi- 
dence bounds for an estimator can be improved by repeating 
an estimation procedure many times, and then applying a 
chunking-like approach. We extend this previous work as 
follows. 

l Within the general chunking framework, we propose and 
explore (analytically and experimentally) a number of 
alternative procedures for reporting an estimate and an 
error bound based on the chunks, including varying the 
number of chunks. We consider two possible choices for 
reporting an overall estimate e: taking the average of the 
ej and taking the median of the ej. 

l Whereas previous work on taking the median has been 
asymptotic in nature, we show the precise (i.e., non- 
asymptotic) trade-offs for when the guaranteed bounds 
for the median improve upon the bounds with no 
chunking, and for the optimal number of chunks to use 
for confidence probabilities of practical interest. 

l We propose and explore the use of the chunk estimators 
in generating empirical error bounds, as described next. 

Using chunking for empirical error bounds: Of- 
ten, confidence bounds derived analytically are overly pes- 
simistic: the estimated answer is closer to the exact answer 
more often than indicated by the analytical bound. A com- 
mon approach taken to verify this is to conduct multiple tri- 
als of an experiment on various data sets. However, this is 
not entirely satisfactory, as the data sets of interest in some 
applications may not exhibit the good behavior of the data 
sets used in the study. 

We propose chunking as a means to report on multiple ex- 
periments run on the actual query and data. Each subsample 
is its own experiment on the actual query and data, and there 
are various possibilities on how to report these results to the 
user. In the full paper [AGPR99b], we study the effective- 
ness of reporting a CLT bound using the sample variance 
of the chunk estimators, or alternatively, reporting the min- 
imum and maximum of the chunk estimators. Other alter- 
natives include reporting various quantiles of the chunk es- 
timators. The feedback to the user is intuitively of the form: 
L independent experiments were run for your query, all (or 
say, 90%) of which fell within the range [z, y], with the av- 
erage (or median) being e. Our experiments confirm that 
these empirical bounds are a good compliment to traditional 
guaranteed bounds. 

7 Maintenance of Join Synopses 

In this section, we focus on the maintenance of join synopses 
when the underlying base relations are being updated (we 
consider both insertions and deletions. The techniques we 
propose are simple to implement and require only infrequent 
access to the base relations. 

Our algorithm for maintaining a join synopsis J(SU) for 
each u is as follows. Let p, be the current probability for 
including a newly arriving tuple for relation u in the random 
sample S,. (This probability is typically the ratio of the 
number of tuples in S, to the number of tuples in u.) On an 
insert of a new tuple r into a base relation corresponding to 
a node u in G, we do the following. Let u W r2 W . . . W r, 
be the maximum foreign key join with source U. (1) We add 
T to S, with probability p,. (2) If r is added to S,,, we 
add to J(SU) the tuple {r} W r-2 W -.. W r,. This can 
be computed by performing at most K - 1 look-ups to the 
base data, one each in r-2, . . . , r,, . (For any key already in 
J(S,), the look-ups for it or any of its “descendants” are 
not needed.) (3) If r is added to S,, and S,, exceeds its target 
size, then select uniformly at random a tuple 7’ to evict from 
S,. Remove the tuple in J(SU) corresponding to r’. 

On a delete of a tuple r from U, we first determine if r 
is in S,. If T is in S,, we delete it from S,, and remove 
the tuple in J(SU) corresponding to 7. As in [GMP97b], if 
the sample becomes too small due to many deletions to the 
sample, we repopulate the sample by rescanning relation u. 

Note that this algorithm only performs look-ups to the 
base data with (small) probability p,. Also, when a tuple is 
inserted into a base relation u, we never update join synopses 
for any ancestors of u. Such updates would be costly, since 
these operations would be performed for every insert and 
for each ancestor of u. Instead, we rely on the integrity 
constraints to avoid these costly updates. 

Theorem 7.1 The above algorithm properly maintains all 
S, as uniform random samples of u andproperly maintains 
alljoin synopses J(Su). 

We assume that updates may be applied in a “batch” 
mode. In such environments, join synopses can be kept 
effectively up-to-date at all times without any concurrency 
bottleneck. In an online environment in which updates and 
queries intermix, an approximate answering system can not 
afford to maintain up-to-date synopses that require examin- 
ing every tuple (e.g., to find the minimum and maximum 
value of an attribute), without creating a concurrency bot- 
tleneck. In such environments, maintenance is performed 
only periodically. Approximate answers depending on syn- 
opses that require examining every tuple would not take into 
account the most recent vends in the data (i.e., those occur- 
ring since maintenance was last performed), and hence the 
accuracy guarantees would be weakened. Note that the tech- 
niques described in this section can also be used to compute 
a join synopsis from scratch in limited storage, in one scan 
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Table 1: Features of relations in the TPC-D benchmark. 

~~~ 

Partsupplier 5 240K 
Region 3 5 
Supplier 7 3K 

of the base data followed by indexed look-ups on a small 
fraction of the keys. 

8 Experimental Evaluation 

In this section, we present the results of an experimental 
evaluation of the techniques proposed in this paper. Using 
data from the TPC-D benchmark, we show the effectiveness 
of our approach in providing highly accurate answers for 
approximate join aggregates. 

We begin this section by describing the experimental 
testbed. We then present results from two classes of 
experiments-accuracy experiments and maintenance ex- 
periments. In the accuracy experiments, we compare the ac- 
curacy of techniques based on join synopses to that of tech- 
niques based on base samples. The two key parameters in 
this study are query selectivity and total space allocated to 
precomputed summaries (summary size). We first compare 
the techniques for a fixed selectivity and varying summary 
size and then compare the techniques for a fixed summary 
size and varying selectivities. In the maintenance experi- 
ments, we study the co.st of keeping the join synopses up to 
date in the presence of insertions/deletions to the underlying 
data. We show that join synopses can be maintained with 
very little overhead even when updates significantly change 
the characteristics of the underlying data. 

8.1 Experimental testbed 

We ran the tests on the ‘IPC-D decision support benchmark. 
We used a scale factor of 0.3 for generating our test 
data. This results in a database that is approximately 300 
megabytes. Table 1 summarizes the important features of 
the eight relations in the TPC-D database. 

Our experiments were run on a lightly loaded 296MHz 
UltraSPARC-II machine having 256 megabytes of memory 
and running Solaris 5.6. All data was kept on a local disk 
with a streaming throughput of about 5MBlsecond. 
Query model: The query used for the accuracy experiments 
is based on query Q5 in the TPC-D benchmark and is 
an aggregate that is computed on the join of Linei tern, 
Customer,Order,Supplier,Nation and Region. 
Of the six relations involved in the join, the Nation and 

Region relations are sampled in their entirety by Aqua 
because of their low cardinality. This effectively reduces the 
query to a (still complex) four-way join query. 

The SQL statement for the query is given in Figure 5. 
It computes the average price of products delivered by 
suppliers in a nation to customers who are in the same 
nation. The select conditions take three input parameters 
- region, startdate and enddate. These restrict 
suppliers and customers to be within a specific region and 
focus on business conducted within a specific time interval. 
In the following experiments, we will vary one or more of 
these parameters to study the performance for various query 
selectivities. 

In this study, we have focused only on the hard problem of 
computing approximate aggregates on multi-way joins. Of 
course, our sampling results extend to the simple case of sin- 
gle table aggregates. Thus, due to space constraints, we do 
not show any results for the single table case. Besides, those 
results qualitatively mirror the ones presented in the context 
of online aggregation for single table aggregates [HHW97]. 
Space allocation schemes: Recall from Section 5 that 
we proposed a number of schemes for allocating a given 
amount of summary space to enable approximate query an- 
swering. For the case where certain characterizations of 
the query mix were known, we presented optimal alloca- 
tion strategies to minimize overall error. However, for t.his 
experimental study, we assume the more realistic scenario 
where this information is unavailable. Thus, we study the six 
space allocation schemes proposed in Section 5.2, namely, 
EquiBase, CubeBase, PropBase, Eqdoin, CubeJoin and 
PropJoin. For the purposes of this experiment, we focus 
on the four major relations used in &, and allocate base 
samples and join synopses only on those relations. There- 
fore, the base sampling schemes divide up the summary 
space among samples of Lineitem,Customer,Order, 
and Supplier, whereas the join synopses schemes dis- 
tribute the summary space to join synopses for Lineitem 
(which includes columns from Customer, Order, and 
Supplier), for Cus tomer (which includes columns from 
Order), for Order (whose join synopsis is just a base sam- 
ple), and for Supplier (whose join synopsis is also a base 
sample). 

Recall that PropJoin gives an equal number of tuples 
to the various samples whereas EquiJoin divides the space 
equally. Thus, among the various schemes, the source 
relation in the 4-way join in Q,, Lineitem, is allocated 
the most space by PropJoin since it has the largest tuple and 
the least space by EquiJoin, while CubeJoin allocates spa.ce 
in between these two extremes. Likewise, among the base 
sample schemes, PropBase allocates the most space to the 
base sample of Lineitem, followed in order by CubeBase 
and EquiBase. To avoid clutter in the graphs that follow, we 
do not plot CubeJoin and CubeBase and only show numbers 
for the other four schemes. They cover the entire range of 
performance for the different schemes. 

282 



select avg(l-extendedprice) from customer, order, lineitem, supplier, nation, region 
where c-custkey = o-custkey and o-orderkey = Lorderkey and lsuppkey = s-suppkey 
and cnationkey = snationkey and snationkey = nnationkey and n-regionkey = r-regionkey 
and r-name = [region] and o-orderdate >= DATE [startdate] and o-orderdate < DATE [enddate] 

Figure 5: Query Q, used for accuracy experiments. Based on Query 95 from the TPC-D benchmark. 

The experiments also study the sensitivity of the various 
schemes to the total summary size allocated (parameter 
SummarySize in the figures). SummarySize is varied from 
0.1% to 3% of the total database size, varying the actual 
summary size in bytes from 420 KBytes to 12.5 MBytes. 

8.2 Experimental results 

In this section, we present the results of the experimental 
study. The first two experiments cover the accuracy studies 
and the final experiment addresses the problem of maintain- 
ing join synopses during updates to the underlying data. It 
should be noted that the graphs presented in this section are 
a small subset of the results that we obtained. These results 
have been chosen because they demonstrate the different as- 
pects of approximate query answering using join synopses. 

8.2.1 Experiment 1: Join synopsis accuracy 

In this experiment, we study the accuracy of the four space 
allocation schemes for different values of summary size (pa- 
rameter SummarySize) and for different query selectivities. 
We compare the actual answer of running query Q, (Fig- 
ure 5) on the full TPC-D database against the approximate 
answers obtained from the different schemes. 

Consider Figure 6(a). It plots the average extended price 
computed by the different schemes for varying summary 
sizes. The actual answer is shown as a straight line parallel to 
the x-axis. Following the specification for query Q5 in the 
TPC-D benchmark, the region parameter is set to ASIA 
and the selection predicate on the o-orderdate column 
totherange[1/1/94,1/1/95]. 

Consider the two schemes that use only samples of the 
base relations, EquiBase and PropBase. Figure 6(a) shows 
that these schemes produce answers consistently only when 
the summary size exceeds 1.5% of the database. (For lower 
sample sizes, the join of the base samples is completely 
empty!) In fact, it is not until 2% summary size that the 
approximate answer produced by them comes close to the 
actual answer. In fact, on the left end of the graph (for 
smaller summary sizes), these scheme either produce no 
output at all (e.g., PropBase for 1.25% synopsis size), or 
produce answers that are significantly different from the real 
answer (with errors close to 100% in some cases). 

The schemes based on join synopses, EquiJoin and 
PropJoin, on the other hand, not only produce output over 
the entire range of summary size studied but are also fairly 
accurate in estimating the correct answer. Even for a 
summary size of 0.1% (420 Kbytes) shared among all the 
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four join synopses, the results from both the schemes are 
within 14% of the actual answer! Moreover, the variation 
in the answers is lower than the variation in the answers 
from base sampling schemes. The difference between the 
two types of allocation schemes is further highlighted in 
Table 2, which shows the number of tuples in the join output 
for the four schemes. In most cases, the schemes based on 
join synopses produce at least an order of magnitude more 
number of tuples than the base sampling schemes do. As 
expected, PropJoin is the most accurate since it assigns the 
most space to Lineitem, the root of the 4-way join. 

Figure 6(b) studies the sensitivity of the four allocation 
schemes for varying selectivities, with the summary size set 
to 1.5% of the database size. We change the selectivity 
of query &, by changing the date range in the selection 
condition on the o-orderdate attribute. To control the 
selectivity, we fixed the parameter enddate to 1 / l/ 9 9, 
the tail end of the date range in the TPC-D specification. 
We varied the startdate parameter from l/1/93 to 
6/l/98 in steps of six months. The startdates are 
shown on the x-axis with the corresponding query selectivity 
given in brackets below. 

Selectivity and summary size have a similar effect on the 
performance of the base sampling schemes. While the an- 
swers returned by the EquiBase and PropBase techniques 
are reasonably close to the actual answer when the selectiv- 
ity is high (left end of the z-axis), the answers fluctuate dra- 
matically as the selectivity decreases. As expected, the join 
synopsis schemes, EquiJoin and PropJoin, stay close to the 
actual answer over the entire range deviating only slightly 
when the selectivity is down to 1% on the right end of the 
graph. 

These graphs demonstrate the advantages of schemes 
based on join synopses over base sampling schemes for 
approximate join aggregates. Even with a summary size of 
only O.l%, join synopses are able to provide fairly accurate 
aggregate answers. 

8.2.2 Experiment 2: Query execution timing 

Figure 7 plots the time taken by the various strategies to 
execute the query (the y-axis is in logscale). The time to 
execute the actual query is 122 seconds and is shown as 
a straight line near the top of the figure. As expected, 
the response times increase with increasing summary size. 
However, for all the sizes studied, the execution time for 
the query using join synopses is two orders of magnitude 
smaller! (The times using base samples are more than an 
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(a)Datelnterval=[1/1/94, l/1/95] (b) SummarySize = 1.5% 
Figure 6: Behavior of join synopsis and base sample allocation strategies for different (a) summary size values and (b) for 
different query selectivities. 

Table 2: Output Size for the various allocation schemes. 

Figure 7: Query execution time for various schemes. 

order of magnitude smaller than those computing the actual 
answer.) 

This experiment demonstrates that it is possible to use 
join synopses to obtain extremely fast approximate answers 
with minimal loss in accuracy. This is good evidence that 
applications such as dec:ision support and data warehousing, 
which can often tolerate marginal loss in result accuracy, 
can benefit tremendotrsly from the faster responses of 
approximate query answering systems. 

8.2.3 Experiment 3: Join synopsis maintenance 

In this section, we show experimental results demonstrat- 
ing that join synopses can be maintained with very minimal 
overhead. Such join synopses can give very good approx- 
imate answers even when updates significantly change the 
nature of the underlying data. We base this section on a join 
between the Lineitem and Order tables. The query used 
retrieves the average quantity of tuples from the L ine i t em 
table that have a particular value for the o-orders tatus 
column. The SQL statement for the query is given in Fig- 
ure 8. 

We consider the maintenance of a join synopsis ffor 
Lineitem as tuples are inserted into the Lineitem ta- 
ble, using the algorithm of Section 7. Note that insertions 
into other tables in the schema can safely be ignored in 
maintaining the Linei tern join synopsis. Figure 9(a) plots 
the aggregate values computed from join synopses of differ- 
ent sizes. Even for extremely small sizes, the join synop- 
sis is able to track the actual aggregate value quite closely 
despite significant changes in the data distribution. Fig- 
ure 9(b) shows that maintenance of join synopses is very 
inexpensive, by plotting the average fraction of the new 
Lineitem tuples that are actually inserted into the join 
synopsis. In accordance with the algorithm of Section 7, 
we go to the base data only when a tuple is inserted into tlhe 
join synopsis. It is clear from the figure that this number is a 
small fraction of the total number of tuples inserted. (For ex- 
ample, when maintaining a sample of 1000 tuples and pro- 
cessing 500,000 inserts, we go to the base data only 4822 
times.) 

8.2.4 Summary of experiments 

The experimental results in this section empirically demon- 
strate the validity of the techniques proposed in this paper. 
The results show that join synopses can be used to compute 
approximate join aggregates extremely quickly, and that the 
performance of join synopses is superior to that of base sam- 
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select avg(l-quantity) from lineitem, order 
where Lorderkey = o-orderkey and o-orderstatus = F 

Figure 8: Join synopsis maintenance query Q,. 

(a) Result accuracy (b) Maintenance cost 
Figure 9: Maintenance of join synopses for 500,000 updates to the Lineitem table. (a) Accuracy of aggregate values 
computed from join synopses of various sizes (b) Cost of online maintenance. 

pling schemes. Moreover, the results also show that join 
synopses can be maintained inexpensively during updates. 

In the full paper, we also present experimental results 
demonstrating that our empirical error bounds are a good 
complement to traditional guaranteed bounds on approxi- 
mate answers. 

9 Related Work 

Statistical techniques have been applied in databases for 
more than two decades now, primarily inside a query 
optimizer for selectivity estimation [SAC+79]. However, 
the application of statistical techniques to approximate 
query answering has started receiving attention only very 
recently. Below, we describe the work on approximate query 
answering and the work on general statistical techniques 
applied in databases. 

Approximate query answering: Hellerstein et al pro- 
posed a framework for approximate answers of aggregation 
queries called online aggregation [HHW97], in which the 
base data is scanned in random order at query time and the 
approximate answer is continuously updated as the scan pro- 
ceeds. Unlike Aqua, this work involves accessing original 
data at query time, thus being more costly, but at the same 
time, this approach provides an option to get the fully ac- 
curate answer gradually and it is not affected by database 
updates. However, the problems with join queries discussed 
in this paper also apply to online aggregation - basically, a 
large fraction of the data needs to be processed before the 
errors become tolerable. Other systems support limited on- 
line aggregation features; e.g., the Red Brick system sup- 
ports running COUNT, AVG, and SUM (see [HHW97]). Since 

the scan order used to produce these aggregations is not ran- 
dom, the accuracy can be quite poor. In the APPROXIMATE 
query processor, developed by Vrbsky and Liu [VL93], an 
approximate answer to a set-valued query is any superset of 
the exact answer that is a subset of the Cartesian product. The 
query processor uses various class hierarchies to iteratively 
fetch blocks relevant to the answer, producing tuples certain 
to be in the answer while narrowing the possible classes that 
contain the answer. Clearly, this work is quite different from 
the statistical approach taken by us and by Hellerstein et al. 

Statistical techniques: The three major classes of tech- 
niques used are sampling (e.g., [HGT88, LNS90, HNS94, 
LN95, HNSS95, GGMS96]), histograms (e.g., [Koo80, 
PIHS96, Poo97, APR99]), and parametric modeling (e.g., 
[CR94]). A survey of various statistical techniques is given 
in the paper by Barbara et al [BDF+97]. Gibbons and Matias 
present a framework for studying synopsis data structures for 
massive data sets [GM99b] and introduced two sampling- 
based synopses, concise samples and counting samples, 
that can be used to obtain larger samples for the same 
space and to improve approximate query answers for hot 
list queries [GM98]. Maintenance algorithms exist for sam- 
ples [OR92, GMP97b, GM981 and histograms [GMP97b]. 
However, these maintenance techniques are applicable only 
to “base” statistics and not to the join synopses presented in 
this paper. 

10 Conclusions 

In this paper, we have focused on the important problem 
of computing approximate answers to aggregates computed 
on multi-way joins. For data warehousing environments 
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with schemas that involve only foreign-key joins, we have 
proposed join synopses as a solution to this problem. We 
have shown that schemes based on join synopses provide 
better performance than schemes based on base samples 
for computing approximate join aggregates. Further, we 
have also shown that join synopses can be maintained 
efficiently during updates to the underlying data. Finally, we 
have explored the use of empirical confidence bounds for 
approximate answers and have shown that they are a good 
complement to traditional guaranteed bounds. 

Approximate query answering is becoming increasingly 
essential in data warehousing and other applications. Hence, 
it is important to eliminate any fundamental problems that 
limit its applicability to complex queries. This paper 
identifies one such problem and presents a complete solution 
to it. However, many other problems remain. These include 
accurately approximating answers to group-by, rank and set- 
valued queries. We are currently addressing these issues as 
part of the Aqua project. 
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