
On Random Sampling over Joins

Surajit Chaudhuri Rajeev Motwani
Microsoft Research Stanford University

surajitcQmicrosoft.com rajeevQcs.stanford.edu

Vivek Narasayya
Microsoft Research

viveknar@microsoft.com

Abstract

A major bottleneck in implementing sampling as a primitive
relational operation is the inefficiency of sampling the output
of a query. It is not even known whether it is possible to
generate a sample of a join tree without first evaluating the
join tree completely. We undertake a detailed study of this
problem and attempt to analyze it in a variety of settings.
We present theoretical results explaining the difficulty of
this problem and setting limits on the efficiency that can be
achieved. Based on new insights into the interaction between
join and sampling, we develop join sampling techniques for
the settings where our negative results do not apply. Our
new sampling algorithms are significantly more efficient than
those known earlier. We present experimental evaluation of
our techniques on Microsoft’s SQL Server 7.0.

1 Introduction

Data warehouses based on relational databases are becom-
ing popular. The investment in data warehouses is targeted
towards developing decision support applications that lever-
age the massive amount of data stored in data warehouses
for a variety of business applications. On Line Analytical
Processing (OLAP) and data mining are tools for analyz-
ing large databases that are gaining popularity. Many of
these tools serve as middleware or application servers that
use a SQL database system as the backend data warehouse.
They communicate data retrieval requests to the backend
database through a relational (SQL) query. On a large
database, the cost of executing such ad-hoc queries against
the relational backend can be expensive. Fortunately, many
data mining applications and statistical analysis techniques
can use a sample of the data requested in the SQL query
without compromising the results of the analysis. Like-
wise, OLAP servers that answer queries involving aggrega-
tion (e.g., “‘find total sales for all products in the North-
West region between l/1/98 and l/15/98”) can significantly
benefit from the ability to present to the user an approxi-
mate answer computed from a sample of the result of the
query posed to the relational database. It is well-known

Permission to make digital or hard topics of all or part of this work t’ol
personal or classroom use is granted without fee provided that copies
are no1 made or distributed for profit or commercial actvantage and that
copies hear this notice and the lilll citalion w the lirst page. To copy
othcrwisc, IO republish, to post on scrvcrs or to rcdistrihutc to lists.
requires prior specitic permission and& a fee.

SIGMOD ‘00 Philadelphia PA
Copyright ACM 1999 l-581 13-084-8/99/05...$5.00

that for results of aggregation, sampling can be used accu-
rately and efficiently. However, it is important to recognize
that whether for data mining, OLAP, or other applications,
sampling must be supported on the result of an arbitrary SQL
query, not just on stored relations. For example, the pre-
ceding example of the OLAP query uses a star join between
three tables (date, product, and sales).

This paper is concerned with supporting random sam-
pling as a primitive operation in relational databases. In
principle, this is easy - introduce into SQL an operation
SAMPLE(R, f) which produces a uniform random sample S
that is an f-fraction of a relation R. While producing a
random sample from a relation R is not entirely trivial, it
is a well-studied problem and efficient strategies are avail-
able [lo]. However, these techniques are not effective if sam-
pling needs to be applied to a relation R produced by a
query Q rather than to a base relation. It seems grossly
inefficient to evaluate Q, computing the entire relation R,
only to throw away most of it when applying SAMPLE(R, f).
It would be much more desirable and efficient to partially
evaluate Q so as to generate only the sample of R.

For this purpose, it suffices to consider the case where we
are given a query tree T with SAMPLE(R, f) only at the root.
More general cases, where the sample operation appears ar-
bitrarily in the query tree can be reduced to the above case.
In this setting, it seems plausible that tremendous gains in
efficiency can be achieved by “pushing” the sample opera-
tion down the tree towards the leaves, since then we would
be feeding only a small (random) fraction of the relations
(stored as well as intermediate relations) into the query tree
and thereby minimizing the cost of query evaluation. To this
end, we need to be able to “commute” the sample operation
with standard relational operations.

In our work, we consider only the problem of sampling
the result of a join tree, since an efficient strategy for this
special case is prerequisite to realizing the general goal of
implementing sampling as a primitive relational operation.
Furthermore, we believe that techniques required to com-
pletely solve the join tree problem would be an important
step in dealing with the more general problem. In fact, we
focus primarily on developing a technique for commuting
sampling with a single join operation, since we could apply
this technique repeatedly to push down the sample opera-
tor from the root to the leaves of a join tree. However, we
cannot assume that the single join is applied to stored base
relations, since its operands could be the output of subtrees
of a join tree. We establish that it is not possible to pro-
duce a sample of the result of even a single join from random
samples of the two relations participating in the join. Fortu-

263

nately, we are able to devise a technique for circumventing
this negative result, Our key observation is that given some
partial statistics (e.g., histograms) on the first operand rela-
tion, we can use the statistics to bias the sampling from the
second relation in such a way that it becomes possible to pro-
duce a sample of the join. We devise a variety of sampling
schemes based on these observations, improving the state-
of-the-art for join sampling. In the context of a join tree, our
work shows that it is possible to push down the sampling
operation to one of the two operand relations. At the same
time, our negative results show that it is inherently difficult
to achieve greater efliciency by pushing sampling down to
both operands of a join in a query tree.

There has not been much past work on supporting sam-
pling as an operation for the end-user of a database sys-
tem. While random sampling has been proposed and used
in many different ways in databases [lo], the main focus has
been on the use of random sampling for the purposes of es-
timating query result size, aggregate values, and parameters
for query optimization [ll, 8, 5, 6, 3, 2, 11.

A notable exception is the work of Olken and Rotem [9]
and Olken [lo]. They focus on the issue of whether the
sample operation can be commuted with standard relational
operations. The easy case is that of selection, which can
be freely interchanged with sampling. They point out that
the situation is much more difficult with respect to projec-
tion and join. For projection, the issue is that of duplicate
removal which skews the probability distribution; without
duplicate removal, it is possible to commute sampling with
projection. In the case of join, the problem is that the join
of random samples of the operand relations does not give a
random sample of the join of the operand relations. While
Olken et al did suggest a technique for sampling the result of
a join, it is far from satisfactory in terms of efficiency. More-
over, it requires that the relations being operated on should
be base relations and have a’ndezes. This limits applicabil-
ity in the general setting where we are trying to push down
sampling in a query tree, since the intermediate relations
would typically not bts materialized and indexed.

We emphasize that known techniques for estimating the
size of a join have little or no bearing on our problem - our
goal is to create a sampIe of the join that satisfies precisely
the semant.ics of the SAMPLE operation, while the earlier es-
timation techniques apply to determining an approximation
to the size of the join. Note that the recent work by Heller-
stein, Haas, and Wang [4] explores the issue of supporting
sampling interactively. However, they do not address the
issue of commuting join and sampling; rather, they focus on
the choice of join methods that perform progressive approx-
imate sampling and support interactivity.

2 Summary of Results

We begin in Section 3 with a discussion of three possi-
ble semantics for the sample operator: with-replacement,
without-replacement, .and coin-flip. We also present some
observations concerning our ability to switch between the
various semantics. Then, in Section 4, we turn to the is-
sue of an efficient implementation of the sample operator in
isolation. While efficient implementations were known ear-
lier for without-replacement and coin-flip semantics, we had
to develop new techniques for the case of with-replacement
semantics. Furthermo’re, it will turn out that weighted (or
non-uniform) sampling is essential for dealing with join sam-
pling, so we present extensions of all strategies to weighted
sampling, which may be of independent interest. Most of

our results apply to all three semantics for sampling, but we
discuss mainly the case of WR semantics.

In Section 5, we tackle the problem of efficiently sam-
pling the result of a single join operation. We begin with a
discussion of the reasons why sampling does not commute
with join: first, the join of random samples from Ri and Rz
does not give a random sample of their join’ J = RI IXI Rz;
moreover, the projection of a random sample of J onto the
attributes of (say) RI does not yield a uniform random sam-
ple of RI but instead gives a biased random sample where
the probability of a tuple depends on the number of tuples in
RZ that join with it. This indicates that it is essential to use
frequency statistics for join attribute values in Rz to gener-
ate a suitable sample from RI. Based on the latter insight,
we are able to identify possible approaches to circumverrting
the difficulty of join sampling. Efficiency of sampling de-
pends on whether the operand relations are materialized or
merely streaming by, and the kind of information (indexes
and statistics) available for them. We divide our analysis
into three broad cases: Case A where no information is
provided for either relation, Case B where information is
available for only one relation, and Case C where informa-
tion is available for both relations.

The naive strategy for sampling from the join J is to
compute the full join and then sample therein. The ques-
tion is whether we can improve efficiency by avoiding the
need to compute the full join. This seems impossible for
Case A where we do not have any frequency statistics for
join attribute values in Rz to help guide the sampling from
RI. This leaves Cases B and C, of which Case B has not been
considered in the past. The earlier work of Olken et al [9, lo]
considered Case C and proposed that the following strategy
be applied repeatedly to generate a with-replacement sam-
ple: choose a random tuple from RI, join it with all match-
ing tuples in R2, sample a single tuple from the result, and
reject the sample appropriately to ensure a uniform proba-
bility distribution over all tuples in J. In Section 6 we pro-
pose a new strategy which has two major advantages: using
our results for weighted sampling, we avoid the requirement
of an index for RI or even that it be materialized; and, we
improve efficiency by avoiding the need for rejection of the
sampled tuples to ensure uniformity of the sample. Thus,
not only does our strategy apply to Case B, it is also more
efficient.

Next, we show how to handle more general settings closer
to Case A, by reducing the dependence on the availability
of statistics and indexes for Rz. To this end, we propo:se a
suite of strategies based on the following observations. ‘The
main source of inefficiency in the naive strategy for Case
A is the presence of join attribute values of high frequency
(multiplicity). We develop hybrid strategies which use naive
sampling for low-frequency values, and we provide new ap-
proaches for the high-frequency case.

The preceding discussion was concerned primarily with
sampling from a single join. In Section 7 we discuss the
application of our results to the problem of performing sam-
pling from the output of a join tree, which involves pushing
down the SAMPLE operation in the tree. We present some
theoretical results showing that the natural approach for
commuting sampling with join will not work. In this ap-
proach, the basic step is that of oblivious sampling: given
random samples Si 5 RI and Ss C Rz, construct a random
sample S C RI w R2. Given this, the idea would be to start

‘Throughout this paper, unless specified otherwise, by “join” or
RI w R2 we mean an equi-join of the relations RI and Rz with respect

to an attribute A.

264

with samples of the base relation at the leaves, and then re-
peatedly perform oblivious sampling to proceed bottom-up
and obtain the hnal sample at the root. We show that it
is impossible to preserve the semantics of random sampling
when using oblivious sampling. This justifies our approach
of non-oblivioussampling, where we use the frequency statis-
tics (e.g., histograms) for Rz to bias the sampling from RI.
For the non-oblivious case, we establish lower bounds on
the size of the samples Sr and Sz required for producing a
sample S of a given size.

We implemented our techniques on Microsoft SQL Server
7.0. Section 8 presents our experiments that involved vary-
ing the skew of the data distribution, index structures, as
well as sampling fractions. We demonstrate that the meth-
ods proposed in this paper are efficient and consistently out-
perform earlier techniques. Note that where index/statistics
are not available for both operand relations, the only tech-
nique known earlier was naive sampling. We conclude in
Section 9 with a summary of our results and a discussion of
future work.

3 Semantics of Sample

Consider the operation SAMPLE(R, f) which is supposed to
produce a uniform random sample of R that contains an f-
fraction of the tuples in R. This definition does not uniquely
specify the semantics of the SAMPLE operation. In fact, there
are at least three distinct interpretations of this definition
as described below. Let n be the number of tuples in R.

Sampling with Replacement (WR): Sample fn tuples, uni-
formly and independently, from R. The sample is a bag
(multiset) of fn tuples from R, as specific tuples could be
sampled multiple times.

Sampling without Replacement (WoR): Sample fn dis-
tinct tuples from R, where each successive sample is chosen
uniformly from the set of tuples not already sampled. The
sample is a set of fn distinct tuples from R.

Independent Coin Flips (CF): For each tuple in R, choose
it for the sample with probability f, independent of other
tuples. This is Like flipping a coin with bias f for each tuple
in turn. The sample is a set of X distinct tuples from R,
where X is a random variable with the binomial distribution
2 B(n, f) and has expectation fn.

We make some observations concerning the conversion of
one type of sampling into another.

1. Given a WR sampling process, we can convert it to
WoR sampling by checking each new sampled tuple to
see if it has already been generated and rejecting when
that happens. There is only a minor loss in efficiency.

2. Given a CF sampling process, we can convert it to a
WoR sampling by: sampling a slightly larger fraction
f’ to ensure that we get at least an f-fraction, as can
be shown by the Chernoff bound [7]; and, then reject-
ing an appropriate number of the samples to ensure
that we get exactly an f-fraction. The latter roughly
corresponds to a WoR sampling of the CF sample.

3. Given a WoR sample, we can get a WR sample by sam-
pling with replacement from the WoR sample, taking
care to use the correct duplication probabilities.

‘In effect, this is the distribution of a random value generated
counting the total number of heads when flipping n independent coins,
each of which has probability p of turning up heads.

4. To get a CF sample from either a WR or WoR sam-
ple is impossible since in the CF semantics we have a
small but non-zero probability of sampling the entire
relation. Therefore, any proper subset of the input
relations cannot suffice to give CF semantics.

4 Algorithms for Sequential and Weighted Sampling

One important issue in the choice of sampling semantics is
whether we can perform the sampling on a relation as it is
streaming by, i.e., sampling in a single pass, or whether it
requires some kind of random access to a materialized re-
lation. Stream sampling is critical for efficiency even when
the relation is materialized on disk since it permits sampling
in a single pass, but it is even more important in situations
where the relation is being produced by a pipeline (as in a
query tree) and we do not wish to materialize it at all as it
may be fairly large. We refer to such sampling as sequential
sampling. Another important issue is whether the sampling
is vnweighted or weighted. In unweighted sampling, each el-
ement is sampled uniformly at random, while in weighted
sampling each element is sampled with a probability pro-
portional to its weight, for some pre-specified set of weights.

In this section we discuss strategies for performing the
most general kind of sampling - weighted and sequential.
The case of non-sequential sampling is comparatively easier
and well-studied in the database literature [lo].

Observe that CF semantics is particularly easy to work
with in a streaming situation. Suppose that we wish to ob-
tain SAMPLE(R, f) with CF semantics by making a single
pass over R. We simply flip a coin for each tuple (with
probability f for heads) as it goes by, adding the tuple to
the random sample as if the corresponding coin flip turns
up heads. There is also the standard “reservoir sampling”
strategy for producing a sample without replacement from a
relation in a single pass [12]. These two strategies have two
key features: they do not need to know the size of the rela-
tion in advance; and, they produce samples in the same rela-
tive order as in the original relation. The former is useful for
sampling a relation as it streams through a pipeline without
any materialization on disk, and the latter preserves prop-
erties such as sortedness. The reservoir sampling algorithm
has the disadvantage that no samples are produced until
the entire process has terminated. However, when scanning
a relation on disk, it can be made efficient by reading only
those records that get into the reservoir, by generating ran-
dom intervals of records to be skipped.

This leaves open the issue of performing unweighted se-
quential sampling for WR semantics. In Section 4.1, we pro-
pose two different strategies. In Section 4.2, we turn to the
issue of weighted sequential sampling and generalize the un-
weighted sequential sampling WR algorithm to the weighted
case. We can extend these algorithms to the case of weighted
CF or WoR sampling, but the details are omitted. We will
refer to the sampling algorithms as “black-boxes” since that
is how they will later be used for join sampling.

4.1 Unweighted Sequential WR Sampling

The following black-box picks r = fn tuples uniformly at
random and with replacement from a relation with n tuples.
Let B(n,p) denote the binomial distribution with parame-
ters n and p; there are standard algorithms for generating
random values from this distribution.

Black-Box Ul: Given relation R with n tuples, generate
an unweighted WR sample of size r.

265

1. Z t r; i t 0.

2. while tuples are streaming by and 5 > 0 do begin

(a) get next tuple t;
(b) generate random variable X from B(z, A);
(c) output X copies of t;
(d) 2 t z -X;

.‘,‘I. ici+l

One disadvantage of Ul is the need to know the size n
of the relation being sampled. (This is in Step Z(b); in Step
1, we only need to know r which is specified as a part of the
input.) Depending on the application, this may not be a big
issue since: if the strea.m is a base relation, we already know
the size of the relation; else, it is a random sample from a
lower part of the tree in which case we have specified the
size of the sample as a. part of the sampling semantics, and
so we know the size: On the other hand, this strategy has
several advnntages: it scans the relation (or has it streaming
by in a pipeline) and produces the sample online in the same
relative order as in the original relation; further, it does not
need any significant auxiliary memory.

Theorem 1 Block-Box U1 gives a WR sample of size r of a
relation of size n in time O(n) using O(1) auxiliary memory.

We remark that Black-Box Ul can be efficiently extended
to block-level sampling on disk. Further, we can use the
technique due to Vitter [12] of skipping over a random set
of tuples (those for which X would have been 0), thereby
improving efficiency. Similar comments apply to our second
strategy which extends reservoir sampling to WR semantics.

Black-Box U2: Given. relation R with n tuples, generate
an unweight(ed WR sample of size r.

1. N t 0.

2. Initialize reservoir array A[l..r] with r dummy values.

3. while tuples are streaming by do begin

(a) get next tuplle t;
(b) N t N + 1;
(c) for j = 1 to I‘ do set A[j] to t with probability &

end.

Note that U2 does not need to know the size n of the
relation being sampled. Moreover, it can be modified to
produce the sample in the same order as in the original re-
lation. Its drawbacks are the need to maintain the reservoir
in memory (or in disk at additional I/O cost), and that it
does not produce any tuples till the algorithm ends.

Theorem 2 Black-Box lJ.2 gives a WR sample of size r of a
relation of size n in time O(n) using O(r) auxiliary memory.

4.2 Black-Boxes for Weighted Sequential Sampling

In many applications, it. is necessary to perform a weighted
sampling instead of a uniform sampling of the tuples in a
relation. We will soon see that weighted sampling is critical
to some of our join sampling algorithms. As in the previ-
ous section, we wish to ensure that the sampling algorithm
operates on a pipeline or a streamed relation. We describe
extensions of the earlier black-box for WR semantics de-
scribed to the weighted case.

First, let us specify the precise semantics of weighted WR
sampling. We are given a relation R with a total of n tuples,

where each tuple t has a specified weight w(t). A weighted
WR sample is obtained by repeating fn times the following:
choose a tuple from R at random such that any tuple t is
chosen with probability proportional to w(t). That is, we
perform a set of fn independent random selections from R,
such that each random selection picks a tuple t with prob-
ability proportional to w(t). The following is an equivalent
definition for the case where w(t) are non-negative integers.

Definition 1 Assuming that w(t) are non-negative integers,
a weighted WR sample from R is the same as an unweighted
WR sample from a modification of the relation R to a rela-
tion R” in which there are w(t) copies of each tuple t E R.

The motivation for this definition is the following. When
sampling from the join of R with another relation S, we set
the weights w(t) to be the number of tuples in S that join
with t; then, a WoR sample of the join of R and S will
correspond to a sample from R with the same distribution
as in the preceding definition. Sequential sampling for the
weighted case should work as follows: a relation R of size n
is streaming by such that each tuple t comes in with an asso-
ciated weight w(t), and we would like to perform a weighted
WR sample of R to produce a total of f n samples. Consider
the following extensions of the earlier black-boxes.

Black-Box WRl: Given relation R with n tuples! generate
a weighted WR sample of size r.

1. x t r; D t 0.

2. w +- Ct&4t).
3. while tuples are streaming by and x > 0 do begin

(a) get next tuple t with weight w(t);
(b) choose random variable X from B(z, &);
(c) output X copies of t;
(d) x t x - X;
(e) D t D + w(t)

end.

Observe that just as Ul needs to know the size n of R,
WRl needs to know the total weight W of tuples in R; in
general, WRl has all the features of Ul.

Theorem 3 Black-Box WRl gives a weighted WR sample
of size f from a relation of size n in time O(n) using O(l)
auxiliary memory.

Similarly, we can extend U2 to the weighted case.

Black-Box WR2: Given relation R with n tuples, generate
a weighted WR sample of size r.

1. wco.

2. Initialize reservoir array A[l..r] with r dummy values.

3. while tuples are streaming by do begin

(a) get next tuple t with weight w(t);

(b) W t W + w(t);

(c) for j = 1 to r do set A[j] to t with prob. v
end.

Theorem 4 Black-Box WR2 gives a weighted WR saml;lle
of size r from a relation of size n in time O(n) using O(r)
auxiliary memory.

We omit the definitions of the semantics and the adapta-
tions of Black-Boxes WRl and WR2 to the case of weighted
sequential sampling for WoR and CF semantics.

266

5 The Join Sampling Problem

In this section we examine the problem of efficiently comput-
ing SAMPLE(Ri w Rz , f) in a variety of settings which differ
in terms of materialization and indexing of the operand re-
lations. We highlight the obstacles to solving this problem
and identify possible approaches for circumventing the ob-
stacles. We place previous work in this context and set the
stage for describing our strategies in Section 6.

Assume that the two relations RI and Rz are of size ni
and nz, respectively, and that we are interested in an equi-
join with respect to an attribute A. We denote the domain
of the attribute A by D. For each value v E D, let ml(w)
and mz(v) be the number of distinct tuples in RI and R2,

respectively, that contain value v in attribute A. Clearly,

c ml(v) = ni and c mz(v) 7 nz.
VED VED

Let J = RI w R2 and define n = (J(= (RI w RZ (; clearly,

n = C ml(v)m2(v).
WED

For a tuple t E RI, let

J4Rp) = {t’ E Rz) t’.A = t.A}

be the set of tuples in R2 that join with t; further, define
t w R2 as the set of tuples in RI w R2 obtained by join-
ing t with the tuples in Jt(R2). Observe that jJt(Rz)l =
It w R21 = mz(t.A). Similarly, define for each t E R2 the
sets Jt(R1) and RI w t, each being of size ml(t.A).

5.1 The DifFiculty of Join Sampling

The following example will help illustrate some of the sub-
tleties of the problem.

Example 1 Suppose that we have the relations

R1(A,B)={(al,bo),(az,bl),(az,bz),(aa,b3) ,..., (az,b)},

Rz(A,C) = {(az,co), (al,cl), (al,cz), (al,cs), . . , (al,ck)}.

That is, RI is defined over the attributes A and B; amongst
its ni = k + 1 tuples, one tuple has the A-value al and k tu-
ples have the A-value az, but all have distinct B-values. Sim-
ilarly, Rz is defined over the attributes A and C; amongst its
nz = k+l tuples, k tuples have the A-value ai and one tuple
has the A-value az, but all have distinct C-values. Observe
that their join over A, J = RI w Rz, is of size n = 2k and
has k tuples with A-value ar and k tuples with A-value az.

Assume that we wish to choose a random sample with
WR semantics; our discussion below applies to the other two
semantics as well. Consider a random sample S C J. We
expect that roughly half of the tuples in S have A-value al,
and roughly half of the tuples in S have A-value az.

Suppose we pick random samples Sr c RI and 5’2 c R:!.
It is quite unlikely that Si will contain the tuple (ar,bs),
or that Sz will contain the tuple (az,cs). Thus, given the
samples Sr and Sz, it is impossible to generate a random
sample of J = RI w RZ for any reasonable sampling fraction
or under any reasonable sampling semantics. Note that this
conclusion holds even if we allow (say) Sz to be all of Rz
but require that Sr be a proper subset of RI. In fact, in all
these cases we would expect 5’1 w SZ to be empty.

The problem is that the projection (after duplicate re-
moval) of J onto attributes A and B does not give a uniform
random sample of RI. In fact, it gives a weighted sample of
RI where each tuple of RI is sampled with probability de-
pendent on the number of tuples in R2 that join with it;
specifically, in RI the tuple (al, bs) is sampled with proba-
bility l/2 while the remaining tuples are sampled with prob-
ability 1/2k each, while in Rz the tuple (az,cs) is sampled
with probability l/2 while the remaining tuples are sampled
with probability 1/2k each. It is duplicate removal which
causes the skewness of the resulting distribution. The ex-
tremely high skew in the relations Ri and Rz prevents sam-
ples of these relations from capturing attribute values that
appear frequently in the join output. I

Thus, SAMPLE(RI ,fl) w SAMPLE(&,~~) cannot gener-
ate SAMPLE(RI w R2, f) for any reasonable values of fi and
A, when f > 0. In other words, SAMPLE does not commute
with join. In fact, SAMPLE(Rl,fi)w SAMPLE(&,f2) may
not even contain any non-trivial size subset of J, and so
further computation or sampling from it cannot be used to
extract a sample of J. We will formalize later (in Section 7)
the negative results implicit in this example.

Observe that the impossibility of commuting SAMPLE
with join does not preclude the possibility of somehow ob-
taining SAMPLE(Rl W Rz, f) from non-uniform samples of
RI and Rz. To better understand this point, consider the
tuple t = (ar,bs) E RI and its influence on RI w Rz. While
ml(al) = 1, the set Jt(R2) has size mz(ar) = k. Thus, even
though a random sample of RI is unlikely to pick up the
tuple with A-value al, half of the tuples in the join J have
A-value al. This suggests that we sample a tuple t E RI
of join attribute value v with probability proportional to
ms(v), in the hope that the resulting sample is more likely
to reflect the structure of J. This is the basic insight behind
most of our strategies given in Section 6.

5.2 The Role of Statistics in Join Sampling

The preceding discussion suggests that we sample tuples
from RI based on frequency statistics for R2. This requires
that Rz be materialized and indexed appropriately. This
leads us to the following classification of the problem.

Case A: No information is available for either RI or Rz.

Case B: No information is available for RI, but indexes
and/or statistics are available for R2.

Case C: Indexes/statistics are available for RI and Rz.

Observe that any sampling strategy for an earlier case will
also apply to a later case (where more information is avail-
able). When no statistics are available for a relation, our
strategies are such that we may as well as assume that the re-
lation is not materialized and is being produced as a stream
by a pipeline process. On the other hand, when information
is available for a relation, a lot depends on whether merely
statistical summaries or full indexes are available. We re-
mark that the sampling strategy due to Olken et al [9, lo]
applies only to Case C since it repeatedly samples tuples
from RI using an index, and it also assumes full statistics
and random access into RP, which requires an index.

5.3 Previous Sampling Strategies

We conclude this section with a brief description of sampling
strategies suggested in the literature.

267

In Case A, we do not have any frequency statistics for
join attribute values in RZ to help guide the sampling from
RI, and vice versa; therefore, the only possible approach
appears to be the naive one of computing the full join J =
RI w Rz, followed by rejection sampling where we reject
each output tuple with probability l/(J(. There is one mi-
nor improvement we can give using our black-box for WR
sampling. The idea is to avoid materializing the join J by
performing the sampling sequentially, as shown below. To
handle WoR or CF semantics, we use unweighted sequential
sampling black-boxes for those semantics.

we devise a high-frequency sampling strategy called Group-
Sample. An important payoff of our hybrid sampling tech-
nique is that we do not need a full index on R:! but mereI:/
some partial statistics (on the high frequency values). We
also give some variants of our strategies that either promise
higher efficiency or require less by way of information abou:
the operands.

Strategy Naive-Sample:

We summarize in Table 1 the information about R1 and
Rz required by the previously-known and our new strategies.
This illustrates an additional advantage of our strategies
over Strategy Olken-Sample, beyond the sheer improvement
in efficiency over both Naive-Sample and Olken-Sample.

1. Compute the join J = RI w Rz.

2. As the tuples of J stream by, use Black-Box Ul or U2
to produce SAMPLE(RI w Rz, f).

1 Sampling Strategy 1) RI Info.) Rg Info.)

1 Naive-Samole - -1

Olken’s sampling Istrategy, described below, applies only
to the most restrictive case, Case C, since it requires a ran-
dom access to and statistics for Rz, as well as the ability
to repeatedly sample tuples from RI. While it may appear
that we could use sequential sampling for RI and thereby
avoid the need for an i!ndex on it, this is not possible because
the rejection process makes the number of samples required
from RI a random variable whose distribution depends on
the distribution of values in Rz. The situation is similar for
the other sampling semantics.

Olken-Sam&e
Stream-Sample
Grout-Sam&e

Index
-
-

Freqiency-Partition-Sample 11 - 1 Partial Staa

Table 1: Summary of information about RI and Rz required
by old and new sampling strategies.

Strategy Olken-Sample:

1. Let M be an upper bound on m2 (V) for all v E D.

2. repeat

We give details of our sampling strategies only for the
case of sampling r = fn tuples of J with WR semantics.
To obtain WoR samples we employ the conversion trick dis-
cussed in Section 3, although most of the strategies below
can be directly adapted to produce samples with WoRl se-
mantics. Our techniques also generalize to CF semantics.

(a) Sample a tuple tl E RI, uniformly at random. 6.1 Strategy Stream-Sample
(b) Sample a r.andom tuple tz E Rz from among all

tuples t E I& that have t.A = t1.A.
(c) Output tl Da tz with probability mz(tz.A)/M, and

with the remaining probability reject the sample.
until r tuples have been produced.

Theorem 5 (Olken [lo]) Strategy Olken-Sampleproduces

a WR sample of RI c4 RZ and requires e iterations for
each output tuple.

We are now in the case where no information is available for
RI and in fact we assume that it is only available as a st,rteam
from a pipeline process. We first describe a more sophisti-
cated and efficient version of Strategy Olken-Sample that
performs only a sequential sampling from RI. Another key
difference with respect to Strategy Olken-Sample is that we
do not generate excess tuples only to reject them later, lead-
ing to greater efficiency. As in Olken’s strategy, we assume
availability of frequency statistics and an index for Rz.

6 New Strategies for Join Sampling

We now turn to the description of our new sampling strate-
gies. The only non-trivial sampling strategy known earlier
is Olken’s strategy which applies only to Case C; also Case
A does not permit any improvement over the naive sampling
strategy. All our strategies apply to Case B, and therefore
trivially to Case C as well. First, we improve upon Olken’s
strategy by describing Strategy Stream-Sample which does
not require any inform.ation about RI and avoids the ineffi-
ciency of rejecting samples from Rz.

Strategy Stream-Sample:

1.

2.

We develop anothelr strategy, called Strategy Frequency-
Partition-Sample, based on the insight that the naive sam-
pling strategy performs badly only when the average fre-
quency of attribute values is high enough to make the join
size significantly larger than the size of the operand rela-
tions. The idea is to partition the operands into two sub-
relations, one with the high-frequency values and the other
with the low-frequency values. For the low-frequency values,
we can use the naive sampling strategy, but for the high-
frequency values we need to develop more refined approaches
as this is precisely the set of values for which computing
the full join is expensi-ve. For Frequency-Partition-Sample,

Use Black-Box WRl or WR2 to produce a WR sample
S1 s RI of size r, where the weight w(t) for a tuple
t E RI is set to mz(t.A).

while tuples of S1 are streaming by do begin

(a) get next tuple tl and let 2, = t1.A;
(b) sample a random tuple tz E Ra from among all

tuples t E Rz that have t.A = v;
(c) output t1 w t2

end.

In Step 1, we sample each tuple t in RI with weight
proportional to the frequency of its join attribute value in
Rz. Several tuples in RI may have the same join attribute
value and hence the same weight.

Theorem 6 Stream-Sample gives a WR sample of RI w R2

and requires only one iteration for each output tuple.

268

!

6.2 Strategy Group-Sample

We now outline a strategy which works in the following sce-
nario: no information is available for RI and the relation is
merely streaming by; and, for RZ we have frequency statis-
tics specifying ms(v) for each w E D. Notice that this is a
special case of Case B. As will be shown in Section 6.3, this
strategy can be adapted to be applicable even when only
partial frequency statistics (e.g., end-biased histograms) are
present.

Strategy Group-Sample:

1. Use Black-Box WRl or WR2 to produce a WR sample
Sr C RI of size r, where the weight w(t) for a tuple
t E RI is set to mz(t.A).

2. Let Si consist of the tuples ~1,. . . ,s,. Join 5’1 with
Rz to produce a relation Sz whose tuples are grouped
by Si’s tuples sr,..., sr that generated them.

3. From Ss, pick one tuple at random from each of the
groups corresponding to Sr ‘s tuples ~1,. . , sr. For
this, we use r separate invocations of Black-Box Ul
or U2 to sample exactly one tuple from each group.

The cost of this scheme depends on the fraction of the
full join computed as an intermediate result in Step 2. The
following theorem gives the expectation LY of this fraction.
For relations without skew, where each join attribute value
has frequency m, we have cr = 5 where d is the number of
distinct values common to the operand relations. We see sig-
nificant efficiency improvement for small r. The efficiency of
Group-Sample should be compared to that of Naive-Sample,
which is the only strategy known earlier for this scenario.

Theorem 7 Strategy Group-Sample gives a WR sample of
J = RI w Rz and computes a subset of J of expected size
a x IJI, where

We note that in the case of a foreign-key join, where the join
attribute is a key for Rz, the value of mz(w) is either 0 or 1
for each u E D, and the bound on cx can be improved.

6.3 Strategy Frequency-Partition-Sample

While having full statistics for R2 can be advantageous, in
general these may not be available without the presence of
an index. However, it is reasonable to assume that we have a
histogram for R2 which gives the frequency statistics for all
values with high frequency, say higher than t. We now show
how to create a hybrid3 strategy which involves logically par-
titioning the domain into two sets of values, high-frequency
(in R2) and low-frequency (in R2), using Strategy Group-
Sample on the former values and Strategy Naive-Sample on
the latter values. Note that since a skew in frequency is ex-
actly the problem illustrated in Example 1, it makes sense
to handle high- and low-frequency values differently in a
sampling strategy. A more crucial insight behind the hy-
brid strategy is that the size of the join is large precisely
for the high-frequency values. Therefore, the key to better
efficiency is to avoid computing the full join for that set of
values. Working in our favor are the properties that there

1.

2.

3.

4.

5.

As the tuples from RI stream by, let the tuples from
Rf’ go through untouched. Filter the tuples of R:’
through Black-Box WRl or WR2 employing frequency
statistics from Rk* as weights to create r samples S’r c
Rf’ that are merged back into the stream. In the pro-
cess, collect frequency statistics for RF’ and, combin-
ing with the frequency statistics for R,h’ , determine the
net size nhi of Jh’ = RF’ w R,h’. Denote the output
stream by R; = SI u R:“.

Compute the join J’ = R; w Rz. As J’ is being
produced, determine the total number nro of the tu-
ples in J’ that contain D’” values, i.e., the size of
J’” = R’” w R’”

1 2 .

As J’ streams by, partition it into J’” and Jh’. Feed
J“’ into Black-Box Ul or U2 to reduce r samples
(unweighted WR sampling). In JE, select one tuple
at random from each of the r groups corresponding
to the tuples ~1,. . . , sr E Sr (as in Strategy Group-
Sample). Materialize both samples.

Flip r coins with heads probability proportional to nhi
and tails probability proportional to nl,. Let rhi be the
number of heads and r10 be the number of tails.

3For different reasons, Ganguly, Gibbons, Mat&., and Silber- 4Note that to ensure accuracy of Frequency-Partition-Sample, the
schatz [2] also used a similar hybrid strategy for efficient estimation histogram must be up to date. However, the cost of keeping the
of join-size. histogram updated may be traded-off by adjusting the parameter t.

Figure 1: Block Diagram for Frequency-Partition-Sample

cannot be too many values of high frequency and that these
are precisely the set of values for which we can maintain
frequency statistics without incurring a high cost.

The join attribute values need not be of high frequency
simultaneously in both operand relations, but a good ap-
proximation to the set of values which create a large number
of tuples in the join are the values which have high frequency
in only R2. Another issue is to determine the distribution
of the sample between the high-frequency and low-frequency
subdomains. To this end, we sample r ruples from each sub-
domain, in the process determining the relative size of the
join in the two subdomains, and later rejecting an appro-
priate number of tuples in each of the two samples. The
number of samples from each subdomain can be determined
by flipping a coin r times, where the probability of heads is
the fraction of the tuples lying in the high-frequency subdo-
main. This gives us Strategy Frequency-Partition-Sample;
refer to Figure 1 for a schematic description of this strategy.

Strategy Frequency-Partition-Sample:

Select a frequency threshold { for the domain D of the
join attribute. Determine Dh’ as the set of values in D
that have frequency exceeding t in R2. This requires
having available an end-biased histogram4 on R2.A,
containing frequencies of all values that occur t or more
times, and let D’” be the remaining values in D. This
induces a partition of RI into RF’ = RI In,,* and R:” =
RI IDlo, and R2 into R,h’ = R2 lnh; and R:” = R2 IDlO,
where R In, denotes selection of tuples from R with
join attribute value in D’.

269

Scan the two samples of size r from J’O and Jh’. Feed
the samples from J’” into a black-box for sampling
with WoR semantics to reduce r10 samples. Similarly,

R. feed the samples from J * mto a black-box for sampling
with WoR semantics to produce rh, samples.

Combine the r10 samples from J’” and the rhr samples
from Jh’ to get the overall r samples.

A key advantage of this scheme is that it requires neither
an index nor complete frequency statistics for Rz; rather,
it merely requires summary statistics in the form of a his-
togram. For this reason, its efficiency should be compared
to that of Strategy Naive-Sample which is the only strategy
known earlier for this scenario. The performance is eluci-
dated in the following theorem.

Theorem 8 Frequency-Partition-Sample gives a WR sam-
ple of J = RI w Rz and only needs to compute a subset of
J whose expected size ia an a-fraction of J’s size, where

The two terms in the expression for (Y correspond to the
low-frequency and high-frequency values, respectively. In
case of operand relations with high skew, the second term
dominates and has the :same behavior as in the case of the
fraction o for Strategy Croup-Sample.

6.4 Other Strategies

In case an index is also available (or can be quickly con-
structed) for the high-frequency values in R,h’, in addition
to the frequency statistics, we would apply a variant of Strat-
egy Frequency-PartitionSample that is more efficient. (This
is only a temporary requirement and we will shortly see how
to eliminate t,he need for this index without affecting perfor-
mance.) This variant is called Strategy Index-Sample and
it does not compute the full join of Sr with R,h” in Step 3.
Instead, it uses the idea in Strategy Stream-Sample to di-
rectly compute a sample of size m from Jh’ by joining each
tuple si E Sr with a random tuple from J,,(Rz).

Theorem 9 Index-Sample produces a WR sample of J =
RI w Rz and only needs to compute a subset of J whose
expected size is at most an a-fraction of J’s size, where

It may appear unrealistic to assume the existence of an
index for R,h’. But it is not very hard to see that in Strategy
Index-Sample we can replace the requirement for an index
on Rt’ by a scan of R[!‘. The following strategy, called
Count-Sample, accomplis#hes this and can replace the use of
Stream-Sample in the Index-Sample technique.

Strategy Count-Sample:

1. Use Black-Box WRL or WR2 to produce a WR sample
S1 C RI of size r, where the weight w(t) for a tuple
t E RI is set to mz(t.A).

2. Materialize Sr and in the process, determine for each
value v E D the number of tuples sr(w) in Sr with join
attribute value v.

Sample r tuples Sz C Rz such that the number of
tuples with join attribute value v is exactly 51(u). This
may be done as follows: while scanning Rz, for each
tuple t with t.A = 2, feed t into a copy of the Black-
Box Ul with r replaced by s*(z)) and n replaced by
mz(v). That is, for each value w, a different black-
box produces si (v) samples with replacement from the
ms(v) tuples of that value in Rz.

As each tuple of SZ is produced, select a random tuple
with the same join attribute value from Sr and join the
two tuples, placing the result in the output. Delete (or
mark) the tuple of Si so that it is not selected again in
the future; effectively, we are doing a sampling without
replacement from Si at this stage. Alternately, Sz can
be materialized and randomly matched to Sz.

Unlike Strategy Stream-Sample, the above strategy does
not need an index on Rz; instead, it merely scans RZ once.
Therefore, we can substitute Count-Sample for the use of
Stream-Sample in Strategy Index-Sample. This yields a
variant of Frequency-Partition-Sample and Index-Sample;
we refer to this variant as Strategy Hybrid-Count-Sample.
We plan to compare the performance of the new strategy
with Frequency-Partition-Sample.

7 Extensions and Negative Results

The previous section was primarily concerned with the issue
of sampling from a single join operation. We now turn to the
question of implementing sampling as a primitive relational
operation in the context of a join tree. As remarked earlier,
the problem of dealing with a query tree with an arbitrary
mixture of join and sampling can be reduced to the case
where the sampling is applied only once to the relation R
produced by a join tree. If we could devise an effective tech-
nique for pushing the sampling all the way down to leaves
in this particular case, then we could repeatedly apply this
technique to push all sampling operations to the leaves and
thereby solve the more general problem.

Suppose we have a query Q generating a join tree T
with a sampling operation applied to its result R. We are
interested in the special case of linear join trees, which is
a left-deep join tree where RI is joined to Rz, the result is
joined to Rs, and so on; e.g., R = ((RI w Rz) w Rs) w R’s
gives a left-deep tree with three joins in it. The strategies
presented in Section 5 apply only to single joins. In this
section we expose the inherent limitations on our ability to
improve the efficiency of these strategies for single joins, and
discuss their application to sampling from join trees.

We have already given some indication of the reasons
why join sampling is a difficult problem even in the case
of single joins, especially when full information is not pro-
vided for the operand relations. In Section 7.1, we show
that sampling cannot be commuted with join in the natural
way. This explains why our results in Section 5 apply only
to Cases B and C where we are not restricted in our ac-
cess to the operand relations to merely sampling uniformly
therein, but are also allowed to use non-uniform sampling
with cross-dependence on frequency statistics. Then, in Sec-
tion 7.2, we consider the implications of our work for linear
and arbitrary join trees. We argue that our results go a long
way towards handling linear join trees efficiently, although
they fall short of effectively dealing with arbitrary join trees.

270

7.1 The Inherent Difficulty of Join Sampling

Suppose we are given samples Si = SAMPLE(RI, fi) and
Ss = SAMPLE(R~, fi) under some choice of sampling seman-
tics. We emphasize that Sr is a uniform random sample of
RI chosen independently of Rz, and Ss is a uniform random
sample of R2 chosen independently of RI. Given only Si , S2,
and any desired set of statistics for RI and Rz, but without
direct access to the tuples in RI and R2, we are required to
produce a sample S = SAMPLE(RI w Ra, f) for some value
off > 0. The following results address the question of when
it is possible to produce the sample S and how efficiently.
All these results are independent of the sampling semantics.

We begin with a formal statement of the extremely nega-
tive result implicit in Example 1 - even when we are given
arbitrarily large samples from RI and Rz, as well as arbi-
trarily detailed statistics, it is still not possible to generate
any non-empty random sample of RI w Rz under any of the
sampling semantics.

Theorem 10 Suppose that at least one of fl, fa is strictly
less than 1. Then, it is not possible to generate the sample
S = SAMPLE(R~ w R2, f) from S1 and S2 for any f > 0.

This negative result prohibits commuting sampling with
join by pushing down the sampling to both operand rela-
tions, regardless of the degree of inefficiency we are willing
to tolerate. The proof idea is to consider RI and Rz which
both have high skew but on different values of the join at-
tribute. Of course, one might argue that in practice we
expect the high skew in both relations to be on the same
values of the join attribute. Unfortunately, even there we
can give fairly strong negative results, even for operand re-
lations without any slcew. That is, we now consider only the
special case where each value u E D has frequency at most
ml in RI and at most rn2 in Rz; call this the uniform case.

Theorem 11 In the uniform case, it is not possible to gen-
erate S = SAMPLE(R~ w Rz, f) from S1 and SZ, unless:

l
fm2 fml fi>-andf22-,iff<&,

2 2

where m = max{mr , ma} and m’ = min{mi, mz}.

The preceding theorems show why it is necessary to per-
form non-oblivious and non-uniform sampling, where the
probabilities of sampling tuples in RI depends on the fre-
quencies of join attribute values in Rz. The next theorem
shows that there are lower bounds on the sizes of the samples
from RI and RZ that are required to generate a sample from
their join, even if the samples of RI and Rz are generated
in a non-oblivious manner.

Theorem 12 It is not possible to produce the sample S =
SAMPLE(RI w Rz, f) from SI and SZ, unless fl x f2 > f.

This theorem implies, for example, that when f = 0.01 and
fr = fz, then it must be the case that fr 2 0.1 and fz 2 0.1.

7.2 Dealing with Join Trees

The negative results in Section 7.1 state that it is essen-
tially impossible to push down the sampling operation to
both operands of a join operation, shedding some light on
the difficulty of dealing with linear and arbitrary join trees.
But can we at least push down the sampling operation to

one of the two operands, say RI, in some efficient manner?
Note that this would be extremely useful for linear join trees
where we could keep pushing down the sampling operator to
the left operand; in fact, it would also give a partial solution
for arbitrary join trees. The problem is that, as we argued in
Section 5 and as formalized in Theorem 10, picking a sample
from RI independent of the statistics of R2 is no use in sam-
pling the join. Consider sampling from RI w Rz w Rs -
we cannot just select a uniform random sample of RI w Rz
but have to pick a non-uniform sample whose distribution
depends on the statistics of Rs. But then, what about push-
ing the sampling further down the tree to RI? Now, we will
have to sample from RI using statistics for both Rz and RJ.
In principle, this can be done, since the operand relations are
all base relations and their statistics can be precomputed.
We defer a detailed analytical and experimental study of the
efficiency of this strategy to later work.

From the point of view of efficiency, we would like to
push down the sampling operator to both operand relations
of the join node below the sample node. There are two major
problems in doing so. First, this would require statistics on
both operands, so as to permit appropriate sampling from
the two operands. Such statistics will not be available in the
first place unless both operands are base relations, which
is not the case for any non-trivial join tree. Furthermore,
even if we somehow managed to generate the two samples, it
appears to be difficult to construct a uniform sample S C J
from the samples Sr and S’z of RI and Rz, respectively. To
see this, consider the “projection” of the sample S onto RI
and Ra, yielding two samples SF C RI and S; C Ra. Of
course, the distribution of Si (respectively, Sz) is identical
to that of ST (respectively, S;), since that was the whole
point of the cross-dependent sampling strategy. But note
that 5’; and S,’ are highly correlated - in particular, the
total number of tuples with join attribute value u must be
identical in the two samples, for any 2, E D. This correlation
is troublesome even for the case of a single join, and will be
difficult to track as we keep pushing the sampling operations
down different branches of the join tree.

8 Implementation and Experimental Evaluations

We implemented the following strategies for join sampling on
Microsoft SQL Server 7.0 - Naive-Sample, Olken-Sample,
Stream-Sample, and Frequency-Partition-Sample. In addi-
tion to modifications of existing join operators, these al-
gorithms require the use of the black-boxes Ul and WRl
for producing unweighted and weighted sequential sampling
with replacement. We implemented each of these black-
boxes as operators. Because of the object-oriented design
of code in SQL Server 7.0, adding an operator to the query
execution tree only requires creating a derived class of a
base operator class and implementing the necessary meth-
ods (e.g., Open, Close, and GetRow).

To implement Naive-Sample on the result of a join, we
modified the execution tree generated by SQL Server opti-
mizer by adding the Ul operator (unweighted WR sampling)
as the root of the execution tree.

For Olken-Sample, we needed to sample tuples at random
from the outer (left) relation RI in the join. For simplicity,
we simulated such an access by first creating a uniform ran-
dom sample of the key values of RI and put these values
into a temporary table Ti. When Tr is joined with RI (on
the key value), it has the same effect as choosing random
tuples from RI. We also had to modify each join method in
SQL Server, i.e., Nested Loops, Hash Join, and Merge Join,

271

so that the tuple from the outer relation is joined with a
random tuple from R> among all tuples in R-J that would
have joined. For example, in the Nested Loops join method,
for a given value v in a tuple from RI, we pick a random
number Ic between 1 and J(V). Then, we skip k - 1 matches
of the join, and accept the kth matched tuple with proba-
bility mz(v)/NI, where M is an upper bound on ms(w) for
all v. We then proceed to the next random value from RI.

For Stream-Sample, we inserted the WRl operator as a
child of the jojn operator, i.e., between the scan operator
on the outer-relation and the join operator. In the GetRow
method of the WRl operator, for the next tuple, the opera-
tor determines the number of copies that must be generated
and produces that many copies. The statistics on the join
attribute of Rz are read from a file and stored in a work
table. This table is indexed on the join attribute so that
it is efficient to look up the frequency of a given value of
the join attribute. We note that when the data distribution
was moderately to highly skewed, the work table was usu-
ally small enough to fit into memory. Finally, we modified
the join operator so thlat for each tuple sampled from RI,
we output exactly one tuple at random from among all the
tuples that join with R’z.

For Frequency-Partition-Sample, we implemented a mod-
ified version of the WFU operator for producing a random
sample from RI of the tuples belonging to the high-frequency
partition. The low-freq,uency tuples simply passed through
this black-box. We simulated the effect of an end-biased his-
togram that keeps stat:istics on high-frequency values using
the same mechanism as in Stream-Sample, i.e., the statis-
tics were read in from a file and stored in a work table.
We modified the join operator to additionally perform the
Group-Sample operation to produce a sample of the join of
high-frequency values (Jh’). We also added a WRl operator
on top of the join operator to produce the sample from J’“.
Finally, we added as the root of the query tree, an opera-
tor for (a) materializing the samples from Jh’ and J’O, and
(b) picking samples without replacement of the required size
from each materialized sample to produce the final output.

8.1 Experimental Setup

We generated four tables with 1OOK tuples each, and four
tables with 1 million tuples each. Each table had an RID
column which consists of unique randomly generated num-
ber between 1 and the number of tuples in the relation. The
second column

was an integer column generated from a Zipfian distri-
bution [13]. The second column in each of the four tables
differed in the value of the Zipf parameter .z used, which
was set to 0, 1, 2, and 3, respectively. The data values in
the second column were generated so that the most frequent
value was picked in the same order in each case. The third
column was used as padding (character field of 32 bytes) to
ensure a reasonable recxord size. The queries that were run
were of the form SELECT * FROM tl, t2 WHERE tl.col2
= t2.co12, where tl was one of the lOOK-tuple tables, and
t2 was one of the million-tuple tables. In other words, the
join attributes from both tables were the second column.
This allowed us to study the effect of varying skew on the
join columns on both the outer (left) and the inner (right)
relation. The parameters varied in our experiments were:

l skew in data distribution of the join columns on the
outer and inner relations,

l fraction to be sampled from the join,

l threshold used for statistics on the inner relation (rel-
evant only for Frequency-Partition-Sample),

l indexes (i.e., the availability of indexes on the inner
relation for Frequency-Partition-Sample).

8.2 Experimental Results

We summarize below the results of our experiments. The
overall trend is that our new strategies are consistently bet-
ter than earlier techniques. When indexes/statistics are not
available on both operands, Frequency-Partition-Sample sig-
nificantly outperforms Naive-Sample, the only other strat-
egy known earlier in this situation. When indexes/stat,istics
are available on both operands, Stream-Sample beats Olken-
Sample. Moreover, Stream-Sample is also applicable (but
Olken-Sample is not) when indexes/statistics are available
only on the inner relation.

Varying the Sampling Fraction: We varied the sampling
fraction for four different values: 100 tuples, fi, l%, and
5%. We present the results for two cases of skew: (a) when
skew in both columns are low, i.e., z = (0,O); and, l(b)
when both skews are high, i.e., z = (2,3). For Frequency-
Partition-Sample, the threshold5 for statistics was set at
5%. An index was present on the inner (right) relation.
Figure A shows that at low skew values, Stream-Sample
outperforms the other strategies at all sampling fractions.
Further, the improvement with Olken-Sample drops more
rapidly as the sampling fraction increases, since the number
of random accesses to the outer relation increases. As ex-
pected, Frequency-Partition-Sample provides little improve-
ment over naive sampling since the fraction of low-frequen.cy
values in RP is very high. However, as shown in Figure
B, when the data in the join columns is highly skewed,
both Stream-Sample and Frequency-Partition-Sample con-
sistently outperform Olken-Sample at higher sampling frac-
tions, i.e., 5% and 10%. This experiment demonstrates the
superiority of Stream-Sample over the other strategies.

Varying the Skew: In this experiment we varied the skew
on the inner relation over the values 0, 1, 2, and 3, while
keeping the skew of the outer relation fixed. We measured
the performance improvement of each strategy relative to
that of Naive-Sample. An index was present on the inn.er
relation, and for Frequency-Partition-Sample the statistics
threshold was set to 5%. Figures C and D show that al-
though for z = 0, Frequency-Partition-Sample is slower than
the other strategies, for all other z values it is faster than
Olken-Sample and Stream-Sample. Again, Stream-Sample
is the best over a wide range of data distributions.

Performance of Frequency-Partition-Sample with no Indtex
on Right: In this experiment, we study the performance
of Frequency-Partition-Sample when there is no index on
the inner relation, as the skew is varied. This experiment
shows the generality of Frequency-Partition-Sample since it
is the only applicable strategy when there is no index on
the inner relation. Figure E shows that the strategy gives
significant improvement in running time compared to the
naive sampling, particularly when the data distribution on
the join columns is skewed.

5A threshold of k% means that frequency counts are kept for :all
values which occur rC% of the time or more in the relation.

272

Varying the Partition Threshold: In our next experiment,
we varied the threshold for deciding which statistics to keep
on the inner relation (this is relevant only to Frequency-
Partition-Sample). We varied k over the values O.l%, O.S%,
l%, 2%, 5%, lo%, and 20%. Figure F shows that for highly
skewed data the performance is not sensitive to the thresh-
old parameter. This is because the number of distinct val-
ues in the relation is relatively small for highly skewed data
and hence the cost of looking up the statistics is small. On
the other hand, as Figure E shows, for data with low skew
picking the right threshold is important. If a low threshold
is picked, then too many infrequent values are part of the
statistics, thereby increasing the overhead of looking up the
statistics. On the other hand, with a high threshold, infor-
mation about frequent values may not be available, resulting
in a large number of values being unnecessarily joined. We
conclude that a statistics threshold of 2% gives good perfor-
mance over a wide range of data distributions.

9 Conclusions and Future Work

In this paper we have conducted a detailed study of some
of the issues involved in introducing sampling as a primitive
relational operation. We identified the inability to commute
sampling with join as the major bottleneck in this regard.
This led us to focus on the problem of efficiently sampling
the result of a join operation without computing the entire
join in the first place. We shed some light on the intrin-
sic difficulty of this problem and that suggested a possible
approach for the case of a single join. One key understand-
ing was that of the complications introduced by the pres-
ence of skew in the data, particularly in terms of requiring
the dependence of the sample from one operand relation on
the frequency statistics of the other operand relation of the
join operation. This in turn led us to classify the prob-
lem into three cases based on the information available for
the operand relations. We presented a series of sampling
strategies that provide enhanced efficiency in a variety of
settings with varying assumptions about the available in-
formation. Experimental results were provided to demon-
strate the increased efficiency resulting from employing our
sampling strategies. We also considered the more general
problem of sampling the result of a join tree. While our
techniques apply to the case of linear join trees, more work
is required to fully validate this claim. On the other hand,
our techniques are not entirely satisfactory for the case of ar-
bitrary join trees. But perhaps this is inevitable, as we have
provided strong negative results for the natural approaches
to dealing with arbitrary join trees. In the process, we pro-
vided new schemes for sequential random sampling for uni-
form and weighted sampling distributions, which may be of
interest in their own right.

Our work sets up an agenda for future work. It is possible
that even more efficient strategies can be developed for the
case of a single join based on observations made here. More
work is needed to to understand the impact of our ideas on
the problem of sampling the result of join trees. Also, in
order to handle general query trees, it is essential to extend
our work to other relational operators.

Acknowledgements We thank Jun Rao for discussions that
helped develop the Frequency-Partition-Sample strategy; he
also contributed to an initial implementation on SQL Server.

PI S. Chaudhuri, R. Motwani, and V. Narasayya. Us-
ing Random Sampling for Histogram Construction. In
Proc. ACM SIGMOD Conference, pages 436-447, 1998.

PI S. Ganguly, P.B. Gibbons, Y. Matias, and A. Silber-
schatz. Bifocal Sampling for Skew-Resistant Join Size
Estimation. In Proc. ACM SIGMOD Conference, pages
271-281, 1996.

PI P. J. Haas, J.F. Naughton, and A.N. Swami. On the Rel-
ative Cost of Sampling for Join Selectivity Estimation.
In Proc. 13th ACM PODS, pages 14-24, 1994.

141 J.M. Hellerstein, P. J. Haas, and H. J. Wang. Online Ag-
gregation. In Proc. ACM SIGMOD Conference, pages
171-182, 1997.

[51 W. Hou, G. Ozsoyoglu, and E. Dogdu. Error-
Constrained COUNT Query Evaluation in Relational
Databases. In Proc. ACM SIGMOD Conference, pages
278-287, 1991.

@I R.J. Lipton, J.F. Naughton, D.A. Schneider, and S. Se-
shadri . Efficient Sampling Strategies for Relational
Database Operations. Theoretical Computer Science
116(1993): 195-226.

171 R. Motwani and P. Raghavan. Randomized AIgo-
rithms. Cambridge University Press, 1995.

PI J.F. Naughton and S. Seshadri. On Estimating the Size
of Projections. In Proc. Third International Conference
on Database Theory, pages 499-513, 1990.

PI F. Olken and D. Rotem. Simple random sampling from
relational databases. In Proc. 12th VLDB, pages 160-
169, 1986.

WI I F. Olken. Random Sampling from Databases.
PhD Dissertation, Computer Science, University of Cal-
ifornia at Berkeley, 1993.

References

[ll] G. Piatetsky-Shapiro and C. Connell. Accurate estima-
tion of the number of tuples satisfying a condition. In
Proc. ACM SIGMOD Conference, pages 256-276, 1984.

P21

1131

J.S. Vitter. Random sampling with a reservoir. ACM
Trans. Mathematical Software, 11 (1985): 37-57.

G.E. Zipf. Human Behavior and the Principle of
Least Effort. Addison-Wesley Press, Inc, 1949.

273

Effect cf Sampling Fraction cn Performance fffect of Sampling Fraction on Performance.

2 Outer = 0,Z Inner = 0

1‘ -.’
.-ll-_--l--“__

1

100 sqrt(n) 1% 5% 10%

tuples

Sampling Fraction

q Oaken I
n Stream

Sample

q Frequency
Partiiin-
Sample

2 Outer = 2,Z Inner = 3

Sampling Fraction

13 Olken

n Stream
Sample

0 Frequency-
Rxttion-
Sample

Figure A. Effect of Sampling Fraction on performance.
Z=(O, 0).

Figure B. Effect of Sampling Fraction on performance.
Z=(2,3).

Effect of Skew (Index on RHS, LHS Z = 0, Effect of Skew (Index on RHS, LHS Z = 3,

Sampling Fraction = 1% Sampling Raction=l0/9)

2 3

2 (RHSSkew)

q Olken

n Stream
Sarrple

q Frequency-
Rrtition-
Sanple

0 1 2 3

Z (RiSSkew)

~1 Ciken

n Stream
Sample

0 Frequency-
Partitiin-
Sarrple

IL
Figure D. Effect of skew on performance (LHS Z=3)

Performance of Frequency-Partition-Sample with no
index on RHS with varying skew

T 100%
Bg
.+ 0 60%
E-,
gs 60%

t E” 40% l=t
maI
.c .5
EP

20%

2s 0% ~~
0 1 2 3

Skew (2 RHS)

Effect of StatisticsThreshold on Performance of
Frequency-Partiiton-Sample

I 1

0.1% 0.5% 1% 2% 5% 10% 20%

Statistics Threshold

Figure E. Performance of Frequency-Partition-Sample Figure F. Effect of varying Statistics Threshold on 1

274

