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Abstract 

In large da ta  warehousing environments, it  is often advanta- 
geous to provide fast, approximate answers to complex deci- 
sion support  queries using precomputed summary statistics, 
such as samples. Decision support  queries routinely segment 
the da ta  into groups and then aggregate the information in 
each group (group-by queries). Depending on the data,  there 
can be a wide disparity between the number of da t a  items 
in each group. As a result, approximate answers based on 
uniform random samples of the da ta  can result in poor accu- 
racy for groups with very few data  items, since such groups 
will be represented in the sample by very few (often zero) 
tuples. 

In this paper, we propose a general class of techniques 
for obtaining fast, highly:accurate answers for group-by 
queries. These techniques rely on precomputed non-uniform 
(biased) samples of the data.  In particular,  we propose 
congressional samples, a hybrid union of uniform and biased 
samples. ~ Given a fixed amount of space, congressional 
samples seek to maximize the accuracy for all possible 
group-by queries on a set of columns. We present a 
one pass algorithm for constructing a congressional sample 
and use this technique to also incrementally maintain the 
sample up-to-date  without accessing the base relation. 
We also evaluate query rewriting strategies for providing 
approximate answers from congressional samples. Finally, 
we conduct an extensive set of experiments on the TPC-D 
database, which demonstrates the efficacy of the techniques 
proposed. 

1 Introduction 

The last few years have seen a tremendous growth in the 
popularity of decision support  applications using large- 
scale databases. These applications, also known as on- 
line analytical processing (OLAP) applications, analyze 
historical da ta  in a da ta  warehouse to identify trends that  
can be exploited in defining new business strategies. Often, 
this process involves posing several complex queries over 
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a massive database.  1 As 'a result, these queries can take 
minutes, and sometimes hours, to execute using even the 
state-of-the-art  in da ta  warehousing and OLAP technology. 

A novel approach to address this problem, which has 
been receiving at tention lately, is to provide approximate 
answers to the queries 'very quickly [HHW97, AGPR99, 
VW99, IP99]. This approach is particularly at tractive for 
large-scale and exploratory applications such as OLAP. For 
example, a typical decision making process involves posing 
several preliminary queries to identify interesting regions of 
the data.  For these queries, precise answers are often not 
essential. Similarly, for queries returning numerical results, 
the full precision of an exact answer may be overkill - -  the 
user may welcome an answer with just  a few significant digits 
(e.g., the leading few digits of a total in the milfions) if it is 
produced much faster. These approximate query answering 
systems give fast responses by running the queries on some 
form of summary statist ics of the database,  such as samples, 
wavelets and histograms. Additionally, the approximate 
answers are often supplemented with a statistical error 
bound to indicate the quality of the approximation to the 
user. 2 Because these statist ics are typically much smaller 
in size, the query is processed very quickly. The statistics 
may either be generated on-the-fly after the query is posed, 
as in the Online Aggregation approach [HHW97], or may be 
precomputed a priori, as in the Aqua system [AGPR99] we 
have developed. 

A popular technique for summarizing da ta  is taking 
samples of the original data.  In fact, this is the fundamental 
technique used by both  the above-mentioned approaches 
to approximate query answering. In particular, uniform 
random sampling, in which every item in the original da ta  
set has the same probabil i ty of being sampled, is used 
because it mirrors the original da ta  distribution. Also, by 
increasing the sample size, the system can provide more 
accurate responses to the user. Due to the usefulness of 
uniform samples, commercial DBMSs such as Oracle 8i are 
already supporting operators to collect uniform samples. 

1.1 L i m i t a t i o n s  o f  U n i f o r m  S a m p l i n g  

While uniform random samples provide highly-accurate 
answers for many classes of queries, there are important  
classes of queries for which they are less effective. This 
includes one of the most commonly occurring scenarios in 

1A survey by the Data Warehousing Institute indicates that 
the average warehouse size is expected to exceed 400GB in the 
year 2000 and that a single decision process may involve more 
than ten fairly complex queries. 

2In our discussion, user refers to the end-user analyzing the 
data in the warehouse. 
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decision support  applications is to segment the da ta  into 
groups and derive some aggregate information for these 
groups. This is typically done in SQL using the group 
by operation and hence we refer to them as group-by 
queries. For example, a group-by query on the U.S. census 
database containing information about  every individual in 
the nation could be used to determine the per  capita income 
per state. Often, there can be a huge discrepancy in 
the sizes of different groups, e.g., the s ta te  of California 
has nearly 70 times the population of Wyoming. As 
a result, a uniform random sample of the relation will 
contain disproportionately fewer tuples from the smaller 
groups (states), which leads to poor accuracy for answers 
on those groups because accuracy is highly dependent 
on the number of sample tuples that  belong to that  
group [HHW97, AGPR99]. 3 This behavior often renders the 
answer essentially useless to the analyst,  who is interested 
in reliable answers for all groups. For example, a marketing 
analyst using the Census database to identify all states with 
per capita incomes above some value will not find the answer 
useful if the aggregates for some of the states are highly 
erroneous. 

In fact, the inability of uniform random samples to 
provide accurate group-by results is a symptom of a more 
general problem with uniform random samples: they are 
most appropriate only when the utility of the data to the 
user mirrors the data distribution. Thus, when the utility 
of a subset of the da ta  to the user is significantly higher 
relative to its size, the accuracy of the answer may not 
meet the user's expectation. The group-by query is one 
such case where a smaller group is often as important  to 
the user as the larger groups, even though it is under- 
represented in the data.  -A multi- table query is another 
example: a small subset of the da ta  in a table may dominate 
the query result if it  joins with many tuples in other 
tables LAGPR99, CMN99, HH99]. The flip side of this 
scenario is when different logical par ts  of the da ta  have 
equal representation, but  their utility to the user is skewed. 
This occurs, for example, in most da t a  warehouses where the 
usefulness of da ta  degrades with time. For example, consider 
a business warehouse application analyzing the transactional 
da ta  in the warehouse to evaluate a market  for a new line 
of products.  In this case, da ta  from the previous year is 
far more important  than outdated da ta  from a decade ago. 
Moreover, the user is fikely to ask more finer-grained queries 
over the more recent data.  This, in turn, means that  the 
approximate answering system has to collect more samples 
from the recent data,  which is not achieved with a uniform 
random sample over the entire warehouse. 4 

To address these inadequacies of uniform random sam- 
pies, we consider non-uniform (i.e., biased) samples in this 
paper,  which are discussed next. 

1 .2  B i a s e d  S a m p l i n g  f o r  G r o u p - b y  Q u e r i e s  
In this paper, we propose a general class of techniques 
for obtaining fast, highly-accurate answers for group-by 
queries using (precomputed) biased samples of the data.  
We focus on group-by queries because they are among the 
most important  class of queries in OLAP, forming an es- 
sential part  of the common drill.down and roll-up pro- 
cesses [Kim96, CD97]. For example, of the 22 queries in Ver- 
sion 2.0 of the TPC-D benchmark [TPC99], 15 are group-by 

3Based on this observation, the Online Aggregation approach 
employs an index striding technique to sample smaller groups at 
a higher rate [HHW97]. 

4Note that other common summary statistics such as his- 
tograms and wavelets suffer from this same general problem. 

queries. Our solutions, however, are more general and can be 
applied to a much broader set of problems wherever the lim- 
itations of uniform random samples become critical. Briefly, 
our techniques involve taking group-sizes into consideration 
while sampling, in order to provide highly-accurate answers 
to queries with arbi t rary  group-by operations (even none) 
and varying group-sizes. Our  solutions apply and extend 
known techniques for subpopula t ion/domain/species  sam- 
pi ing [Coc77] to the approximate answering of group-by 
queries. Our key extensions include considering combina- 
tions of group-by columns, construction and incremental 
maintenance, query rewriting, and optimizing over a query 
mix. 

There are a number  of factors affecting the quality of an 
answer computed from a sample, including the query, the 
da ta  distribution, and the sample size. Of these, sample size 
is the most universal in improving answer quality across a 
wide range of queries and da ta  distributions. Thus we focus 
in this paper  on ensuring that  all groups are well-represented 
in the sample. We consider single table queries; however, 
our techniques can be immediately extended to queries with 
foreign key joins, the most common type of joins (e.g., all 
joins in the TPC-D benchmark are on foreign keys), using 
the techniques in [AGPR99]. 

The techniques in this paper  are tailored to precomputed 
or materialized samples, such as used in Aqua (see Sec- 
tion 2). Advantages of precomputing over sampling at query 
time include (1) queries can b e answered quickly without ac- 
cessing the original da ta  at  query time, (2) sampled tuples 
can be stored compactly in a few disk blocks, avoiding the 
overheads of random scanning, (3) no changes are needed 
to the DBMS's query processor and optimizer, and (4) data  
outliers such as small groups can be detected and incorpo- 
ra ted into the sample. On the other hand, precomputed 
samples must commit  to the sample before seeing the query, 
and are not well suited to supporting user-controlled pro- 
gressive refinement [HHW97]. 

Our contributions are as follows: 

• We introduce a hybrid union of biased and uniform sam- 
ples called congressional samples 5, which provide statis- 
tically unbiased answers to queries with arbi trary group- 
by (including no group-bys), with significantly higher ac- 
curacy guarantees than uniform samples. Given a fixed 
amount  of space, congressional samples seek to maxi- 
mize the accuracy for all possible group-by queries on a 
set of columns. We also propose efficient strategies for 
executing queries on these samples. 

• We develop a one pass algorithm for constructing a 
congressional sample without a priori knowledge of 
the da ta  distribution. We use this technique to also 
incrementally maintain the sample as new data  is 
inserted into the database,  without accessing the base 
relation. This ensures that  queries continue to be 
answered well even as the new da ta  changes the database 
significantly. 

• We show how congressional samples can be specialized 
to specific subsets of group-by queries. We also extend 
them to use detailed information about  the data,  such as 
variance, and to improve the answers for non-group-by 
queries. 

5As discussed in Section 4, the name congressional samples 
reflects an analogy to the U.S. Congress, which combines biased 
representation (two Senators per state, regardless of population) 
with more Uniform representation (Representatives in proportion 
to a state's population). 
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Figure 1: The  Aqua  architecture.  

I select l ~ e t u r n f l a g ,  1.1inestatus,  sum(l_quantity) 
from lineitem 
where l_shipdate <= ~OI-SEP-98 ~ 
group by l_returnflag, llinestatus; 

(a) Original query 

select; l..returnflag , l_linestatus, 100*sam(l.quantity), 
sum_error(l_quantity) as errorl 

from bslineitem 
where l_shipda~e <= 'Oi-SEP-98' 
group by l_returnfla~, llinestatus; 

(b) Rewritten query 

Figure 2: Query  rewri t ing in Aqua.  

• We conduct an extensive set of experiments to establish 
the accuracy of congressional samples and identify an 
efficient execution strategy for running queries on them. 

Map .  The rest of this paper is as follows. In the 
next section, we describe Aqua, a system framework for 
approximate query answering. Then, we formulate the 
problem being addressed in this paper and in Section 4, 
we propose our novel sampling solutions. In Section 5, 
we highlight some implementation issues in using these 
new solutions in practice. Then, in Section 6 we propose 
efficient construction and maintenance techniques. The 
experimental study is in Section 7. In Section 8, we 
describe extensions of congressional samples that improve 
their accuracy for certain classes of queries. In Section 9, 
we present related work and in Section 10 we summarize 
the conclusions from this work. 

2 Aqua  S y s t e m  
This work is being performed as part of our efforts to en- 
hance Aqua, an efficient decision support system providing 
approximate answers to queries [AGPR99, AGP99a]. Aqua 
maintains smaller-sized statistical summaries of the data, 
called synopses, and uses them to answer queries. A key 
feature of Aqua is that the system provides probabilistic er- 
ror/confidence bounds on the answer, based on the Hoeffd- 
ing and Chebyshev formulas [AGPR99]. Currently, the sys- 
tem handles arbitrarily complex SQL queries applying ag- 
gregate operations (avg, sum, count ,  e t c . )  over the data 
in the warehouse. 

The high-level architecture of the Aqua system is shown 
in Figure 1. It is designed as a middleware software tool 
that can sit atop any commercial DBMS managing a data 
warehouse that supports ODBC connectivity. Initially, 
Aqua takes as an input from the warehouse administrator 
the space available for synopses and if available, hints on 
important query and data characteristics, s This information 

6Work is also in progress to automatically extract this 
information from a query workload and adapt the statistics 

.l../~turnfla6 ( l~inestatus [ sum(i_quant.ity) I 
A I F 3773034 
N I F loo245 
N. O 7459912 
R I ~ F . . . .  3779140 ..... 

F igure  3 :  Exac t  answer. 

l_return_fla6 I_ l_linestatus 

.... A " ' " F 
N " F 
N O' 
R F 

_s u_m(1._qu.ant £ty) e r ror l  I 
3.778e+06 1 ~4e-~04" 
1.194e+05 2.6e+04 
7.457e+06 1.9e+04 
3.782e+06 1.4e-F04 

Figure  4: A p p r o x i m a t e  answer. 

is then used to precompute a suitable set of synopses on the 
data, which are stored as regular relations in the DBMS. 
These synopses are also incrementally maintained up-to- 
date to reflect changes in the warehouse data. 

When the user poses an SQL query to the full database, 
Aqua rewrites the query to use the Aqua synopsis relations. 
The rewriting involves appropriately scaling expressions in 
the query, and adding further expressions to the s e l e c t  
clause to compute the error bounds. An example of a simple 
query rewrite is shown in Figure 2. The original query is 
a simplified version of Query 1 of the TPC-D benchmark. 
The synopsis relation bs_lineitem is a 1% uniform random 
sample of the lineitem relation and for simplicity, the 
error formula for the sum aggregate is encapsulated in the 
sum_error function. The rewritten query is executed by 
the DBMS, and the results are returned to the user. The 
exact answer is given in Figure 3. Figure 4 shows the 
approximate answer and error bound provided by Aqua 
when using this synopsis relation, and indicates that the 
given approximate answer is within e r r o r l  of the exact 
answer with 90% confidence z . The approximate answer for 
1 . x e t u r n f l a g  = N and l _ l i n e s t a t u s  = F is considerably 
worse than for the other combinations; this is the smallest 
group (a factor of 35 or more smaller than the others in the 
TPCC-D database), and hence it contributes very few tuples 
to the sample bs_ l ine i t em.  This demonstrates a limitation 
of uniform random samples and motivates the need for the 
techniques proposed in Section 4. 

To address the weN-known problem of joins over sam- 
ples [AGPR99, CMN99], Aqua collects special forms of sam- 
ples, called join synopses, which can be viewed as uniform 
random samples on the results of all the interesting joins in 
the warehouse. In [AGPR99], we showed that join synopses 
are particularly effective on the star and snowflake schemas 
which are common in data warehousing [Sch97]. An interest- 
ing outcome of join synopses is that any join query involving 
multiple tables on the warehouse can be conceptually rewrit- 
ten as a query on a single join synopsis relation. Due to this 
reason, in this paper, we restrict our discussion to queries 
on single relations. 

3 P r o b l e m  Formula t ion  

In this section, we formulate the central problem being ad- 
dressed in this paper, namely providing highly-accurate an- 
swers to group-by queries in an approximate query answer- 
ing system. First, we present some relevant background on 
group-by queries. 

dynamically. 
7The confidence level is a parameter in Aqua. 

489 



3.1 B a c k g r o u n d  

The central fact tables in a data warehouse contain several 
attributes that are commonly used for grouping the tuples 
in order to aggregate some measured quantities over each 
group. We call these the dimensionalor grouping attributes. 
The attributes used for aggregation are called measured 
or aggregate attributes. For example, consider the central 
table (say, census)  in a Census database containing the 
following attributes for each individual (the a t t r ibute  names 
are listed in brackets): social security number (san), state of 
residence (s t) ,  gender ( ten) ,  and annual income (sa l ) .  In 
tiffs schema, the grouping columns are s t  and gen, whereas 
the aggregate column is sa l .  A typical group-by query on 
census  may request the average income of males and females 
in each state. 

Of course, every query need not involve all the grouping 
columns in it, e.g., highest income in each state. For 
simplicity, we also consider a query with no groupings as 
a group-by query returning a single group. It is easily seen 
that for a relation containing a set G of grouping attributes, 
there are exactly 2 lal possible groupings (the power set U 
of G) that can occur in a query. In the census  relation, 
G is { s t ,  gen} and V is {qi, (s t ) ,  (gen), (s t ,  ten)} (0 is the 
empty set). 

Next, we identify the typical requirements of approximate 
answers to a group-by query and describe natural  metrics to 
quantitatively capture the errors in those answers. 

3 .2 R e q u i r e m e n t s  o n  G r o u p - b y  A n s w e r s  

For queries returning a single numerical value (e.g., aggre- 
gate queries with no group-bys), it is straightforward to de- 
fine the quality of the answer. It is simply the absolute or 
relative difference between the exact and approximate an- 
swers. However, since group-by queries produce multiple 
aggregates, one for each group, the metric is not so straight- 
forwar~t. The MAC error presented in [IP99] for quantifying 
the error in set-valued query answers works by matching 
the closest pairs in the exact and approximate answers and 
then suitably aggregating their differences. However, it is 
inadequate for our purpose because it does not necessarily 
match corresponding groups in the two answers. Hence, we 
develop here simple metrics specific to group-by queries. 

At a .high level, the user has two requirements on 
the approximate answer to a group-by query. First, the 
approximate answer should contain all the groups that 
occur in the exact answer, and second, as motivated in the 
introduction, the estimated answer for every group should 
be close to the exact answer for that group. We guarantee 
the first requirement, as long as the query predicates are 
not too selective, by ensuring that the schemes presented 
in the paper provide at  least minimum-sized samples for 
every nonempty group in the relation across all grouping 
attributes, s Hence, in the remainder of the paper, we 
address the second requirement assuming the first to be true. 
Below, we formally describe simple metrics for capturing this 
requirement. 

Let Q be a group-by query with an aggregate operation 
on one of the aggregate attributes'  G. Let {gl,..,g,~} be 
the set of all groups occurring in the exact answer to the 
query. Finally, let ci and c~ be the exact and approximate 
aggregate values over C in the group gi. Then, the error ei 

SThe only way to ensure this requirement for highly selective 
queries is to sample nearly the entire relation. Otherwise, none 
of the sampled tuples may satisfy the predicate. This places a 
lower bound on the space allocated for samples, as a function of 
the number of groups and the target selectivity threshold. 

in group gi is defined to be the percentage relative error in 
the estimation of ci, i.e., 

Ic~ - c~l 
~ = , x l O O .  ( t )  

ei 

For concreteness, we select  a specific formalization, 
namely relative error, although other similar formulations 
(e.g., using absolute error) will not change the nature of the 
problem. We define the error in a group-by query as follows, 
considering three possible error metrics: 

D e f i n i t i o n  3.1 The error c over the entire group-by query 
returning a set of groups { gl, ..,g~ } is defined to be either 

too = MAX~=lci ,  eL1 = ~ i=l e~, or eLZ = ~ i=1 ei" 

Note that this definition applies even to the case of non- 
group-by aggregate queries, where the result is essentially 
an aggregate over a single group, in which case the three 
metrics are the same. 

Using this definition as the basis, we can then informally 
define the primary goal to be one of minimizing one or all 
of the above errors for a mix of group-by queries. 

4 S o l u t i o n s  

In this section we translate the general requirements of 
an approximate query answering system presented in the 
previous section to formal criteria on a sampling-based 
system. Then, we propose solutions for precomputing 
samples that optimize the criteria for various sets of group- 
by queries. 

We first study individual groups in the answer and then 
the entire group-by query answer. 

4 .1 S a m p l i n g  R e q u i r e m e n t s  f o r  I n d i v i d u a l  
G r o u p s  

Here, we discuss the importance of the number of samples 
on which the aggregate is performed to the accuracy of 
a sampling-based result. Then, we show that among all 
possible sampling procedures, uniform sampling maximizes 
the expected value of this number. 

I m p o r t a n c e  of  S a m p l e  Size: The approximate answer 
provided from a sample is a random estimator for the exact 
answer, and we would like the estimates it produces to have 
small relative error (Eq. 1) with high probabifity. In the 
sampling literature, this quality is typically captured by 
the standard error of an estimator. Consider for example 
a column C in a relation of size N whose attribute values 
are y l , . . . , y N ,  and let U be a uniform random sample of 
the yi's of size n. Then the sample mean 0 = ~ ~ u i e v  yi is 

an unbiased estimator of the actual mean Y = ~ ~iN=l yi, 
with a standard error of 

S / 1  n 
V nV~-~/ - ~ ,  (2) 

where 

s = ~=_Y2 _ F)~ 

(see, e.g., [Coc77]). In general, the standard error depends 
on the sample size, the query (aggregate and predicate), 
and the variance of the expression on which the aggregate is 
taken. However, query information is usually not known 
a priori, and even where partial knowledge is available, 
optimizing for those queries may jeopardize the performance 
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for other ad hoc queries. Because of this, short of sampling 
the entire relation, which is impractical, it is not possible 
to collect a single sample that works best for all queries. 
Hence, we first focus on techniques that are used when 
the aggregate, variance, and the predicate are unknown 
and later extend the techniques to use this information in 
Sections 4.7 and 8. 

It is clear from the above equation that the standard error 
is inversely proportional to vfn for uniform sampling 9 . This 
is also true under other common quality measures such as 
Hoeffding and Chebyshev bounds, which when applied to 
AVG, COUNT, or SUM queries, are inversely proportional to 
v / ~  or qv/n, whLere q is selectivity of the predicate. Hence, 
a natural objective is to maximize the sample size for the 
group: 

O b j e c t i v e :  Let Q be an aggregate query with predicate P. 
In order to maximize the quality of an approximate answer 
for an aggregate in Q, we seek to maximize the number of 
sample tuples satisfying P. 

I m p o r t a n c e  of  U n i f o r m  S a m p l i n g :  Here, we establish 
the need to use uniform random sampling for a single group 
by showing that it maximizes the expected sample size over 
all query predicates. First, we define some useful terms. 

Let { t l , t~ , . . .  ,tN} be the set of N tuples in a relation 
R. We define a sampling procedure to be an assignment to 
each ti of a probability pi, the probability that ti is selected 
for the sample. Let Cn be the class of all such sampling 
procedures such that ~/N=i p, = n, i.e., those with expected 
sample size n. Let Un E Cn be the uniform sampling 
procedure, i.e., pl = n / N  for all i. A predicate P defines 
a subset P(R) of R comprised of those tuples satisfying P.  
For a given predicate P and sampling procedure Cn E Cn, 
let E[n[P(R)] be the expected number of tuples satisfying 
the predicate in a sample produced by Cn, i.e., E[n[P(R)] = 
~i:tiep~(/¢) pi. A natural  goal, given the above objective, is 
to maximize the minimum E[n]P(R)] over all subsets P(R)  
of a given size. 1° The next lemma shows that the uniform 
sampling procedure optimizes this goal. 

L e m m a 4 . 1  For each subset size k, 0 < k < N,  the 
uniform sampling procedure Un is the unique sampling 
procedure in C. that maximizes the minimum E[n]P(R)] 
over all subsets P (R)  of size k. 

Proof. For U,, the minimum E[nlP(R)] over all subsets 
P(R)  of size k is k n / g  (all subsets have this same 
E[n]P(R)]). For any other sampling procedure in Cn, the 
reader can readily verify that the subset P*(R) comprised of 
the k smallest pi will have E[nlP'(R)] < k n / N .  • 

In summary, we have established that it is important to 
collect as many uniformly sampled tuples as possible for 
any single group in query answer. Next, we extend our 
discussion to the multiple groups occurring in the group-by 
query answer. 

4 .2 S a m p l i n g  R e q u i r e m e n t s  f o r  t h e  E n t i r e  
G r o u p - b y  A n s w e r  

Recall from Definition 3.1 that the error in an approximate 
answer to a group-by query is the norm of the errors for 

9While we do not analyze other kinds of sampling procedures 
within a group, it is intuitively clear that sample size will have a 
positive effect on their accuracy as well. 

t°Note that for all sampling procedures in Cn, the average 
E[nIP(R)] over all P(R) of a given size k is the same, i.e., 

the individual groups, for either the L~ ,  L1, or L~ average 
norm. Hence, similar to the case of a single group, the 
quality of an estimator for a group-by query can be measured 
by the norm of the standard error for the individual groups. 
We seek to allocate a given sample space among the groups 
so as to minimize this norm. 

Consider the Loo average norm (the other two norms 
lead to the same optimal strategy, as discussed in the 
full paper [AGP99b]). For this norm, and based on our 
objective, we seek to maximize the minimum (expected) 
number o] sample tuples satisfying the predicate in any one 
group, which we denote by a. We extend our earlier notation 
and derive an expression for a as follows. Let g be the 
number of groups. For a relation R, let Rj be the set of 
tuples in R in group j .  A predicate P defines a subset 
P(R)  = P(R1) u - - .  tJ P(Ra).  Let .An,g be the class of all 
possible allocations of sample sizes to g groups, where the 
total size allocated is n. For a given predicate P, a sampling 
allocation An,9 E .Am a, and a sampling procedure Cn E ¢yn, 
a is given by: 

a = m i n  {E[njlP(Rj)]} (3 )  
j = l , . . . , g  

where An,g assigns sample size nj  to group j ,  and the sample 
within each group j is produced according to Cr~ i . 

For purposes of the analysis that  follows, we restrict 
am" attention to predicates that are independent of the 
groupings, i.e., the predicate's per-group selectivities are 
the same for all groups. 11 It is clear that our goal is to 
maximize at. Next, we present an optimal sampling strategy 
for realizing this goal. 

T h e o r e m  4.2 Let T be a set of grouping attributes that 
partitions a relation R into g non-empty groups, and let X be 
the available sample space. 12 For each predicate of selectivity 
q, 0 < q < 1, among all allocations in Ax,~ and all sampling 
procedures in Cnj , the following strategy maximizes the a in 
Eq. 3 over all subsets P ( R )  with per-group selectivity q: 

$1: Divide the available sample space X equally 
among the g groups, and take a uniform random 
sample within each group. 

Proof. It follows from Lemma 4.1 that uniform random 
sampling within each group maximizes a, for a given 
allocation strategy. With uniform sampling, each group 
Rj allocated nj  space has E[nj lP(Rj )  ] = qn i. Hence at 
is determined by the smallest nj. Allocating equal space to 
each group maximizes the smallest n j ,  and hence maximizes 
Of. • 

In the remainder of this section, we consider mapping 
the strategy 5:1 to various classes of group-by queries, with 
arbitrary mixes of groupings. The difference between the 
resulting solutions can be shown by considering an example 
of grouping by U.S. states. The first solution we discuss 
would sample from each state in proportion to the state's 
population, whereas the second would sample an equal 
number from each state. Considering the two branches of 
the U.S. Congress, the former is analogous to the House 

l l In  general, it is not possible to tailor a strategy for a 
precomputed sample that works best for all predicates, if the per- 
group selectivities of a single predicate can vary widely. Although 
the assumption of predicate independence may not always hold 
in real life, the sample strategy we derive from this analysis works 
well even when the assumption does not hold. 

lZThroughout this paper, a unit of space can hold a single 
sampled tuple. 
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of Representatives while the latter is analogous to the 
Senate. The other techniques are hybrid extensions and 
combinations of these two, a l a  the U.S. Congress. 

4 .3  H o u s e  

Consider applying the strategy S1 to the class of aggregate 
queries without grotLp-bys. In this case, we have but  a 
single group, so according to $1, we take a uniform random 
sample of size X of the entire relation, as is typically 
done in traditional sampling procedures. Next, we list 
two desirable trends of House (in general, uniform random 
samples) which coincide with a user's expectations on the 
quality of approximate answers. 

1. For the same aggregate operation, the quality of  approx- 
imate answers increases with the query selectivity. E.g., 
the standard error for an estimated average income over 
the entire nation is typically much smaller than the stan- 
dard error for one of the states. (An exception would 
be if the variance among the incomes in a state was 
markedly smaller than the variance over all the states.) 

2. Answers to queries with the same aggregate and equal 
selectivities will typically have similar quality guarantees. 
Thus assuming an equal number of men and women in 
the nation, the guarantees for the estimated average 
incomes for men are typically very similar to the 
guarantees for the women. (Again, an exception would 
be if the variances were markedly different.) 

4 .4  S e n a t e  
Consider applying the strategy $1 to the class of aggregate 
queries with the same set T of grouping attributes. For 
a given relation R, these 'a t t r ibutes  define a set, ~, of 
nonempty groups. Let mT be the number Of groups in ~. 
By following $1, for each nonempty group g E ~, we take a 
uniform ~random sample of size X / m T  from the set of tuples 
in R in group g.13 For example, if T = state in a US census 
database, then ~ is the set of all states, m T =  50, and we 
take a uniform random sample of size X/50  from each state. 

Next, we illustrate a desirable characteristic of the Senate 
samples. Given a Senate sample for group-by queries 
involving an attribute set T,  we can also provide approximate 
answers to group-by queries on any subset T '  of  T,  with 
at least the same quality. This is because any group on 
T '  contains in it one or more groups on T. Hence it will 
have at least as many sample points as any group in T, and 
correspondingly the same or better performance. 

P r o b l e m s  wi th  House a n d  Senate: Note that using the 
samples from House here would result in very few sample 
points for small groups, and hence in a very small at. On the 
other hand, Senate allocates fewer tuples to the large groups 
in T than House. Hence, whenever queries are uniformly 
spread over the entire data, more of them occur in the large 
groups, and House will perform better than Senate for those 
cases. Next, we present techniques that perform well over 
larger classes of group-by queries. 

4 .5  B a s i c  C o n g r e s s  
Here, we apply the strategy $1 to the class of aggregate 
queries containing group-by queries grouping on a single set 
T of attributes and queries wi th  no group-bys at all. A 
natural solution is to simply collect both the House and the 
Senate samples (analogous to the U.S. Congress). However, 

13Recall that for simplicity we assume throughout this paper 
that each group is larger than the number of samples drawn from 
it. Handling scenarios when this is not the case is straightforward. 

this doubles the sample space. Thus, we reduce this factor 
of 2 by the following strategy. 

Let ~ be all the non-empty groups in the grouping on 
T, and let mT = I~1.  Let g be a group in ~ and X 
be the available sample space. Let n a be the number of 
tuples in the relation R in group g. Let h a and s a be 
the (expected) sample sizes allocated to g under House 
and Senate respectively. Then, under our new approach, 
we allocate the higher of these two (i.e., max(hg, %)) to 
g.14 Of course, this may still result in a total space of 
X '  that is larger than X (one can easily show that X '  <_ 
2m T - 1 X  - m T  + 1 < 2X). Hence, we uniformly scale down 

m T  
the sample sizes such that the total space still equals X. 
The final sample size allocated to group 9 is given by: 

c g = X  
max 

A Basic Congress sample is constructed by selecting a 
uniform random sample of size c 9 for each group g in ~. 

As an example, consider a relation R with two grouping 
attributes A, B. The different values in these attributes are 
depicted in the first two columns of Figure 5. Assume that 
the number of tuples for the groups (al, bl ), (al,  b2), (a,, bs), 
(ae,bs) are 3000,3000, 1500, and 2500 respectively. The 
next two columns depict the space allocated by House and 
Senate with T = { A , B )  and X = 100. The fifth column 
depicts the space allocated by Basic Congress (before scaling 
down) by choosing the maximum of the House and Senate 
allocations for each group. The next column shows the 
allocation scaled down to fit the total available space. Note 
that while House allocates less space for the small group 
and Senate allocates less space for the large groups, Basic 
Congress solves both these problems. On the other hand, 
by considering only the extreme groupings, Basic Congress 
fails to address the sample size requirements of groupings 
on subsets of T. For example, grouping on A alone would 
require an optimal allocation of 50 and 50 samples to the 
two groups at and a2, whereas Basic Congress applied 
to T allocates 77.3 and 22.7 units of space respectively. 
Consequently, using Basic Congress to answer an aggregate 
query grouped solely on A would likely lead to a more 
inaccurate estimate on the group a2. 

We address this problem by our final technique, Congress, 
proposed next. 

4 .6  C o n g r e s s  

In this approach, we consider the entire set of possible group- 
by queries over a relation R, i.e., queries grouping the data 
on any subset (including 0) of the grouping attributes, G, 
in R. Taking a naive approach of applying Strategy S1 
using space X on each such grouping would result in a space 
requirement of 21QIx. Hence, we perform an optimization 
similar to Basic Congress above, but this time over all 
possible groupings - -  not just  G and @, as in Basic Congress. 

14We also consider an alternative approach, as follows. Let 
Y = X ] ( ~ j E G  max(M7'., m~))" Take a uniform sample of size Y 
of the relation R. Let xg be the number of sampled tuples from 
a group g. For each group 9 such that x 9 < Y / i T ,  where mT is 
the number of nonempty groups, add to the sample Y/mT -- xg 
additional tuples selected uniformly at random from the set of 
tuples in R in group g. Due to the choice of Y, the expected size 
of the resulting sample is X. In practice, the difference between 
the two approaches is negligible. 
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AI t  be oresc o    o ,cCoo re.s Sgm 

a,  b, 30 25 30 "27.3 20 (of 50) 
al b2 30 25 30 27.3 20 (of 50) 
al ba 15 25 25 22.7 10 (of 50) 
a2 b3 25 25 25 22.7 50 

F igure  5: E x p e c t e d  s a m p l e  sizes 

s g,D Congress Congress 
. . . .  (before scaling) . . . . . . .  

33~3 - 33.3 23.5 
33.3 33.3 23.5 

12.5 (of 33.3) 25 17.7 
20.8 (of 33.3) 50 35.3 

for var ious  techniques ,  for X = 100. 

Let ~ be the set of non-empty groups under the grouping 
G. The grouping G part i t ions the relation R according 
to the cross-product of all the grouping attr ibutes;  this is 
the finest possible parti t ioning for group-bys on R. Any 
group h on any other grouping T C G is the union of 
one or more groups g from 9. We denote each such g 
to be a subgroup of h. For example, in Figure 5, G = 
{A, B}, ~ = { (a i ,  bl ), (a l ,  b2), (a l ,  b~), (a2, b3) }, and for the 
grouping T = { A }, the set of tuples in the group h = al  
is the union of the tuples in the subgroups (al,b~), (a~,b2), 
and (ax,b3) of h. 

To construct Congress, we first consider applying S1 on 
each T C G. Let 7- be the set of non-empty groups under 
the grouping T, and let m T  -~- IT[ ,  the number of such 
groups. By S1, each of the non-empty groups in T should 
get a uniform random sample of X / m T  tuples from the 
group. Thus for each subgroup g in ~ of a group h in T, the 
expected space allocated to g (from considering T) is simply 

Z tlg 
Sg,T . . . .  , (4) 

r/~T nh 

where na and nh are the number of tuples in g and h 
respectively. Then, for each group g E 9, we take the 
maximum over all T of Sg,T as the sample size for g, and of 
course scale it down to limit the space used to X.  The final 
formtd~is: 

SampleSize(g) = X max:rc-G Sg'T 
EjEG maxT~ G Sj,T 

(5) 

For each group g in 9, we select a uniform random sample 
of size SampleSize(g). Thus we take a stratified, biased 
sample in which each group at the finest parti t ioning is its 
own strata.  

The space allocation by Congress for G = { A, B } is 
depicted in the last two columns of Figure 5 before and 
after scaling. Each entry in the "before scaling" column is 
the maximum of the corresponding entries in the sg,o, Sg,A, 
Sg,B, and sg,ao columns. These Sg,T contain the optimal 
allocations according to $1 when considering grouping solely 
on T. By taking the row-wise maximum and then scaling 
down all values by the same amount 

X 
f = ~x"'~e~ m a x T c ~  Sj,T' (6) 

we ensure that  the sample size for every group across all 
combinations of group-by columns is within a factor of at  
most f of its target  optimal allocation, is Thus Congress 
essentially guarantees that  both large and small groups in 
all groupings will have a reasonable number of samples. 

iSThe scale down factor ] ranges from 1 (for a uniform distri- 
bution across all possible groups at the finest level of grouping 
G) to almost 2-1GI (for a carefully constructed pathological dis- 
tribution presented in the full paper [AGP99b]). 

I Key'll "lff,-ouping'Columlas II Aggregate Column .} 

I K II A ' I ' B .  I[ ' c  it : Q ] 

Figure  6: Re l a t i on  R e l  wi th  two e xample  tuples  

I s e l e c t  A,B, sum(Q) 
~rom Eel 
group by A,B; 

Figure  7: User  Q u e r y  Q2 

4 .7  A d a p t i n g  t o  Q u e r y  W o r k l o a d  
In the full paper, we discuss how to extend the previous 
strategies to handle preferences between groupings and/or  
between groups, whenever they can be determined. 

5 Rewri t ing  
In Section 2, we demonstra ted how Aqua rewrites queries 
in the presence of uniform random samples. However, 
that  approach does not apply to the biased samples 
presented in this paper. This section highlights some of the 
implementation issues that  arise when using such samples. 
We first give some background on generating approximate 
answers from biased samples. Then, we present different 
strategies for rewriting queries in the presence of biased 
samples. 

5 .1  A p p r o x i m a t e  A n s w e r s  f r o m  B i a s e d  
S a m p l e s  

Recall that  query rewriting involves two key steps: a) scaling 
up the aggregate expressions and b) deriving error bounds 
on the estimate. The desired formulas for both steps can be 
derived using s tandard techniques. We illustrate by focusing 
on scaling. In Figure 2, the SUM operator  was scaled by a 
factor of 100 since b s _ l i n e i t e t a  was a 1% uniform random 
sample. We refer to this factor as the ScaleFactor. However, 
biased samples are not  uniform samples - -  instead they 
are a tmion of different sized uniform random samples of 
various groups in the relation. Consider Figure 6. It shows 
a five column table on which the user poses the query Q2 
(Figure 7). Let Sat=pRel be a biased sample of relation 
Rel,  and let the groups (A = a l , B  = b t ,C  = cl) and 
(A = az, B = b,, C = c2) be represented in SampRel by a 1% 
and 2% sample respectively. Since both groups contribute 
to the group (A = a l ,  B = bl) in the answer for Q2, we 
have a non-uniform sample from which we must produce an 
approximate answer. This raises the concern that  we may 
not be able to extract  an unbiased est imator  for the sum for 
this group. 

However, using s tandard  techniques for estimators based 
on stratified samples, we can generate an unbiased answer 
using all the tuples in the biased sample [Coc77]. For each 
tuple, let its scale factor ScaleFactor be the inverse of the 
sampling rate for its s t rata .  For the SUM operator, we scale 
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[ K [[A I,B [ c"[Iq I]SFI 
(a) SampRel schema 

: s e l ec t  i ,B,  sum(Q*SF) 
from Se~apRel ] 
group by A,B; 

(b) Rewritten Query Q2 

Figure 8: Integrated Rewriting 

[ K I I A I B I C I I Q  I i A I B I C t [  SF I 
(a) SampRel schema (b) AuxRel schema 

sele'ct SR.' , '  SR.B; s"m(Q*SF) " 
from SampRel SR, AuxRel AR 
.here SR.A = AR.A and SR.B = AR.B and SR.C = AR.C 
group by SR.A, SR.B; 

(c) Rewritten query Q2 

F igure  9: Normalized Rewr i t i ng  

each value being summed by its ScaleFactor, and then sum 
the result. In query Q2, for example, we would scale ql by 
100 and q2 by 50, and then add up the scaled sum. For 
the COUNT operator,  we sum up the individual SealeFactors 
of each tuple satisfying the query predicate. For the AVG 
operator, we compute the scaled SUM divided by the scaled 
COUNT. 

Note that  this approach is superior to subsampling all 
groups down to a' common sampling rate  in order to apply 
techniques for uniform sampling. For example, if the 
sampling rate for a group is j orders of magnitude smaller 
than the sampling rate for other groups, then the relative 
error bound for a COUNT operator  using Hoeffding bounds 
can be j /2  orders of magnitude worse. 

5.2 Rewri t ing  Strategies  
We now consider various strategies for rewriting queries 
to incorporate the scaling discussed above, using the 
example of the SUM operator.  Rewriting strategies for 
other aggregate operators and error bounds can be derived 
similarly and are presented in the full paper  [AGP99b]. 

Note that  all sample tuples belonging to a group will have 
the same ScaleFactor. Thus, the key step in scaling is to be 
able to efficiently associate each tuple with its corresponding 
ScaleFactor. There are two approaches to doing this: a) 
store the ScaleFactor(SF) with each tuple in $ampael and b) 
use a separate table huxRel to store the ScaleFaetors for the 
groups. These two approaches give rise to three techniques 
described below. 

The first approach is highlighted in Figure 8. The 
rewrite technique, called Integrated, incurs a space overhead 
of storing the ScaleFactor and a multiplication operat ion 
for every tuple. However, this approach incurs significant 
maintenance overhead - -  insertion or deletion of tuples from 
SampRel requires updat ing the ScaleFactor of all tuples in 
the affected groups. 

The second approach addresses the maintenance problem 
by normalizing the SampRel table and is demonstrated 
in technique Normalized shown in Figure 9. It has 
only marginal maintenance overhead since the ScaleFactor 
information is isolated to guxRel and thus, updates to 
SampRel requires updates  only to AuxRel. Since the number 
of groups would very likely be much fewer than the number 
of tuples, AuxRel would have a lower cardinality than 
SempRel. However, this approach has an execution time 
penalty due to the join required between SempRel and 
AuxRel. Moreover, the join condition can be non-trivial if 

A [ B I  C II Q II GIDI 
I K Ii (a) SampRel Schema (b) AuxRel schema 

I s e l ec t  A,B", sum(Q*SFi ..... 
from SampRel, luxRel 
~here SampReI.GID = AuxReI.GID 
group by A,B; 

(c) Rewritten Query Q2 

Figure 10: Key-normalized Rewriting 

I, K II A ['B I C II Q II SF I 
(a) SampRel schema 

l s e l e c t  A,B, sum(SQ*SF) 
Ifrom ( se l ec t  A, B, SF, sum(q) as SQ 
] from SampRel 
I group by A, B, SF) 
[group by /t,B; . . . . . . .  

(b) Rewritten Query Q2 
Figure 11: Nested-integrated Rewriting 

there are many grouping at tr ibutes.  The Key-normalized 
technique a t t empts  to minimize this overhead. Since each 
group is specified explicitly by the at t r ibutes  values of 
the grouping columns, they can be replaced by a unique 
group identifier (GID) as shown in Figure 10. Note that  
this optimization still limits changes to the smal]er huxRel 
relation during updates  and also reduces the space overhead 
of luxRel .  

In each of the above approaches, the ScaleFactor multi- 
plication operat ion was performed for every tuple. How- 
ever, since all tuples belonging to a group have the same 
ScaleFactor, one can optimize further to first aggregate over 
each group and then scale this aggregate appropriately by 
the ScaleFactor. This approach, however, requires a nested 
group-by query. While applicable to all the three prior 
techniques, for space l imitations we show this optimization 
in Figure 11 for Integrated rewriting and call it  Nested- 
integrated. 

In Section 7, we compare the query execution speeds of 
these four approaches. 

6 C o m p u t a t i o n  a n d  M a i n t e n a n c e  

In the full paper  [AGP99b], we present one-pass algorithms 
for constructing the various biased samples  presented in 
this paper.  We also show how to maintain them in the 
presence of insertions of new tuples into the relation, without 
accessing the stored relation. 

77 E x p e r i m e n t s  
We conducted an extensive set of experiments to evaluate 
the various sample allocation techniques and rewriting 
strategies. The sampling allocation schemes studied were 
House, Senate, Basic Congress, and Congress (Section 4). 
The rewriting strategies studied were Integrated, Nested- 
integrated, Normalized, and Key-normalized (Section 5). In 
this section, we present a representative subset of the results 
generated. They were chosen to show the tradeoffs among 
these schemes. First ,  we describe the experimental testbed. 
Then we perform experiments to measure the accuracy fo 
the various sample allocation scheme. Finally, we study the 
performance of the various rewriting strategies. 
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I A t ' t r i b u t e  [I l ad  ,I , l~eturnflag / IAinestatus' I l_shipda-tel  l=quantity ii[ l_extendedprice 
I D a t a T y p e  I{ int (1, 2 , . . . /  i .(}nt l i n t  = I d a t e  . . . .  I float . . . . . .  t f l oa t  . . . . . .  

I R0' le i ' ° f  A t t r  i b u t e  It Primary Key ] '  "Grouping I. Aggregation 

F igure  12: T h e  Lineitem S c h e m a  Used in the  E x p e r i m e n t s  

Q 2  Q 3  

[ - ~ l _ r e t u r n  at ,  inestatus, s e l ec t  ...return ag, l inestatus, T 
(l_quantity), sum(l_extendedprice) ( Lsbipdate, sum(l_quantity) 

1 I from lineitem ] from line item .... 
[_.group by l_returnflag, l_]inestatus; J[_~roup by L..t~turnflag, [_linestatus, l_shipdate; 

Q ~  ..... 

select sum~-- 
~rom lineitem 
where (s 5 Lid 5 s + c); 

Table  1: Quer ies  s tud i ed  

7.1 T e s t b e d  

We ran the experiments on Aqua, with Oracle (v7) as the 
back-end DBMS. Aqua was enhanced to use the proposed 
allocation schemes to compute its samples and also, the 
different rewriting strategies. 

7 .1 .1  D a t a b a s e  a n d  Q u e r i e s  

In our experiments, we used the database and queries sup- 
plied with the TPC-D benchmark. The TPC-D benchmark 
models a realistic business da ta  warehouse, with sales da ta  
from the past  six years. It contains a large central fact 
table called l i n e i t e r a  and several much smaller dimension 
tables [TPC99]. As mentioned in Section 2, it is sufficient 
to consider queries on a single relation to evaluate the pro- 
posed techniques in Aqua. Hence, we restrict our discussion 
to queries on the l i n e i t e h  table. The schema of this table is 
given in Figure 7,16 along with the grouping (dimensional) 
and aggregation (measured) attributes.  In all our experi- 
ments~.the Senate technique computes the samples for the 
grouping on {l..return_flag, IAinestatus, Lshipdate}. 

Next, we extended the TPC-D da ta  to model several 
relevant aspects of realistic databases. Specifically, consider 
the groups obtained by grouping the above relation on 
all the three grouping attr ibutes.  In the original TPC-D 
data, these groups were nearly identical in size. The da ta  
in the aggregate a t t r ibutes  was also uniformly distributed. 
In our experiments, we introduced desired levels of skew 
into the distributions of the group-sizes and the da ta  in 
the aggregated columns. This was done using the Zipf 
distribution, which is known to accurately model several 
real-life distributions. By changing the z-parameter  of 
the distribution from 0 to 1.5, we are able to generate 
group-size distributions that  are uniform (i.e., all sizes are 
same) or progressively more skewed. We fixed the skew 
in the aggregated column at  z = 0.86, a commonly used 
z-parameter  because it results in a 9 0 -  10 distribution. 
Finally, we also varied the number of groups in the relation 
(from 10 to 20OK). For a given number of groups, we 
generated equal number of distinct (randomly chosen) values 
in each of the grouping columns. Since the total  number 
of groups is the product  of these counts, if the number of 
groups is n, the number of distinct values in each of these 
columns becomes n ~ ]3 . 

The different parameters  used in our experiments are 
listed in Table 2. The size of the sample, determined by 
parameter  SP,  is given as a percentage of the original 

16The original lineitem table has some other columns which 
are not relevant to this discussion. We introduced a lad attribute 
to the table to use in the experiments. 

Parameter  II Range of Values 
Table Size ~ ~ 6M tuples 
Sample Percentage ( S P ) ) ]  1% - 75% (% T) 
Num. Groups (NG) II 10 - e 0 0 K  
Group-size Skew ( z _ . ~  0 -  1.5 

Tab le  2: E x p e r i m e n t  P a r a m e t e r s  

relation. In all our experiments,  unless otherwise mentioned, 
the parameter  takes its default value listed in the table. 

Q u e r i e s :  We used queries with different number of 
group-by columns. They are listed in the Table 1 (the 
suffixes denote the number of group-bys in the queries). 
The first two queries are derived from Query 3 in the 
TPC-D query suite. The third query is parametrized to 
generate queries with desired selectivities on different parts 
of the data. Queries Qa0 and Qaz represent two ends of 
the spectrum. The former poses the query over the entire 
relation whereas the la t ter  causes the finest partit ioning 
on three at tr ibutes.  Qg2, with two grouping columns, is 
in between the two extremes. The aim of this study is 
to identify a scheme that  can provide consistently good 
performance for all the three classes and thus, the entire 
range. 

For the current study, we chose parameter  s for Query 
Qg0 randomly between 0 and 950K and fixed c at  7OK, and 
generated 20 such queries. Hence, each query selects about 
70K tuples, i.e., 7% of the table when T is 1M. 

7 .2  A c c u r a c y  o f  S a m p l e  A l l o c a t i o n  
S t r a t e g i e s  

In this section, we first compare the accuracies of various 
sample allocation strategies for group-by and non-group- 
by queries. Then, we s tudy the sensitivity of the various 
sampling schemes to size of the sample. In each case, 
we compute the exact as well as approximate answers for 
queries Qg~, Qg3, and each of the queries in the set Qg0. 
For Qa2 and Qa~, we define the error as the average of the 
percentage errors for all the groups. For the query set Qg0, 
we define error as the average of the percentage errors for 
all the queries. In bo th  cases, the error for a single group 
is computed using Eq. 1 (Section 3). We also measured the 
maximum errors and observed that  the relative performance 
of all the techniques was identical to the above average error 
measures. 

7 .2 .1  P e r f o r m a n c e  f o r  D i f f e r e n t  Q u e r y  S e t s  

In this experiment,  we fix the  sample percentage at 7% and 
study the accuracy of various allocation strategies for the 
three classes of queries. Since each query set aggregates over 
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Figure  13: Q u e r y  Qao Er ro r  F igure  14: Que ry  Qg3 Error  F igu re  15: Que ry  Qg2 Er ror  

a different set of groups, intuitively, we expect the technique 
that  allocates equal space to those groups to have the least 
error. Note that,  when all the groups are of the same size 
(i.e., z = 0), all the techniques result in the same allocation, 
which is a uniform sample of the data.  Hence, we discuss 
the results for the case of skewed group sizes (with z = 1.5) 
below. 

Q u e r i e s  w i t h  N o  G r o u p - b y s  (Qg0) (Figure 13): Recall 
that  Qg0 consists of queries selecting uniformly over the 
entire data• Since Senate allocates the same space for each 
group, it ends up allocating less space for the large groups 
than the other techniques. This results in a higher overall 
error for Senate because a large proport ion of the queries 

• land in the large groups. The other techniques perform 
bet ter  because one of their considerations is allocating space 
uniformly over the entire data.  The result is that  the space 
allocation mirrors the queries, and all queries are answered 
well. The relative performance of these three techniques is 
determined by the weight they give to this consideration - -  
highest ' in  House where it is the sole consideration to the 
least in Basic Congress whose space allocation is skewed 
towards the small groups. Surprisingly, Congress's errors 
are low too and it is a good match for House. 

Q u e r i e s  w i t h  T h r e e  G r o u p - B y s  (Qga) (Figure 14): 
Recall that Qgz consists of aggregating over all groups at  the 
finest granularity of grouping. This is precisely the grouping 
for which the Senate sampling was set up giving equal space 
to each of these groups• Hence, Senate has low errors for all 
the groups resulting in an overall good performance. On the 
other hand, House allocates a large par t  of the space to the 
few large groups and incurs high errors for the remaining 
smaller groups. Once again, Basic Congress and Congress 
perform in between these two ranges because they take into 
account small groups, but  to a lesser extent than Senate. 

Q u e r i e s  w i t h  T w o  G r o u p - B y s  (Qg2) (Figure 15): 
This is the intermediate case of grouping on two at t r ibutes.  
Both House and Senate perform poorly since they are 
designed for the two extremes. The absolute magnitude of 
the error in this case, however, is significantly lower than 
the last two sets due to the larger size of the groups - -  both  
House and Senate contain enough tuples from each group 
to produce reasonable estimates. The Congress technique 
easily outperforms them because it is tailored for this case 
and explicitly considers this grouping in its allocation. Thus, 
its allocation is close to the ideal for this query set. 

C o n c l u s i o n s :  It is clear from the above experiments 
that  only Congress performs consistently the best  or close 
to best for queries of all types. The other techniques 
perform well only in a limited part  of the spectrum, and 
thus, are not suitable in practice where a whole range of 
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Figure  16: S a m p l e  Size vs. A c c u r a c y  (Query  Qg2) 

groupings may be of interest to the user during the roll-up 
and drill-down process. The Congress technique performs 
well because it is not  optimized for a part icular  grouping set 
but  instead takes into consideration all possible groupings 
(including no-groupings at  all) in its space allocation. Thus, 
even in cases where it is not the best, it is extremely 
competitive. Consequently, we propose Con9ress as the 
sampling technique of choice. 

7 .2 .2  E f f e c t  o f  S a m p l e  S i z e  
In this experiment we perform a sensitivity analysis test 
by fixing the group-size skew at 0.86 and measure the 
errors incurred in answering Query qa~ by various allocation 
schemes for different sample sizes. The results are plotted 
in Figure 16. As expected, the errors drop as more space is 
allocated to store the samples. The errors for House flatten 
because it simply allocates more of the available space to the 
larger groups, which does little to improve the performance 
for the remaining groups. Overall, the behavior of Congress 
is very encouraging because its errors drop rapidly with 
increasing sample space. Consequently, it is able to provide 
high accuracies even for the arbi t rary  group-by queries. 

7 .3  P e r f o r m a n c e  o f  R e w r i t i n g  S t r a t e g i e s  
In these experiments,  we measure the actual  time taken by 
each of the four rewriting strategies presented Section 5. 
We present the time in seconds for running Qg2 and writing 
the result into another  relation• The experiments were run 
on a Sun Sparc-20 with 256MB of memory, and IOGB of 
disk space running Solaris 2.5. We focus on the effects of 
sample size and the number of groups because they almost 
entirely determine the performance of the rewrite strategies. 
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• Sample Percentage 
Technique 1 % 1 5 %  10% = 
Integrated 1.3 : 3.8 6.8 
Nested-integrated: 1.2 i 3.3 6.0 
Normalized i 1.7 ' 14 .0  27.3 
KeY-normalized 1..8 _14.3 28.4 

Tab le  3: T i m e s  Taken  for Different S a m p l e  Percen tages  
(ac tua l  query  t i m e  = 40sec) 

To mitigate the effects of s tar tup and caching, we ran the 
queries five times and report  the average execution times of 
the last four runs. We present our experiments on sample 
size; the experiments on the number of groups can be found 
in the full paper  [AGP99b]. 

Effec t  o f  S a m p l e  S ize  on R e w r i t e  P e r f o r m a n c e :  
In this experiment, we fix the number of groups at 1000 
and vary the sample percentage. Table 3 shows the times 
taken by various rewrite strategies for different sample 
percentages. Running the same query on the original table 
da ta  took 40 seconds on the average. The table makes two 
points: a) the Integrated-based techniques outperform the 
Normalized-based tectmiques and b) the rise in execution 
times are dramatic  for the Normalized-based techniques with 
increasing sample sizes. 

Normalized and Key-normalized perform poorly due to 
the join between the sample table and auxiliary table. 
Among them, the slightly bet ter  performance of Key- 
normalized is due to a shorter join predicate involving 
just  one a t t r ibute  (Lid), as against two (l_returnflag and 
l_linestatus) for Normalized. Among Integrated and Nested- 
integrated, quite surprisingly, the lat ter  performed consis- 
tently be t te r  in spite of being a nested query. The fewer 
multiplications with the scaJefactor performed by Nested- 
integrated (one per group) pays off over integrated which 
does one multiplication per tuple. We explore this tradeoff 
in more detail in the full paper. Overall, solely from the 
performance viewpoint, these two techniques are still signif- 
icantly faster than the normalized ones. 

S u m m a r y  o f  R e w r i t i n g  S t r a t e g i e s :  Our experiments 
show that  Integrated and Nested-integrated have consistent 
performance over a wide spectrum of sample sizes and group 
counts and easily outperform the other two techniques. 
However, as pointed out in Section 5, they incur higher 
maintenance costs (which we do not s tudy here). Hence, 
the choice of a technique depends on the update  frequency 
of the warehouse environment. If the update  frequencies are 
moderate to rare, Integrated(or Nested-integrated)should be 
the technique(s) of choice. Only the (rare) high frequency 
update case warrants for the higher execution times incurred 
by Key-normalized- note that  as the warehouse grows larger 
relative to the sample, the probability of an update  reflecting 
immediately in the sample shrinks significantly, making this 
an unlikely case in practice. 

8 E x t e n s i o n s  
In this section, we summarize some extensions to Congres- 
sional samples to use different biasing criteria derived from 
the da ta  and to non-Group-by queries. Details are in the 
full paper  [AGP99b]. 

G e n e r a l i z a t i o n  to  M u l t i p l e  C r i t e r i a :  One of the 
key features of congressional samples is its extensibility to 
different space allocation criteria beyond those studied in 

Grouping Congressional 
Attributes " Weight Vectors m Sample 

A "" B C u C v C w Unscaled Scaled 

Figure  17: Congress iona l  s amples  f r amework  

this paper. Consider Figure 17. It shows a typical structure 
of the table that  is used to determine space allocation in 
a congressional sample similar to that  in Figure 5. Note 
that  there are three classes on columns. The ones on the 
left are the a t t r ibute  columns which contain the possible 
groups in some order. The columns in the middle, that 
we refer to as weight vectors, contain for some criteria, 
the relative ratios of space, or weights, to be allocated to 
each of the groups (e.g., in proport ion to the variances of 
the groups). For example, in Figure 5, House and Senate 
strategies contributed a weight vector each. The last two 
columns aggregate the space allocated by each of the weight 
vectors to generate the final number of tuples assigned for 
each group. 

G e n e r a l i z a t i o n  t o  O t h e r  Q u e r i e s :  The Congressional 
Samples framework can also be extended beyond group-by 
queries. A group-by query simply partit ions the at t r ibute  
space based on specific a t t r ibute  values. However, one may 
also consider other part i t ions of the space such as ranges of 
values, where the user has a biased interest in some of the 
partit ions. For example, if a sample of the soles da ta  were 
used to analyze the impact  of a recent sales promotion, the 
sample would be more effective if the most recent sales data  
were bet ter  represented in the sample as opposed to older 
data.  This can be easily achieved in the above framework 
by replacing the values in the grouping columns by distinct 
ranges (in this case on dates) and deriving the weight vectors 
that  weigh the ranges appropriately with respect to each 
other. 

9 Rela t ed  Work  
While statisticM teclmiques based on samples, histograms, 
etc. have been applied in databases for a wtfile now, they 
have been primarily used in selectivity estimation during 
query optimization [SAC + 79, Olk93, P1HS96]. Approximate 
query answering using sampling has started receiving atten- 
tion recently [Olk93, HHW97, GM98, AGPR99]. The closest 
work to ours is the Online Aggregation scheme proposed by 
Hellerstein et al [HHW97]. In their approach, the original 
da ta  is scanned in random order at query time to generate 
increasingly larger random samples of the data, thus incre- 
mentally refuting the approximate answer generated. Un- 
like Aqua, that  work involves accessing original disk-resident 
da ta  at query time; but  it  has the desirable feature of ulti- 
mately providing the fully accurate answer. However, both 
approaches encounter similar problems in answering group- 
by queries effectively. Their  solution is to use the novel 
the index striding technique to control sampling rate among 
groups and thus ensure fairness among their qualities. Their 
approach is not suitable for the precomputed or materialized 
samples considered in this paper.  

There have been several recent works using histograms [IP99] 
or wavelets [VW99] for approximate query answering. 

Efficient processing and optimization of aggregate group- 
by queries has been addressed in [CS94, CS95]. Their 
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techniques are orthogonal to our approach of reducing the 
data size itseff and can be used in Aqua to further speed up 
group-by query processing. 

Biased sampling (e.g., stratified sampling) has been stud- 
ied in the sampling literature under many contexts [Coc77]. 
Most related is the work on subpopulation sampling, in 
which a population is partitioned into subsets (analogous 
to groups in a group-by query), and on-the-fly sampling is 
used to estimate the mean or other statistic over each sub- 
population, as well as over the entire population. This paper 
is the first to consider the use of precomputed biased sam- 
ples for approximate query answering of group-by queries, 
and extends the previous work by studying combinations 
of group-by columns, construction and incremental mainte- 
nance, query rewriting, optimizing over a range of possible 
queries, and performance on the TPC-D benchmark data. 

• 10 Conc lus ions  
The growing popularity of OLAP and data warehousing 
has highlighted the need for approximate query answering 
systems. These systems offer high performance by answering 
queries from compact summary statistics, typically uniform 
random samples, of the data. Needless to say, it is critical 
in such systems to provide reasonably accurate answers to 
the commonly posed queries. 

In this paper, we showed that precomputed uniform ran- 
dom samples are not sufficient to accurately answer group- 
by queries, which form the basis of most of the data analy- 
sis in decision support systems. We demonstrated that, to 
be effective for group-by queries, the data should be sam- 
pled non-uniformly, and proposed several new techniques 
based on this biased sampling. We developed techniques for 
minimizing errors over queries on a set of possible group- 
ing columns. We introduced congressional samples, which 
are effective for group-by queries with arbitrary group-bys 
(including none). Additionally, we proposed efficient tech- 
niques for constructing congressional samples in one pass 
over the relation, and for incrementally maintaining them 
in the presence of database insertions, without accessing the 
stored relation. We also presented efficient strategies for us- 
ing the biased samples. The new sampling strategies were 
validated experimentally both in their ability to produce ac- 
curate estimates to group-by queries and in their execution 
efficiency. 

All of the techniques presented in this paper have been 
incorporated into an approximate query answering system, 
called Aqua, that we have developed. By providing the 
ability to answer the important class of group-by queries, 
our new techniques have significantly enhanced the overall 
accuracy and usability of Aqua as a viable decision support 
system. Of course, the techniques themselves are applicable 
beyond Aqua, and even beyond group-by queries, and can 
be used wherever the studied limitations of uniform random 
samples become critical. 
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