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Abstract 

A major bottleneck in implementing sampling as a primitive 
relational operation is the inefficiency of sampling the output 
of a query. It is not even known whether it is possible to 
generate a sample of a join tree without first evaluating the 
join tree completely. We undertake a detailed study of this 
problem and attempt to analyze it in a variety of settings. 
We present theoretical results explaining the difficulty of 
this problem and setting limits on the efficiency that can be 
achieved. Based on new insights into the interaction between 
join and sampling, we develop join sampling techniques for 
the settings where our negative results do not apply. Our 
new sampling algorithms are significantly more efficient than 
those known earlier. We present experimental evaluation of 
our techniques on Microsoft’s SQL Server 7.0. 

1 Introduction 

Data warehouses based on relational databases are becom- 
ing popular. The investment in data warehouses is targeted 
towards developing decision support applications that lever- 
age the massive amount of data stored in data warehouses 
for a variety of business applications. On Line Analytical 
Processing (OLAP) and data mining are tools for analyz- 
ing large databases that are gaining popularity. Many of 
these tools serve as middleware or application servers that 
use a SQL database system as the backend data warehouse. 
They communicate data retrieval requests to the backend 
database through a relational (SQL) query. On a large 
database, the cost of executing such ad-hoc queries against 
the relational backend can be expensive. Fortunately, many 
data mining applications and statistical analysis techniques 
can use a sample of the data requested in the SQL query 
without compromising the results of the analysis. Like- 
wise, OLAP servers that answer queries involving aggrega- 
tion (e.g., “‘find total sales for all products in the North- 
West region between l/1/98 and l/15/98”) can significantly 
benefit from the ability to present to the user an approxi- 
mate answer computed from a sample of the result of the 
query posed to the relational database. It is well-known 
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that for results of aggregation, sampling can be used accu- 
rately and efficiently. However, it is important to recognize 
that whether for data mining, OLAP, or other applications, 
sampling must be supported on the result of an arbitrary SQL 
query, not just on stored relations. For example, the pre- 
ceding example of the OLAP query uses a star join between 
three tables (date, product, and sales). 

This paper is concerned with supporting random sam- 
pling as a primitive operation in relational databases. In 
principle, this is easy - introduce into SQL an operation 
SAMPLE(R, f) which produces a uniform random sample S 
that is an f-fraction of a relation R. While producing a 
random sample from a relation R is not entirely trivial, it 
is a well-studied problem and efficient strategies are avail- 
able [lo]. However, these techniques are not effective if sam- 
pling needs to be applied to a relation R produced by a 
query Q rather than to a base relation. It seems grossly 
inefficient to evaluate Q, computing the entire relation R, 
only to throw away most of it when applying SAMPLE(R, f). 
It would be much more desirable and efficient to partially 
evaluate Q so as to generate only the sample of R. 

For this purpose, it suffices to consider the case where we 
are given a query tree T with SAMPLE( R, f) only at the root. 
More general cases, where the sample operation appears ar- 
bitrarily in the query tree can be reduced to the above case. 
In this setting, it seems plausible that tremendous gains in 
efficiency can be achieved by “pushing” the sample opera- 
tion down the tree towards the leaves, since then we would 
be feeding only a small (random) fraction of the relations 
(stored as well as intermediate relations) into the query tree 
and thereby minimizing the cost of query evaluation. To this 
end, we need to be able to “commute” the sample operation 
with standard relational operations. 

In our work, we consider only the problem of sampling 
the result of a join tree, since an efficient strategy for this 
special case is prerequisite to realizing the general goal of 
implementing sampling as a primitive relational operation. 
Furthermore, we believe that techniques required to com- 
pletely solve the join tree problem would be an important 
step in dealing with the more general problem. In fact, we 
focus primarily on developing a technique for commuting 
sampling with a single join operation, since we could apply 
this technique repeatedly to push down the sample opera- 
tor from the root to the leaves of a join tree. However, we 
cannot assume that the single join is applied to stored base 
relations, since its operands could be the output of subtrees 
of a join tree. We establish that it is not possible to pro- 
duce a sample of the result of even a single join from random 
samples of the two relations participating in the join. Fortu- 
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nately, we are able to devise a technique for circumventing 
this negative result, Our key observation is that given some 
partial statistics (e.g., histograms) on the first operand rela- 
tion, we can use the statistics to bias the sampling from the 
second relation in such a way that it becomes possible to pro- 
duce a sample of the join. We devise a variety of sampling 
schemes based on these observations, improving the state- 
of-the-art for join sampling. In the context of a join tree, our 
work shows that it is possible to push down the sampling 
operation to one of the two operand relations. At the same 
time, our negative results show that it is inherently difficult 
to achieve greater efliciency by pushing sampling down to 
both operands of a join in a query tree. 

There has not been much past work on supporting sam- 
pling as an operation for the end-user of a database sys- 
tem. While random sampling has been proposed and used 
in many different ways in databases [lo], the main focus has 
been on the use of random sampling for the purposes of es- 
timating query result size, aggregate values, and parameters 
for query optimization [ll, 8, 5, 6, 3, 2, 11. 

A notable exception is the work of Olken and Rotem [9] 
and Olken [lo]. They focus on the issue of whether the 
sample operation can be commuted with standard relational 
operations. The easy case is that of selection, which can 
be freely interchanged with sampling. They point out that 
the situation is much more difficult with respect to projec- 
tion and join. For projection, the issue is that of duplicate 
removal which skews the probability distribution; without 
duplicate removal, it is possible to commute sampling with 
projection. In the case of join, the problem is that the join 
of random samples of the operand relations does not give a 
random sample of the join of the operand relations. While 
Olken et al did suggest a technique for sampling the result of 
a join, it is far from satisfactory in terms of efficiency. More- 
over, it requires that the relations being operated on should 
be base relations and have a’ndezes. This limits applicabil- 
ity in the general setting where we are trying to push down 
sampling in a query tree, since the intermediate relations 
would typically not bts materialized and indexed. 

We emphasize that known techniques for estimating the 
size of a join have little or no bearing on our problem - our 
goal is to create a sampIe of the join that satisfies precisely 
the semant.ics of the SAMPLE operation, while the earlier es- 
timation techniques apply to determining an approximation 
to the size of the join. Note that the recent work by Heller- 
stein, Haas, and Wang [4] explores the issue of supporting 
sampling interactively. However, they do not address the 
issue of commuting join and sampling; rather, they focus on 
the choice of join methods that perform progressive approx- 
imate sampling and support interactivity. 

2 Summary of Results 

We begin in Section 3 with a discussion of three possi- 
ble semantics for the sample operator: with-replacement, 
without-replacement, .and coin-flip. We also present some 
observations concerning our ability to switch between the 
various semantics. Then, in Section 4, we turn to the is- 
sue of an efficient implementation of the sample operator in 
isolation. While efficient implementations were known ear- 
lier for without-replacement and coin-flip semantics, we had 
to develop new techniques for the case of with-replacement 
semantics. Furthermo’re, it will turn out that weighted (or 
non-uniform) sampling is essential for dealing with join sam- 
pling, so we present extensions of all strategies to weighted 
sampling, which may be of independent interest. Most of 

our results apply to all three semantics for sampling, but we 
discuss mainly the case of WR semantics. 

In Section 5, we tackle the problem of efficiently sam- 
pling the result of a single join operation. We begin with a 
discussion of the reasons why sampling does not commute 
with join: first, the join of random samples from Ri and Rz 
does not give a random sample of their join’ J = RI IXI Rz; 
moreover, the projection of a random sample of J onto the 
attributes of (say) RI does not yield a uniform random sam- 
ple of RI but instead gives a biased random sample where 
the probability of a tuple depends on the number of tuples in 
RZ that join with it. This indicates that it is essential to use 
frequency statistics for join attribute values in Rz to gener- 
ate a suitable sample from RI. Based on the latter insight, 
we are able to identify possible approaches to circumverrting 
the difficulty of join sampling. Efficiency of sampling de- 
pends on whether the operand relations are materialized or 
merely streaming by, and the kind of information (indexes 
and statistics) available for them. We divide our analysis 
into three broad cases: Case A where no information is 
provided for either relation, Case B where information is 
available for only one relation, and Case C where informa- 
tion is available for both relations. 

The naive strategy for sampling from the join J is to 
compute the full join and then sample therein. The ques- 
tion is whether we can improve efficiency by avoiding the 
need to compute the full join. This seems impossible for 
Case A where we do not have any frequency statistics for 
join attribute values in Rz to help guide the sampling from 
RI. This leaves Cases B and C, of which Case B has not been 
considered in the past. The earlier work of Olken et al [9, lo] 
considered Case C and proposed that the following strategy 
be applied repeatedly to generate a with-replacement sam- 
ple: choose a random tuple from RI, join it with all match- 
ing tuples in R2, sample a single tuple from the result, and 
reject the sample appropriately to ensure a uniform proba- 
bility distribution over all tuples in J. In Section 6 we pro- 
pose a new strategy which has two major advantages: using 
our results for weighted sampling, we avoid the requirement 
of an index for RI or even that it be materialized; and, we 
improve efficiency by avoiding the need for rejection of the 
sampled tuples to ensure uniformity of the sample. Thus, 
not only does our strategy apply to Case B, it is also more 
efficient. 

Next, we show how to handle more general settings closer 
to Case A, by reducing the dependence on the availability 
of statistics and indexes for Rz. To this end, we propo:se a 
suite of strategies based on the following observations. ‘The 
main source of inefficiency in the naive strategy for Case 
A is the presence of join attribute values of high frequency 
(multiplicity). We develop hybrid strategies which use naive 
sampling for low-frequency values, and we provide new ap- 
proaches for the high-frequency case. 

The preceding discussion was concerned primarily with 
sampling from a single join. In Section 7 we discuss the 
application of our results to the problem of performing sam- 
pling from the output of a join tree, which involves pushing 
down the SAMPLE operation in the tree. We present some 
theoretical results showing that the natural approach for 
commuting sampling with join will not work. In this ap- 
proach, the basic step is that of oblivious sampling: given 
random samples Si 5 RI and Ss C Rz, construct a random 
sample S C RI w R2. Given this, the idea would be to start 

‘Throughout this paper, unless specified otherwise, by “join” or 
RI w R2 we mean an equi-join of the relations RI and Rz with respect 

to an attribute A. 
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with samples of the base relation at the leaves, and then re- 
peatedly perform oblivious sampling to proceed bottom-up 
and obtain the hnal sample at the root. We show that it 
is impossible to preserve the semantics of random sampling 
when using oblivious sampling. This justifies our approach 
of non-oblivioussampling, where we use the frequency statis- 
tics (e.g., histograms) for Rz to bias the sampling from RI. 
For the non-oblivious case, we establish lower bounds on 
the size of the samples Sr and Sz required for producing a 
sample S of a given size. 

We implemented our techniques on Microsoft SQL Server 
7.0. Section 8 presents our experiments that involved vary- 
ing the skew of the data distribution, index structures, as 
well as sampling fractions. We demonstrate that the meth- 
ods proposed in this paper are efficient and consistently out- 
perform earlier techniques. Note that where index/statistics 
are not available for both operand relations, the only tech- 
nique known earlier was naive sampling. We conclude in 
Section 9 with a summary of our results and a discussion of 
future work. 

3 Semantics of Sample 

Consider the operation SAMPLE(R, f) which is supposed to 
produce a uniform random sample of R that contains an f- 
fraction of the tuples in R. This definition does not uniquely 
specify the semantics of the SAMPLE operation. In fact, there 
are at least three distinct interpretations of this definition 
as described below. Let n be the number of tuples in R. 

Sampling with Replacement (WR): Sample fn tuples, uni- 
formly and independently, from R. The sample is a bag 
(multiset) of fn tuples from R, as specific tuples could be 
sampled multiple times. 

Sampling without Replacement (WoR): Sample fn dis- 
tinct tuples from R, where each successive sample is chosen 
uniformly from the set of tuples not already sampled. The 
sample is a set of fn distinct tuples from R. 

Independent Coin Flips (CF): For each tuple in R, choose 
it for the sample with probability f, independent of other 
tuples. This is Like flipping a coin with bias f for each tuple 
in turn. The sample is a set of X distinct tuples from R, 
where X is a random variable with the binomial distribution 
2 B(n, f) and has expectation fn. 

We make some observations concerning the conversion of 
one type of sampling into another. 

1. Given a WR sampling process, we can convert it to 
WoR sampling by checking each new sampled tuple to 
see if it has already been generated and rejecting when 
that happens. There is only a minor loss in efficiency. 

2. Given a CF sampling process, we can convert it to a 
WoR sampling by: sampling a slightly larger fraction 
f’ to ensure that we get at least an f-fraction, as can 
be shown by the Chernoff bound [7]; and, then reject- 
ing an appropriate number of the samples to ensure 
that we get exactly an f-fraction. The latter roughly 
corresponds to a WoR sampling of the CF sample. 

3. Given a WoR sample, we can get a WR sample by sam- 
pling with replacement from the WoR sample, taking 
care to use the correct duplication probabilities. 

‘In effect, this is the distribution of a random value generated 
counting the total number of heads when flipping n independent coins, 
each of which has probability p of turning up heads. 

4. To get a CF sample from either a WR or WoR sam- 
ple is impossible since in the CF semantics we have a 
small but non-zero probability of sampling the entire 
relation. Therefore, any proper subset of the input 
relations cannot suffice to give CF semantics. 

4 Algorithms for Sequential and Weighted Sampling 

One important issue in the choice of sampling semantics is 
whether we can perform the sampling on a relation as it is 
streaming by, i.e., sampling in a single pass, or whether it 
requires some kind of random access to a materialized re- 
lation. Stream sampling is critical for efficiency even when 
the relation is materialized on disk since it permits sampling 
in a single pass, but it is even more important in situations 
where the relation is being produced by a pipeline (as in a 
query tree) and we do not wish to materialize it at all as it 
may be fairly large. We refer to such sampling as sequential 
sampling. Another important issue is whether the sampling 
is vnweighted or weighted. In unweighted sampling, each el- 
ement is sampled uniformly at random, while in weighted 
sampling each element is sampled with a probability pro- 
portional to its weight, for some pre-specified set of weights. 

In this section we discuss strategies for performing the 
most general kind of sampling - weighted and sequential. 
The case of non-sequential sampling is comparatively easier 
and well-studied in the database literature [lo]. 

Observe that CF semantics is particularly easy to work 
with in a streaming situation. Suppose that we wish to ob- 
tain SAMPLE( R, f) with CF semantics by making a single 
pass over R. We simply flip a coin for each tuple (with 
probability f for heads) as it goes by, adding the tuple to 
the random sample as if the corresponding coin flip turns 
up heads. There is also the standard “reservoir sampling” 
strategy for producing a sample without replacement from a 
relation in a single pass [12]. These two strategies have two 
key features: they do not need to know the size of the rela- 
tion in advance; and, they produce samples in the same rela- 
tive order as in the original relation. The former is useful for 
sampling a relation as it streams through a pipeline without 
any materialization on disk, and the latter preserves prop- 
erties such as sortedness. The reservoir sampling algorithm 
has the disadvantage that no samples are produced until 
the entire process has terminated. However, when scanning 
a relation on disk, it can be made efficient by reading only 
those records that get into the reservoir, by generating ran- 
dom intervals of records to be skipped. 

This leaves open the issue of performing unweighted se- 
quential sampling for WR semantics. In Section 4.1, we pro- 
pose two different strategies. In Section 4.2, we turn to the 
issue of weighted sequential sampling and generalize the un- 
weighted sequential sampling WR algorithm to the weighted 
case. We can extend these algorithms to the case of weighted 
CF or WoR sampling, but the details are omitted. We will 
refer to the sampling algorithms as “black-boxes” since that 
is how they will later be used for join sampling. 

4.1 Unweighted Sequential WR Sampling 

The following black-box picks r = fn tuples uniformly at 
random and with replacement from a relation with n tuples. 
Let B(n,p) denote the binomial distribution with parame- 
ters n and p; there are standard algorithms for generating 
random values from this distribution. 

Black-Box Ul: Given relation R with n tuples, generate 
an unweighted WR sample of size r. 
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1. Z t r; i t 0. 

2. while tuples are streaming by and 5 > 0 do begin 

(a) get next tuple t; 
(b) generate random variable X from B(z, A); 
(c) output X copies of t; 
(d) 2 t z -X; 

.‘,‘I. ici+l 

One disadvantage of Ul is the need to know the size n 
of the relation being sampled. (This is in Step Z(b); in Step 
1, we only need to know r which is specified as a part of the 
input.) Depending on the application, this may not be a big 
issue since: if the strea.m is a base relation, we already know 
the size of the relation; else, it is a random sample from a 
lower part of the tree in which case we have specified the 
size of the sample as a. part of the sampling semantics, and 
so we know the size: On the other hand, this strategy has 
several advnntages: it scans the relation (or has it streaming 
by in a pipeline) and produces the sample online in the same 
relative order as in the original relation; further, it does not 
need any significant auxiliary memory. 

Theorem 1 Block-Box U1 gives a WR sample of size r of a 
relation of size n in time O(n) using O(1) auxiliary memory. 

We remark that Black-Box Ul can be efficiently extended 
to block-level sampling on disk. Further, we can use the 
technique due to Vitter [12] of skipping over a random set 
of tuples (those for which X would have been 0), thereby 
improving efficiency. Similar comments apply to our second 
strategy which extends reservoir sampling to WR semantics. 

Black-Box U2: Given. relation R with n tuples, generate 
an unweight(ed WR sample of size r. 

1. N t 0. 

2. Initialize reservoir array A[l..r] with r dummy values. 

3. while tuples are streaming by do begin 

(a) get next tuplle t; 
(b) N t N + 1; 
(c) for j = 1 to I‘ do set A[j] to t with probability & 

end. 

Note that U2 does not need to know the size n of the 
relation being sampled. Moreover, it can be modified to 
produce the sample in the same order as in the original re- 
lation. Its drawbacks are the need to maintain the reservoir 
in memory (or in disk at additional I/O cost), and that it 
does not produce any tuples till the algorithm ends. 

Theorem 2 Black-Box lJ.2 gives a WR sample of size r of a 
relation of size n in time O(n) using O(r) auxiliary memory. 

4.2 Black-Boxes for Weighted Sequential Sampling 

In many applications, it. is necessary to perform a weighted 
sampling instead of a uniform sampling of the tuples in a 
relation. We will soon see that weighted sampling is critical 
to some of our join sampling algorithms. As in the previ- 
ous section, we wish to ensure that the sampling algorithm 
operates on a pipeline or a streamed relation. We describe 
extensions of the earlier black-box for WR semantics de- 
scribed to the weighted case. 

First, let us specify the precise semantics of weighted WR 
sampling. We are given a relation R with a total of n tuples, 

where each tuple t has a specified weight w(t). A weighted 
WR sample is obtained by repeating fn times the following: 
choose a tuple from R at random such that any tuple t is 
chosen with probability proportional to w(t). That is, we 
perform a set of fn independent random selections from R, 
such that each random selection picks a tuple t with prob- 
ability proportional to w(t). The following is an equivalent 
definition for the case where w(t) are non-negative integers. 

Definition 1 Assuming that w(t) are non-negative integers, 
a weighted WR sample from R is the same as an unweighted 
WR sample from a modification of the relation R to a rela- 
tion R” in which there are w(t) copies of each tuple t E R. 

The motivation for this definition is the following. When 
sampling from the join of R with another relation S, we set 
the weights w(t) to be the number of tuples in S that join 
with t; then, a WoR sample of the join of R and S will 
correspond to a sample from R with the same distribution 
as in the preceding definition. Sequential sampling for the 
weighted case should work as follows: a relation R of size n 
is streaming by such that each tuple t comes in with an asso- 
ciated weight w(t), and we would like to perform a weighted 
WR sample of R to produce a total of f n samples. Consider 
the following extensions of the earlier black-boxes. 

Black-Box WRl: Given relation R with n tuples! generate 
a weighted WR sample of size r. 

1. x t r; D t 0. 

2. w +- Ct&4t). 
3. while tuples are streaming by and x > 0 do begin 

(a) get next tuple t with weight w(t); 
(b) choose random variable X from B(z, &); 
(c) output X copies of t; 
(d) x t x - X; 
(e) D t D + w(t) 

end. 

Observe that just as Ul needs to know the size n of R, 
WRl needs to know the total weight W of tuples in R; in 
general, WRl has all the features of Ul. 

Theorem 3 Black-Box WRl gives a weighted WR sample 
of size f from a relation of size n in time O(n) using O(l) 
auxiliary memory. 

Similarly, we can extend U2 to the weighted case. 

Black-Box WR2: Given relation R with n tuples, generate 
a weighted WR sample of size r. 

1. wco. 

2. Initialize reservoir array A[l..r] with r dummy values. 

3. while tuples are streaming by do begin 

(a) get next tuple t with weight w(t); 

(b) W t W + w(t); 

(c) for j = 1 to r do set A[j] to t with prob. v 
end. 

Theorem 4 Black-Box WR2 gives a weighted WR saml;lle 
of size r from a relation of size n in time O(n) using O(r) 
auxiliary memory. 

We omit the definitions of the semantics and the adapta- 
tions of Black-Boxes WRl and WR2 to the case of weighted 
sequential sampling for WoR and CF semantics. 
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5 The Join Sampling Problem 

In this section we examine the problem of efficiently comput- 
ing SAMPLE( Ri w Rz , f) in a variety of settings which differ 
in terms of materialization and indexing of the operand re- 
lations. We highlight the obstacles to solving this problem 
and identify possible approaches for circumventing the ob- 
stacles. We place previous work in this context and set the 
stage for describing our strategies in Section 6. 

Assume that the two relations RI and Rz are of size ni 
and nz, respectively, and that we are interested in an equi- 
join with respect to an attribute A. We denote the domain 
of the attribute A by D. For each value v E D, let ml(w) 
and mz(v) be the number of distinct tuples in RI and R2, 

respectively, that contain value v in attribute A. Clearly, 

c ml(v) = ni and c mz(v) 7 nz. 
VED VED 

Let J = RI w R2 and define n = (J( = (RI w RZ (; clearly, 

n = C ml(v)m2(v). 
WED 

For a tuple t E RI, let 

J4Rp) = {t’ E Rz ) t’.A = t.A} 

be the set of tuples in R2 that join with t; further, define 
t w R2 as the set of tuples in RI w R2 obtained by join- 
ing t with the tuples in Jt(R2). Observe that jJt(Rz)l = 
It w R21 = mz(t.A). Similarly, define for each t E R2 the 
sets Jt(R1) and RI w t, each being of size ml(t.A). 

5.1 The DifFiculty of Join Sampling 

The following example will help illustrate some of the sub- 
tleties of the problem. 

Example 1 Suppose that we have the relations 

R1(A,B)={(al,bo),(az,bl),(az,bz),(aa,b3) ,..., (az,b)}, 

Rz(A,C) = {(az,co), (al,cl), (al,cz), (al,cs), . . , (al,ck)}. 

That is, RI is defined over the attributes A and B; amongst 
its ni = k + 1 tuples, one tuple has the A-value al and k tu- 
ples have the A-value az, but all have distinct B-values. Sim- 
ilarly, Rz is defined over the attributes A and C; amongst its 
nz = k+l tuples, k tuples have the A-value ai and one tuple 
has the A-value az, but all have distinct C-values. Observe 
that their join over A, J = RI w Rz, is of size n = 2k and 
has k tuples with A-value ar and k tuples with A-value az. 

Assume that we wish to choose a random sample with 
WR semantics; our discussion below applies to the other two 
semantics as well. Consider a random sample S C J. We 
expect that roughly half of the tuples in S have A-value al, 
and roughly half of the tuples in S have A-value az. 

Suppose we pick random samples Sr c RI and 5’2 c R:!. 
It is quite unlikely that Si will contain the tuple (ar,bs), 
or that Sz will contain the tuple (az,cs). Thus, given the 
samples Sr and Sz, it is impossible to generate a random 
sample of J = RI w RZ for any reasonable sampling fraction 
or under any reasonable sampling semantics. Note that this 
conclusion holds even if we allow (say) Sz to be all of Rz 
but require that Sr be a proper subset of RI. In fact, in all 
these cases we would expect 5’1 w SZ to be empty. 

The problem is that the projection (after duplicate re- 
moval) of J onto attributes A and B does not give a uniform 
random sample of RI. In fact, it gives a weighted sample of 
RI where each tuple of RI is sampled with probability de- 
pendent on the number of tuples in R2 that join with it; 
specifically, in RI the tuple (al, bs) is sampled with proba- 
bility l/2 while the remaining tuples are sampled with prob- 
ability 1/2k each, while in Rz the tuple (az,cs) is sampled 
with probability l/2 while the remaining tuples are sampled 
with probability 1/2k each. It is duplicate removal which 
causes the skewness of the resulting distribution. The ex- 
tremely high skew in the relations Ri and Rz prevents sam- 
ples of these relations from capturing attribute values that 
appear frequently in the join output. I 

Thus, SAMPLE( RI ,fl) w SAMPLE(&,~~) cannot gener- 
ate SAMPLE( RI w R2, f) for any reasonable values of fi and 
A, when f > 0. In other words, SAMPLE does not commute 
with join. In fact, SAMPLE(Rl,fi)w SAMPLE(&,f2) may 
not even contain any non-trivial size subset of J, and so 
further computation or sampling from it cannot be used to 
extract a sample of J. We will formalize later (in Section 7) 
the negative results implicit in this example. 

Observe that the impossibility of commuting SAMPLE 
with join does not preclude the possibility of somehow ob- 
taining SAMPLE(Rl W Rz, f) from non-uniform samples of 
RI and Rz. To better understand this point, consider the 
tuple t = (ar,bs) E RI and its influence on RI w Rz. While 
ml(al) = 1, the set Jt(R2) has size mz(ar) = k. Thus, even 
though a random sample of RI is unlikely to pick up the 
tuple with A-value al, half of the tuples in the join J have 
A-value al. This suggests that we sample a tuple t E RI 
of join attribute value v with probability proportional to 
ms(v), in the hope that the resulting sample is more likely 
to reflect the structure of J. This is the basic insight behind 
most of our strategies given in Section 6. 

5.2 The Role of Statistics in Join Sampling 

The preceding discussion suggests that we sample tuples 
from RI based on frequency statistics for R2. This requires 
that Rz be materialized and indexed appropriately. This 
leads us to the following classification of the problem. 

Case A: No information is available for either RI or Rz. 

Case B: No information is available for RI, but indexes 
and/or statistics are available for R2. 

Case C: Indexes/statistics are available for RI and Rz. 

Observe that any sampling strategy for an earlier case will 
also apply to a later case (where more information is avail- 
able). When no statistics are available for a relation, our 
strategies are such that we may as well as assume that the re- 
lation is not materialized and is being produced as a stream 
by a pipeline process. On the other hand, when information 
is available for a relation, a lot depends on whether merely 
statistical summaries or full indexes are available. We re- 
mark that the sampling strategy due to Olken et al [9, lo] 
applies only to Case C since it repeatedly samples tuples 
from RI using an index, and it also assumes full statistics 
and random access into RP, which requires an index. 

5.3 Previous Sampling Strategies 

We conclude this section with a brief description of sampling 
strategies suggested in the literature. 

267 



In Case A, we do not have any frequency statistics for 
join attribute values in RZ to help guide the sampling from 
RI, and vice versa; therefore, the only possible approach 
appears to be the naive one of computing the full join J = 
RI w Rz, followed by rejection sampling where we reject 
each output tuple with probability l/(J(. There is one mi- 
nor improvement we can give using our black-box for WR 
sampling. The idea is to avoid materializing the join J by 
performing the sampling sequentially, as shown below. To 
handle WoR or CF semantics, we use unweighted sequential 
sampling black-boxes for those semantics. 

we devise a high-frequency sampling strategy called Group- 
Sample. An important payoff of our hybrid sampling tech- 
nique is that we do not need a full index on R:! but mereI:/ 
some partial statistics (on the high frequency values). We 
also give some variants of our strategies that either promise 
higher efficiency or require less by way of information abou: 
the operands. 

Strategy Naive-Sample: 

We summarize in Table 1 the information about R1 and 
Rz required by the previously-known and our new strategies. 
This illustrates an additional advantage of our strategies 
over Strategy Olken-Sample, beyond the sheer improvement 
in efficiency over both Naive-Sample and Olken-Sample. 

1. Compute the join J = RI w Rz. 

2. As the tuples of J stream by, use Black-Box Ul or U2 
to produce SAMPLE( RI w Rz, f). 

1 Sampling Strategy 1) RI Info. ) Rg Info.) 

1 Naive-Samole - -1 

Olken’s sampling Istrategy, described below, applies only 
to the most restrictive case, Case C, since it requires a ran- 
dom access to and statistics for Rz, as well as the ability 
to repeatedly sample tuples from RI. While it may appear 
that we could use sequential sampling for RI and thereby 
avoid the need for an i!ndex on it, this is not possible because 
the rejection process makes the number of samples required 
from RI a random variable whose distribution depends on 
the distribution of values in Rz. The situation is similar for 
the other sampling semantics. 

Olken-Sam&e 
Stream-Sample 
Grout-Sam&e 

Index 
- 
- 

Freqiency-Partition-Sample 11 - 1 Partial Staa 

Table 1: Summary of information about RI and Rz required 
by old and new sampling strategies. 

Strategy Olken-Sample: 

1. Let M be an upper bound on m2 ( V) for all v E D. 

2. repeat 

We give details of our sampling strategies only for the 
case of sampling r = fn tuples of J with WR semantics. 
To obtain WoR samples we employ the conversion trick dis- 
cussed in Section 3, although most of the strategies below 
can be directly adapted to produce samples with WoRl se- 
mantics. Our techniques also generalize to CF semantics. 

(a) Sample a tuple tl E RI, uniformly at random. 6.1 Strategy Stream-Sample 
(b) Sample a r.andom tuple tz E Rz from among all 

tuples t E I& that have t.A = t1.A. 
(c) Output tl Da tz with probability mz(tz.A)/M, and 

with the remaining probability reject the sample. 
until r tuples have been produced. 

Theorem 5 (Olken [lo]) Strategy Olken-Sampleproduces 

a WR sample of RI c4 RZ and requires e iterations for 
each output tuple. 

We are now in the case where no information is available for 
RI and in fact we assume that it is only available as a st,rteam 
from a pipeline process. We first describe a more sophisti- 
cated and efficient version of Strategy Olken-Sample that 
performs only a sequential sampling from RI. Another key 
difference with respect to Strategy Olken-Sample is that we 
do not generate excess tuples only to reject them later, lead- 
ing to greater efficiency. As in Olken’s strategy, we assume 
availability of frequency statistics and an index for Rz. 

6 New Strategies for Join Sampling 

We now turn to the description of our new sampling strate- 
gies. The only non-trivial sampling strategy known earlier 
is Olken’s strategy which applies only to Case C; also Case 
A does not permit any improvement over the naive sampling 
strategy. All our strategies apply to Case B, and therefore 
trivially to Case C as well. First, we improve upon Olken’s 
strategy by describing Strategy Stream-Sample which does 
not require any inform.ation about RI and avoids the ineffi- 
ciency of rejecting samples from Rz. 

Strategy Stream-Sample: 

1. 

2. 

We develop anothelr strategy, called Strategy Frequency- 
Partition-Sample, based on the insight that the naive sam- 
pling strategy performs badly only when the average fre- 
quency of attribute values is high enough to make the join 
size significantly larger than the size of the operand rela- 
tions. The idea is to partition the operands into two sub- 
relations, one with the high-frequency values and the other 
with the low-frequency values. For the low-frequency values, 
we can use the naive sampling strategy, but for the high- 
frequency values we need to develop more refined approaches 
as this is precisely the set of values for which computing 
the full join is expensi-ve. For Frequency-Partition-Sample, 

Use Black-Box WRl or WR2 to produce a WR sample 
S1 s RI of size r, where the weight w(t) for a tuple 
t E RI is set to mz(t.A). 

while tuples of S1 are streaming by do begin 

(a) get next tuple tl and let 2, = t1.A; 
(b) sample a random tuple tz E Ra from among all 

tuples t E Rz that have t.A = v; 
(c) output t1 w t2 

end. 

In Step 1, we sample each tuple t in RI with weight 
proportional to the frequency of its join attribute value in 
Rz. Several tuples in RI may have the same join attribute 
value and hence the same weight. 

Theorem 6 Stream-Sample gives a WR sample of RI w R2 

and requires only one iteration for each output tuple. 
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6.2 Strategy Group-Sample 

We now outline a strategy which works in the following sce- 
nario: no information is available for RI and the relation is 
merely streaming by; and, for RZ we have frequency statis- 
tics specifying ms(v) for each w E D. Notice that this is a 
special case of Case B. As will be shown in Section 6.3, this 
strategy can be adapted to be applicable even when only 
partial frequency statistics (e.g., end-biased histograms) are 
present. 

Strategy Group-Sample: 

1. Use Black-Box WRl or WR2 to produce a WR sample 
Sr C RI of size r, where the weight w(t) for a tuple 
t E RI is set to mz(t.A). 

2. Let Si consist of the tuples ~1,. . . ,s,. Join 5’1 with 
Rz to produce a relation Sz whose tuples are grouped 
by Si’s tuples sr,..., sr that generated them. 

3. From Ss, pick one tuple at random from each of the 
groups corresponding to Sr ‘s tuples ~1,. . , sr. For 
this, we use r separate invocations of Black-Box Ul 
or U2 to sample exactly one tuple from each group. 

The cost of this scheme depends on the fraction of the 
full join computed as an intermediate result in Step 2. The 
following theorem gives the expectation LY of this fraction. 
For relations without skew, where each join attribute value 
has frequency m, we have cr = 5 where d is the number of 
distinct values common to the operand relations. We see sig- 
nificant efficiency improvement for small r. The efficiency of 
Group-Sample should be compared to that of Naive-Sample, 
which is the only strategy known earlier for this scenario. 

Theorem 7 Strategy Group-Sample gives a WR sample of 
J = RI w Rz and computes a subset of J of expected size 
a x IJI, where 

We note that in the case of a foreign-key join, where the join 
attribute is a key for Rz, the value of mz(w) is either 0 or 1 
for each u E D, and the bound on cx can be improved. 

6.3 Strategy Frequency-Partition-Sample 

While having full statistics for R2 can be advantageous, in 
general these may not be available without the presence of 
an index. However, it is reasonable to assume that we have a 
histogram for R2 which gives the frequency statistics for all 
values with high frequency, say higher than t. We now show 
how to create a hybrid3 strategy which involves logically par- 
titioning the domain into two sets of values, high-frequency 
(in R2) and low-frequency (in R2), using Strategy Group- 
Sample on the former values and Strategy Naive-Sample on 
the latter values. Note that since a skew in frequency is ex- 
actly the problem illustrated in Example 1, it makes sense 
to handle high- and low-frequency values differently in a 
sampling strategy. A more crucial insight behind the hy- 
brid strategy is that the size of the join is large precisely 
for the high-frequency values. Therefore, the key to better 
efficiency is to avoid computing the full join for that set of 
values. Working in our favor are the properties that there 

1. 

2. 

3. 

4. 

5. 

As the tuples from RI stream by, let the tuples from 
Rf’ go through untouched. Filter the tuples of R:’ 
through Black-Box WRl or WR2 employing frequency 
statistics from Rk* as weights to create r samples S’r c 
Rf’ that are merged back into the stream. In the pro- 
cess, collect frequency statistics for RF’ and, combin- 
ing with the frequency statistics for R,h’ , determine the 
net size nhi of Jh’ = RF’ w R,h’. Denote the output 
stream by R; = SI u R:“. 

Compute the join J’ = R; w Rz. As J’ is being 
produced, determine the total number nro of the tu- 
ples in J’ that contain D’” values, i.e., the size of 
J’” = R’” w R’” 

1 2 . 

As J’ streams by, partition it into J’” and Jh’. Feed 
J“’ into Black-Box Ul or U2 to reduce r samples 
(unweighted WR sampling). In JE, select one tuple 
at random from each of the r groups corresponding 
to the tuples ~1,. . . , sr E Sr (as in Strategy Group- 
Sample). Materialize both samples. 

Flip r coins with heads probability proportional to nhi 
and tails probability proportional to nl,. Let rhi be the 
number of heads and r10 be the number of tails. 

3For different reasons, Ganguly, Gibbons, Mat&., and Silber- 4Note that to ensure accuracy of Frequency-Partition-Sample, the 
schatz [2] also used a similar hybrid strategy for efficient estimation histogram must be up to date. However, the cost of keeping the 
of join-size. histogram updated may be traded-off by adjusting the parameter t. 

Figure 1: Block Diagram for Frequency-Partition-Sample 

cannot be too many values of high frequency and that these 
are precisely the set of values for which we can maintain 
frequency statistics without incurring a high cost. 

The join attribute values need not be of high frequency 
simultaneously in both operand relations, but a good ap- 
proximation to the set of values which create a large number 
of tuples in the join are the values which have high frequency 
in only R2. Another issue is to determine the distribution 
of the sample between the high-frequency and low-frequency 
subdomains. To this end, we sample r ruples from each sub- 
domain, in the process determining the relative size of the 
join in the two subdomains, and later rejecting an appro- 
priate number of tuples in each of the two samples. The 
number of samples from each subdomain can be determined 
by flipping a coin r times, where the probability of heads is 
the fraction of the tuples lying in the high-frequency subdo- 
main. This gives us Strategy Frequency-Partition-Sample; 
refer to Figure 1 for a schematic description of this strategy. 

Strategy Frequency-Partition-Sample: 

Select a frequency threshold { for the domain D of the 
join attribute. Determine Dh’ as the set of values in D 
that have frequency exceeding t in R2. This requires 
having available an end-biased histogram4 on R2.A, 
containing frequencies of all values that occur t or more 
times, and let D’” be the remaining values in D. This 
induces a partition of RI into RF’ = RI In,,* and R:” = 
RI IDlo, and R2 into R,h’ = R2 lnh; and R:” = R2 IDlO, 
where R In, denotes selection of tuples from R with 
join attribute value in D’. 
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Scan the two samples of size r from J’O and Jh’. Feed 
the samples from J’” into a black-box for sampling 
with WoR semantics to reduce r10 samples. Similarly, 

R. feed the samples from J * mto a black-box for sampling 
with WoR semantics to produce rh, samples. 

Combine the r10 samples from J’” and the rhr samples 
from Jh’ to get the overall r samples. 

A key advantage of this scheme is that it requires neither 
an index nor complete frequency statistics for Rz; rather, 
it merely requires summary statistics in the form of a his- 
togram. For this reason, its efficiency should be compared 
to that of Strategy Naive-Sample which is the only strategy 
known earlier for this scenario. The performance is eluci- 
dated in the following theorem. 

Theorem 8 Frequency-Partition-Sample gives a WR sam- 
ple of J = RI w Rz and only needs to compute a subset of 
J whose expected size ia an a-fraction of J’s size, where 

The two terms in the expression for (Y correspond to the 
low-frequency and high-frequency values, respectively. In 
case of operand relations with high skew, the second term 
dominates and has the :same behavior as in the case of the 
fraction o for Strategy Croup-Sample. 

6.4 Other Strategies 

In case an index is also available (or can be quickly con- 
structed) for the high-frequency values in R,h’, in addition 
to the frequency statistics, we would apply a variant of Strat- 
egy Frequency-PartitionSample that is more efficient. (This 
is only a temporary requirement and we will shortly see how 
to eliminate t,he need for this index without affecting perfor- 
mance.) This variant is called Strategy Index-Sample and 
it does not compute the full join of Sr with R,h” in Step 3. 
Instead, it uses the idea in Strategy Stream-Sample to di- 
rectly compute a sample of size m from Jh’ by joining each 
tuple si E Sr with a random tuple from J,,(Rz). 

Theorem 9 Index-Sample produces a WR sample of J = 
RI w Rz and only needs to compute a subset of J whose 
expected size is at most an a-fraction of J’s size, where 

It may appear unrealistic to assume the existence of an 
index for R,h’. But it is not very hard to see that in Strategy 
Index-Sample we can replace the requirement for an index 
on Rt’ by a scan of R[!‘. The following strategy, called 
Count-Sample, accomplis#hes this and can replace the use of 
Stream-Sample in the Index-Sample technique. 

Strategy Count-Sample: 

1. Use Black-Box WRL or WR2 to produce a WR sample 
S1 C RI of size r, where the weight w(t) for a tuple 
t E RI is set to mz(t.A). 

2. Materialize Sr and in the process, determine for each 
value v E D the number of tuples sr(w) in Sr with join 
attribute value v. 

Sample r tuples Sz C Rz such that the number of 
tuples with join attribute value v is exactly 51(u). This 
may be done as follows: while scanning Rz, for each 
tuple t with t.A = 2, feed t into a copy of the Black- 
Box Ul with r replaced by s*(z)) and n replaced by 
mz(v). That is, for each value w, a different black- 
box produces si (v) samples with replacement from the 
ms(v) tuples of that value in Rz. 

As each tuple of SZ is produced, select a random tuple 
with the same join attribute value from Sr and join the 
two tuples, placing the result in the output. Delete (or 
mark) the tuple of Si so that it is not selected again in 
the future; effectively, we are doing a sampling without 
replacement from Si at this stage. Alternately, Sz can 
be materialized and randomly matched to Sz. 

Unlike Strategy Stream-Sample, the above strategy does 
not need an index on Rz; instead, it merely scans RZ once. 
Therefore, we can substitute Count-Sample for the use of 
Stream-Sample in Strategy Index-Sample. This yields a 
variant of Frequency-Partition-Sample and Index-Sample; 
we refer to this variant as Strategy Hybrid-Count-Sample. 
We plan to compare the performance of the new strategy 
with Frequency-Partition-Sample. 

7 Extensions and Negative Results 

The previous section was primarily concerned with the issue 
of sampling from a single join operation. We now turn to the 
question of implementing sampling as a primitive relational 
operation in the context of a join tree. As remarked earlier, 
the problem of dealing with a query tree with an arbitrary 
mixture of join and sampling can be reduced to the case 
where the sampling is applied only once to the relation R 
produced by a join tree. If we could devise an effective tech- 
nique for pushing the sampling all the way down to leaves 
in this particular case, then we could repeatedly apply this 
technique to push all sampling operations to the leaves and 
thereby solve the more general problem. 

Suppose we have a query Q generating a join tree T 
with a sampling operation applied to its result R. We are 
interested in the special case of linear join trees, which is 
a left-deep join tree where RI is joined to Rz, the result is 
joined to Rs, and so on; e.g., R = ((RI w Rz) w Rs) w R’s 
gives a left-deep tree with three joins in it. The strategies 
presented in Section 5 apply only to single joins. In this 
section we expose the inherent limitations on our ability to 
improve the efficiency of these strategies for single joins, and 
discuss their application to sampling from join trees. 

We have already given some indication of the reasons 
why join sampling is a difficult problem even in the case 
of single joins, especially when full information is not pro- 
vided for the operand relations. In Section 7.1, we show 
that sampling cannot be commuted with join in the natural 
way. This explains why our results in Section 5 apply only 
to Cases B and C where we are not restricted in our ac- 
cess to the operand relations to merely sampling uniformly 
therein, but are also allowed to use non-uniform sampling 
with cross-dependence on frequency statistics. Then, in Sec- 
tion 7.2, we consider the implications of our work for linear 
and arbitrary join trees. We argue that our results go a long 
way towards handling linear join trees efficiently, although 
they fall short of effectively dealing with arbitrary join trees. 
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7.1 The Inherent Difficulty of Join Sampling 

Suppose we are given samples Si = SAMPLE(RI, fi) and 
Ss = SAMPLE(R~, fi) under some choice of sampling seman- 
tics. We emphasize that Sr is a uniform random sample of 
RI chosen independently of Rz, and Ss is a uniform random 
sample of R2 chosen independently of RI. Given only Si , S2, 
and any desired set of statistics for RI and Rz, but without 
direct access to the tuples in RI and R2, we are required to 
produce a sample S = SAMPLE( RI w Ra, f) for some value 
off > 0. The following results address the question of when 
it is possible to produce the sample S and how efficiently. 
All these results are independent of the sampling semantics. 

We begin with a formal statement of the extremely nega- 
tive result implicit in Example 1 - even when we are given 
arbitrarily large samples from RI and Rz, as well as arbi- 
trarily detailed statistics, it is still not possible to generate 
any non-empty random sample of RI w Rz under any of the 
sampling semantics. 

Theorem 10 Suppose that at least one of fl, fa is strictly 
less than 1. Then, it is not possible to generate the sample 
S = SAMPLE(R~ w R2, f) from S1 and S2 for any f > 0. 

This negative result prohibits commuting sampling with 
join by pushing down the sampling to both operand rela- 
tions, regardless of the degree of inefficiency we are willing 
to tolerate. The proof idea is to consider RI and Rz which 
both have high skew but on different values of the join at- 
tribute. Of course, one might argue that in practice we 
expect the high skew in both relations to be on the same 
values of the join attribute. Unfortunately, even there we 
can give fairly strong negative results, even for operand re- 
lations without any slcew. That is, we now consider only the 
special case where each value u E D has frequency at most 
ml in RI and at most rn2 in Rz; call this the uniform case. 

Theorem 11 In the uniform case, it is not possible to gen- 
erate S = SAMPLE(R~ w Rz, f) from S1 and SZ, unless: 

l 
fm2 fml fi>-andf22-,iff<&, 

2 2 

where m = max{mr , ma} and m’ = min{mi, mz}. 

The preceding theorems show why it is necessary to per- 
form non-oblivious and non-uniform sampling, where the 
probabilities of sampling tuples in RI depends on the fre- 
quencies of join attribute values in Rz. The next theorem 
shows that there are lower bounds on the sizes of the samples 
from RI and RZ that are required to generate a sample from 
their join, even if the samples of RI and Rz are generated 
in a non-oblivious manner. 

Theorem 12 It is not possible to produce the sample S = 
SAMPLE(RI w Rz, f) from SI and SZ, unless fl x f2 > f. 

This theorem implies, for example, that when f = 0.01 and 
fr = fz, then it must be the case that fr 2 0.1 and fz 2 0.1. 

7.2 Dealing with Join Trees 

The negative results in Section 7.1 state that it is essen- 
tially impossible to push down the sampling operation to 
both operands of a join operation, shedding some light on 
the difficulty of dealing with linear and arbitrary join trees. 
But can we at least push down the sampling operation to 

one of the two operands, say RI, in some efficient manner? 
Note that this would be extremely useful for linear join trees 
where we could keep pushing down the sampling operator to 
the left operand; in fact, it would also give a partial solution 
for arbitrary join trees. The problem is that, as we argued in 
Section 5 and as formalized in Theorem 10, picking a sample 
from RI independent of the statistics of R2 is no use in sam- 
pling the join. Consider sampling from RI w Rz w Rs - 
we cannot just select a uniform random sample of RI w Rz 
but have to pick a non-uniform sample whose distribution 
depends on the statistics of Rs. But then, what about push- 
ing the sampling further down the tree to RI? Now, we will 
have to sample from RI using statistics for both Rz and RJ. 
In principle, this can be done, since the operand relations are 
all base relations and their statistics can be precomputed. 
We defer a detailed analytical and experimental study of the 
efficiency of this strategy to later work. 

From the point of view of efficiency, we would like to 
push down the sampling operator to both operand relations 
of the join node below the sample node. There are two major 
problems in doing so. First, this would require statistics on 
both operands, so as to permit appropriate sampling from 
the two operands. Such statistics will not be available in the 
first place unless both operands are base relations, which 
is not the case for any non-trivial join tree. Furthermore, 
even if we somehow managed to generate the two samples, it 
appears to be difficult to construct a uniform sample S C J 
from the samples Sr and S’z of RI and Rz, respectively. To 
see this, consider the “projection” of the sample S onto RI 
and Ra, yielding two samples SF C RI and S; C Ra. Of 
course, the distribution of Si (respectively, Sz) is identical 
to that of ST (respectively, S;), since that was the whole 
point of the cross-dependent sampling strategy. But note 
that 5’; and S,’ are highly correlated - in particular, the 
total number of tuples with join attribute value u must be 
identical in the two samples, for any 2, E D. This correlation 
is troublesome even for the case of a single join, and will be 
difficult to track as we keep pushing the sampling operations 
down different branches of the join tree. 

8 Implementation and Experimental Evaluations 

We implemented the following strategies for join sampling on 
Microsoft SQL Server 7.0 - Naive-Sample, Olken-Sample, 
Stream-Sample, and Frequency-Partition-Sample. In addi- 
tion to modifications of existing join operators, these al- 
gorithms require the use of the black-boxes Ul and WRl 
for producing unweighted and weighted sequential sampling 
with replacement. We implemented each of these black- 
boxes as operators. Because of the object-oriented design 
of code in SQL Server 7.0, adding an operator to the query 
execution tree only requires creating a derived class of a 
base operator class and implementing the necessary meth- 
ods (e.g., Open, Close, and GetRow). 

To implement Naive-Sample on the result of a join, we 
modified the execution tree generated by SQL Server opti- 
mizer by adding the Ul operator (unweighted WR sampling) 
as the root of the execution tree. 

For Olken-Sample, we needed to sample tuples at random 
from the outer (left) relation RI in the join. For simplicity, 
we simulated such an access by first creating a uniform ran- 
dom sample of the key values of RI and put these values 
into a temporary table Ti. When Tr is joined with RI (on 
the key value), it has the same effect as choosing random 
tuples from RI. We also had to modify each join method in 
SQL Server, i.e., Nested Loops, Hash Join, and Merge Join, 
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so that the tuple from the outer relation is joined with a 
random tuple from R> among all tuples in R-J that would 
have joined. For example, in the Nested Loops join method, 
for a given value v in a tuple from RI, we pick a random 
number Ic between 1 and J(V). Then, we skip k - 1 matches 
of the join, and accept the kth matched tuple with proba- 
bility mz(v)/NI, where M is an upper bound on ms(w) for 
all v. We then proceed to the next random value from RI. 

For Stream-Sample, we inserted the WRl operator as a 
child of the jojn operator, i.e., between the scan operator 
on the outer-relation and the join operator. In the GetRow 
method of the WRl operator, for the next tuple, the opera- 
tor determines the number of copies that must be generated 
and produces that many copies. The statistics on the join 
attribute of Rz are read from a file and stored in a work 
table. This table is indexed on the join attribute so that 
it is efficient to look up the frequency of a given value of 
the join attribute. We note that when the data distribution 
was moderately to highly skewed, the work table was usu- 
ally small enough to fit into memory. Finally, we modified 
the join operator so thlat for each tuple sampled from RI, 
we output exactly one tuple at random from among all the 
tuples that join with R’z. 

For Frequency-Partition-Sample, we implemented a mod- 
ified version of the WFU operator for producing a random 
sample from RI of the tuples belonging to the high-frequency 
partition. The low-freq,uency tuples simply passed through 
this black-box. We simulated the effect of an end-biased his- 
togram that keeps stat:istics on high-frequency values using 
the same mechanism as in Stream-Sample, i.e., the statis- 
tics were read in from a file and stored in a work table. 
We modified the join operator to additionally perform the 
Group-Sample operation to produce a sample of the join of 
high-frequency values (Jh’). We also added a WRl operator 
on top of the join operator to produce the sample from J’“. 
Finally, we added as the root of the query tree, an opera- 
tor for (a) materializing the samples from Jh’ and J’O, and 
(b) picking samples without replacement of the required size 
from each materialized sample to produce the final output. 

8.1 Experimental Setup 

We generated four tables with 1OOK tuples each, and four 
tables with 1 million tuples each. Each table had an RID 
column which consists of unique randomly generated num- 
ber between 1 and the number of tuples in the relation. The 
second column 

was an integer column generated from a Zipfian distri- 
bution [13]. The second column in each of the four tables 
differed in the value of the Zipf parameter .z used, which 
was set to 0, 1, 2, and 3, respectively. The data values in 
the second column were generated so that the most frequent 
value was picked in the same order in each case. The third 
column was used as padding (character field of 32 bytes) to 
ensure a reasonable recxord size. The queries that were run 
were of the form SELECT * FROM tl, t2 WHERE tl.col2 
= t2.co12, where tl was one of the lOOK-tuple tables, and 
t2 was one of the million-tuple tables. In other words, the 
join attributes from both tables were the second column. 
This allowed us to study the effect of varying skew on the 
join columns on both the outer (left) and the inner (right) 
relation. The parameters varied in our experiments were: 

l skew in data distribution of the join columns on the 
outer and inner relations, 

l fraction to be sampled from the join, 

l threshold used for statistics on the inner relation (rel- 
evant only for Frequency-Partition-Sample), 

l indexes (i.e., the availability of indexes on the inner 
relation for Frequency-Partition-Sample). 

8.2 Experimental Results 

We summarize below the results of our experiments. The 
overall trend is that our new strategies are consistently bet- 
ter than earlier techniques. When indexes/statistics are not 
available on both operands, Frequency-Partition-Sample sig- 
nificantly outperforms Naive-Sample, the only other strat- 
egy known earlier in this situation. When indexes/stat,istics 
are available on both operands, Stream-Sample beats Olken- 
Sample. Moreover, Stream-Sample is also applicable (but 
Olken-Sample is not) when indexes/statistics are available 
only on the inner relation. 

Varying the Sampling Fraction: We varied the sampling 
fraction for four different values: 100 tuples, fi, l%, and 
5%. We present the results for two cases of skew: (a) when 
skew in both columns are low, i.e., z = (0,O); and, l(b) 
when both skews are high, i.e., z = (2,3). For Frequency- 
Partition-Sample, the threshold5 for statistics was set at 
5%. An index was present on the inner (right) relation. 
Figure A shows that at low skew values, Stream-Sample 
outperforms the other strategies at all sampling fractions. 
Further, the improvement with Olken-Sample drops more 
rapidly as the sampling fraction increases, since the number 
of random accesses to the outer relation increases. As ex- 
pected, Frequency-Partition-Sample provides little improve- 
ment over naive sampling since the fraction of low-frequen.cy 
values in RP is very high. However, as shown in Figure 
B, when the data in the join columns is highly skewed, 
both Stream-Sample and Frequency-Partition-Sample con- 
sistently outperform Olken-Sample at higher sampling frac- 
tions, i.e., 5% and 10%. This experiment demonstrates the 
superiority of Stream-Sample over the other strategies. 

Varying the Skew: In this experiment we varied the skew 
on the inner relation over the values 0, 1, 2, and 3, while 
keeping the skew of the outer relation fixed. We measured 
the performance improvement of each strategy relative to 
that of Naive-Sample. An index was present on the inn.er 
relation, and for Frequency-Partition-Sample the statistics 
threshold was set to 5%. Figures C and D show that al- 
though for z = 0, Frequency-Partition-Sample is slower than 
the other strategies, for all other z values it is faster than 
Olken-Sample and Stream-Sample. Again, Stream-Sample 
is the best over a wide range of data distributions. 

Performance of Frequency-Partition-Sample with no Indtex 
on Right: In this experiment, we study the performance 
of Frequency-Partition-Sample when there is no index on 
the inner relation, as the skew is varied. This experiment 
shows the generality of Frequency-Partition-Sample since it 
is the only applicable strategy when there is no index on 
the inner relation. Figure E shows that the strategy gives 
significant improvement in running time compared to the 
naive sampling, particularly when the data distribution on 
the join columns is skewed. 

5A threshold of k% means that frequency counts are kept for :all 
values which occur rC% of the time or more in the relation. 
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Varying the Partition Threshold: In our next experiment, 
we varied the threshold for deciding which statistics to keep 
on the inner relation (this is relevant only to Frequency- 
Partition-Sample). We varied k over the values O.l%, O.S%, 
l%, 2%, 5%, lo%, and 20%. Figure F shows that for highly 
skewed data the performance is not sensitive to the thresh- 
old parameter. This is because the number of distinct val- 
ues in the relation is relatively small for highly skewed data 
and hence the cost of looking up the statistics is small. On 
the other hand, as Figure E shows, for data with low skew 
picking the right threshold is important. If a low threshold 
is picked, then too many infrequent values are part of the 
statistics, thereby increasing the overhead of looking up the 
statistics. On the other hand, with a high threshold, infor- 
mation about frequent values may not be available, resulting 
in a large number of values being unnecessarily joined. We 
conclude that a statistics threshold of 2% gives good perfor- 
mance over a wide range of data distributions. 

9 Conclusions and Future Work 

In this paper we have conducted a detailed study of some 
of the issues involved in introducing sampling as a primitive 
relational operation. We identified the inability to commute 
sampling with join as the major bottleneck in this regard. 
This led us to focus on the problem of efficiently sampling 
the result of a join operation without computing the entire 
join in the first place. We shed some light on the intrin- 
sic difficulty of this problem and that suggested a possible 
approach for the case of a single join. One key understand- 
ing was that of the complications introduced by the pres- 
ence of skew in the data, particularly in terms of requiring 
the dependence of the sample from one operand relation on 
the frequency statistics of the other operand relation of the 
join operation. This in turn led us to classify the prob- 
lem into three cases based on the information available for 
the operand relations. We presented a series of sampling 
strategies that provide enhanced efficiency in a variety of 
settings with varying assumptions about the available in- 
formation. Experimental results were provided to demon- 
strate the increased efficiency resulting from employing our 
sampling strategies. We also considered the more general 
problem of sampling the result of a join tree. While our 
techniques apply to the case of linear join trees, more work 
is required to fully validate this claim. On the other hand, 
our techniques are not entirely satisfactory for the case of ar- 
bitrary join trees. But perhaps this is inevitable, as we have 
provided strong negative results for the natural approaches 
to dealing with arbitrary join trees. In the process, we pro- 
vided new schemes for sequential random sampling for uni- 
form and weighted sampling distributions, which may be of 
interest in their own right. 

Our work sets up an agenda for future work. It is possible 
that even more efficient strategies can be developed for the 
case of a single join based on observations made here. More 
work is needed to to understand the impact of our ideas on 
the problem of sampling the result of join trees. Also, in 
order to handle general query trees, it is essential to extend 
our work to other relational operators. 
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Figure B. Effect of Sampling Fraction on performance. 
Z=(2,3). 

Effect of Skew (Index on RHS, LHS Z = 0, Effect of Skew (Index on RHS, LHS Z = 3, 

Sampling Fraction = 1% Sampling Raction=l0/9) 

2 3 

2 (RHSSkew) 

q Olken 

n Stream 
Sarrple 

q Frequency- 
Rrtition- 
Sanple 

0 1 2 3 

Z (RiSSkew) 

~1 Ciken 

n Stream 
Sample 

0 Frequency- 
Partitiin- 
Sarrple 

IL 
Figure D. Effect of skew on performance (LHS Z=3) 

Performance of Frequency-Partition-Sample with no 
index on RHS with varying skew 

T 100% 
Bg 
.+ 0 60% 
E-, 
gs 60% 

t E” 40% l=t 
maI 
.c .5 
EP 

20% 

2s 0% ~~ 
0 1 2 3 

Skew (2 RHS) 

Effect of StatisticsThreshold on Performance of 
Frequency-Partiiton-Sample 

I 1 

0.1% 0.5% 1% 2% 5% 10% 20% 

Statistics Threshold 

Figure E. Performance of Frequency-Partition-Sample Figure F. Effect of varying Statistics Threshold on 1 

274 


