
Characterizing Memory Requirements for Queries over
Continuous Data Streams�

Arvind Arasu, Brian Babcock, Shivnath Babu, Jon McAlister, Jennifer Widom

Stanford University
farvinda,babcock,shivnath,jonmac,widomg@cs.stanford.edu

Abstract

We consider conjunctive queries with arithmetic comparisons over multiple continuous data streams.
We specify an algorithm for determining whether or not a query can be evaluated using a bounded
amount of memory for all possible instances of the data streams. When a query can be evaluated using
bounded memory, our algorithm produces an evaluation plan based on constant-sized synopses of the
data streams.

1 Introduction

In many recent applications, data takes the form of continuousdata streams, rather than finite stored data
sets [BW01]. Examples include stock ticks in financial applications, performance measurements in network
monitoring and traffic management, log records or click-streams in Web tracking and personalization, data
feeds from sensor applications, network packets and messages in firewall-based security, call detail records
in telecommunications, and so on. These applications have a need for queries over data streams that go
well beyond simple element-at-a-time processing, they have multiple rapid and time-varying streams, and
they require timely online answers. In network traffic management, for example, queries over streams of
network packets and/or performance measurements can be used to monitor network behavior online in order
to detect anomalies (e.g., link congestion) and their cause (e.g., hardware failure, intrusion, denial-of-service
attack) [DG00]. In financial applications, queries over stock tick data, news feeds, and historical company
data can be used to monitor trends and detect fleeting opportunities [Tra].

In theSTREAM(STanford stREam datA Management) project [STR], we are developing aData Stream
Management System(DSMS) that allows some or all of the data being managed to come in the form of
continuous, possibly very rapid and time-varying, data streams [BW01]. Developing the query processing
component of a DSMS involves many novel and challenging problems, since queries tend to becontinu-
ous(long-running) rather thanone-time, stream data distributions and arrival characteristics may be unpre-
dictable, and system conditions (e.g., available memory) will fluctuate over time. As one initial step, our
work in this paper addresses the problem of characterizing memory requirements for queries over continuous
streams of relational tuples. We motivate the problem through a series of examples.

1.1 Examples

Our set of example queries is shown in Table 1. We use standard relational algebra, introducing_� for
duplicate-preserving projection. Two unbounded relational data streams,S(A;B; C) andT (D;E), are
used in the example queries. The answer to a query at any point in time is the answer using standard algebra

�This work was supported by the National Science Foundation under grants IIS-9817799 and IIS-0118173 and by an Okawa
Foundation Research Grant.

1

Computable with bounded memory?
For _� For�

Q1 �A (�A>10 (S)) Yes No
Q2 �A (�A=D (S�T)) No No
Q3 �A (�A=D ^ A>10 ^ D<20 (S�T)) Yes Yes
Q4 �A (�B<D ^ A>10 ^ A<20 (S�T)) No Yes
Q5 �A (�B<D ^ B<120 ^ D>20

^ A > 10 ^ A < 20
(S�T)) Yes Yes

Q6 �A (�B>D ^ B>E ^ A=10 (S�T)) No Yes
Q7 �A (�A<D ^ B<E ^ A>10 ^ A<20 (S�T)) No Yes
Q8 �A (�B<D ^ C<E ^ A>10 ^ A<20 (S�T)) No No
Q9 �A (�B<D ^ C<E ^ A>10 ^ A<20

^ B < E ^ C < 100 ^ D > 50
(S�T)) No Yes

Table 1: Example queries over data streamsS(A;B; C) andT (D;E).

semantics over the bag of data stream tuples seen so far. The examples are crafted to eachillustrate specific
points.

Consider queryQ1, a selection and projection over one data stream:�A(�A>10(S)). When the projec-
tion is duplicate-preserving,Q1 is a simple filter onS and can be evaluated by tuple-at-a-time processing of
the stream. Thus, it can always be evaluated without using any extra memory for storage of stream tuples or
intermediate state.1 If the projection inQ1 is duplicate-eliminating, we need to keep track of each distinct
value ofA greater than10 in S so far, in order to eliminate duplicates in the answer. In this case, there is
no finite bound on the amount of memory required for evaluating this query over all possible instances of
streamS.

On first inspection, most queries over data streams, particularly join queries, seem to require unbounded
memory. For example, consider queryQ2, an equijoin of streamsS andT : �A(�A=D(S�T)). Q2 re-
quires each tuplet in S (respectivelyT) to be saved, sincet could potentially join with tuples inT (re-
spectivelyS) that arrive in the future. However, as soon as we consider attributes with discrete ordered
domains and queries with inequalities, many more queries over data streams become computable with
bounded memory. For the remaining example queries, suppose all attributes are of type integer. Like
queryQ2, queryQ3 is an equijoin of streamsS andT , but Q3 adds selection predicates onA andD:
�A(�A=D ^ A>10 ^ D<20(S�T)). Q3 can be evaluated with bounded memory by maintaining, for each
integerv in the interval[11; 19], the current number of occurrences of tuples withA = v in S andD = v

in T . (We assume that counts can be saved in bounded memory.) QueryQ4 is an inequality join ofS and
T : �A(�B<D ^ A>10 ^ A<20(S�T)). Q4 can be evaluated with bounded memory for duplicate-eliminating
projection by maintaining, for each integerv in the interval[11; 19], the current minimum value ofB among
all tuples inS with A = v, and maintaining the current maximum value ofD among all tuples inT . With
this information, each time we see a newS or T tuple, we can decide whether to generate a newA value in
the answer.Q4 cannot be evaluated with bounded memory for duplicate-preserving projection because, to
preserve duplicates correctly in the answer, we must save all (A,B) combinations inS where the value ofA
lies in the interval[11; 19].

Our goal was to develop an algorithm that accurately determines whether or not a given query over data
streams can be evaluated with bounded memory over all possible instances of the streams. As the more
complex example queriesQ5–Q9 in Table 1 indicate, this problem turned out to be nontrivial. We will
revisit some of these example queries in later sections.

1Note two assumptions. First, data stream tuples can be processed at least as fast as the rate at which they arrive. Second, we
are not concerned with storage of the query answer. For the monotonic queries we consider, answers can also be data streams.

2

1.2 Contributions

We make the following contributions in this paper:

� We consider conjunctive queries with arithmetic comparisons over multiple data streams, and we
specify an algorithm that determines whether or not a query can be evaluated using a bounded amount
of memory for all possible instances of the data streams.

� When a query can be evaluated using bounded memory, our algorithm produces an evaluation plan
based on constant-sized synopses of the data streams, characterizing the memory requirements of the
query for all possible instances of the streams.

� When a query cannot be evaluated using bounded memory, for any query evaluation plan, our algo-
rithm identifies specific instances of input streams for which the plan requires memory at least linear
in the length of the input streams.

1.3 Related Work

Past and ongoing work on processingcontinuous queries[CDTW00, NACP01, SPAM91, TGNO92], and
on querying remote data sets across networks [HF+00, IFF+99, UFA98], strongly relates to the problem of
processing queries over data streams, which forms the context for our work. To the best of our knowledge,
no past work in this area has considered the problem of characterizing memory requirements for queries
statically, leaving memory management entirely to the query execution phase. Memory management strate-
gies used during query execution in these environments include the use of disk to buffer data for memory
overflows [IFF+99, UFA98] and grouping queries with common subexpressions to minimize memory us-
age [CDTW00].

Clearly there is a relationship between queries over data streams and the well-known area ofmaterial-
ized views[GM95], since materialized views are effectively queries that need to be reevaluated or updated
incrementally whenever the base data changes. Particularly relevant is theChronicle data model[JMS95],
which defined a restricted view definition language and algebra that operates over append-only ordered se-
quences of tuples (chronicles). The view definition restrictions, along with restrictions on the sequence order
within and across chronicles, guarantees that the views can be maintained with bounded memory. Work on
self-maintenance[BCL89, GJM96, QGMW96] anddata expiration[GMLY98] considered the related but
distinct problem of identifying the minimum amount of base and/or auxiliary data required for maintaining
a materialized view.

Query processing over data streams usingapproximatesynopses (summaries) of the streams has been
the subject of some recent work. Reference [GKS01a] develops histogram-based techniques to provide
approximate answers forcorrelated aggregate queriesover data streams. Reference [GKMS01] presents
a wavelet-based approach for building small-space summaries over data streams to provide approximate
answers for many classes of aggregate queries. Our work differs from work in this area in that we are
considering memory requirements for producing exact, not approximate, answers.

In more theoretical work on data streams, [HRR98] studies basic tradeoffs in processing finite data
streams, specifically among storage requirements, number of passes required, and result approximations.
References [AMS96, FKSV99, Ind00] consider the problem of approximating frequency moments and
computingLp differences over data streams. Reference [GKS01b] considers the problem of maintaining
optimal time-based histograms over data streams, [DGIM02] considers maintaining statistics forsliding
windowsover data streams, and [BDM02] considers sampling for the same scenario.

3

2 Query Language, Execution Model, and Problem Statement

We formally define our model for data streams, our query language, and the semantics used for queries over
streams. We then formalize our query execution model and state the problem of determining whether or not
a query can be evaluated with bounded memory.

2.1 Continuous Data Streams

A continuous data stream(hereafter simply astream) is a potentially infinite stream of relational tuples.
Each stream has a fixed schema, i.e., a known finite set of attributes. For most of this paper we assume that
the domain of each attribute is discrete and totally ordered (e.g., the domain of integers). In Section 6 we
extend our results to attributes with more general domains. We assume streams arebags, i.e., the same tuple
can appear any number of times in a stream.

We assume that streams are generated by an independent source, meaning that a query evaluation plan
has no control over the streams. This assumption has two important implications. First, a stream can be read
only once from its source, and is read in the order generated by the source. A query evaluation algorithm
can, of course, store a part of the stream in its local memory and access it subsequently. Second, if a query
involves multiple streams, an evaluation plan cannot make any assumptions about the relative order in which
the tuples of different streams are read. Theinstanceof a stream at any point in time is the bag of tuples of
the stream seen until that point. We use the termpresentationto denote the exact interleaved sequence in
which tuples are generated in the input data streams.

2.2 Queries over Continuous Data Streams

A query in a traditional database is specified over finite data sets and the query answer is a function of the
entire input data. Since data streams are potentially infinite, we considercontinuous queries, where the
answer to a query over data streams at any point in time is a function of the input streams seen so far. The
semantics of queries over continuous relational data streams is therefore a simple extension of the semantics
for the traditional relational case.

In this paper, we consider a class of Select-Project-Join (SPJ) queries, which also could be termed
as conjunctive queries with arithmetic comparisons. In addition to the conventional duplicate-eliminating
semantics of SPJ queries, we also consider duplicate-preserving semantics as in SQL. We use the standard
relational symbols� and� to denote selection and Cartesian product operators, respectively. We use�

and _� to denote duplicate-eliminating and duplicate-preserving projection operators, respectively. Thus, a
duplicate-preserving SPJ query is of the general form_�L(�P (S1 � S2 � : : :� Sn)), whereL is the list
of projected attributes,P is the selection predicate, andS1; S2; : : : ; Sn denote the input data streams. We
restrict ourselves to SPJ queries where the selection predicateP is a conjunction of atomic predicates. An
atomic predicate is of the formSi:A Op Sj :B (i = j or i 6= j) or of the formSi:A Op k, whereOp is
one of the comparison operators inf<;=; >g andk is some constant. Our results can be extended in a
straightforward way to include the operatorsf�;�g. We assume that there are no self-joins in the query,
i.e.,Si 6= Sj for i 6= j. Appendix C explains how to extend our results to include self-joins.

Note that the SPJ queries we consider aremonotonic[Ull89]. Monotonicity implies that any tuple that
appears in the answer at any point continues to do so forever. The query answer can, therefore, also be
treated as a data stream, although we do not use this closure property explicitly.

2.3 Execution Model and Problem Specification

We assume that the query evaluation environment has access to some local memory which can be used, for
example, to store some information about the input streams seen so far. We say that aunit of the memory

4

can store one attribute value or a count.2 We are not concerned with memory for storage of the query answer
since the answer also can be a data stream. (It turns out that in many, but not all, cases, when a query can
be evaluated in bounded memory its answer can be stored in bounded memory.) The goal of this paper is to
characterize the worst case memory requirements of SPJ queries over all possible input stream instances and
their presentation (Section 2.1). For many SPJ queries, the worst case memory requirement is linear in the
length of the input streams and therefore unbounded. However, we identify an interesting class of queries
that can always be evaluated with a bounded amount of memory.

Definition 2.1 (Bounded-Memory Computability of a Query) An SPJ query iscomputable in bounded
memoryif there exists a constantM and an algorithm that evaluates the query using fewer thanM units of
memory for all possible instances and presentations of the input streams of the query. 2

We focus primarily on the problem of identifying exactly the above class of queries. It follows from the
proof in Appendix A that any query that does not fall into this class requires memory linear in the length of
the input streams to evaluate.

3 Preliminaries and Definitions

This section introduces notation and terminology, and reviews some basic concepts from discrete mathe-
matics that are used in our results.

As described in Section 2, we consider two kinds of SPJ queries, both of the form�L(�P (S1 � S2 �
� � � � Sn)) but using either duplicate-eliminating (�) or duplicate-preserving (_�) projection. When the
streams and the list of projected attributes are not important to the discussion, we may write a queryQ as
Q(P), whereP is the selection predicate. For convenience, we represent the selection predicate as a set
instead of a conjunction of atomic predicates. The termelementis used to refer to either a constant or an
attribute of a stream.

For a given SPJ queryQ:

C(Q) denotes the set of constants that appear inQ.

S(Q) denotes the set of streams that appear inQ.

A(Q) denotes all the attributes of all the streams inQ, i.e.,A(Q) =
S

S2S(Q)A(S), whereA(S)
denotes the set of attributes in streamS.

E(Q) = A(Q)[C(Q) is the set of all elements relevant toQ.

E(S) = A(S)[C(Q) is the set of all elements inQ potentially relevant to streamS.

A set of atomic predicatesP is satisfiableif there exists some assignment of values to the attributes inP

that makes every predicate in the setP evaluate to true. Observe that any queryQ(P) with an unsatisfiable
selection predicateP has an empty output stream, and therefore is trivially computable in bounded memory.
In the rest of the paper we assume that the selection predicates of the queries considered are satisfiable unless
mentioned otherwise.

Let P be a set of predicates. Thetransitive closureof P , denotedP+, is the set of atomic predicates
logically implied by the predicates inP . Note that any queryQ(P) can be rewritten as an equivalent query
Q(P 0) if P+ = (P 0)+. For a given set of predicatesP , the set of predicatesinducedby a set of elementsE,
denotedIND(P;E), is the set of predicates inP+ that involve only elements inE.

2We assume that a count only takes up one unit of memory although the number of bits necessary to represent a count grows
logarithmically with the number of items being counted. In practice, no count is likely to require more than one or two words of
memory on any modern computer architecture.

5

Definition 3.1 (Redundant Predicate) An inequality predicate(e1 < e2) 2 P is said to beredundantin
P if there exists an elemente such that(e1 < e) 2 P+ and(e < e2) 2 P+. Note that removing all the
redundant predicates from anyP leaves its transitive closure unchanged. 2

A set of elementsE is totally orderedby a set of predicatesP if for any two elementse1 ande2 in
E, exactly one ofe1 < e2 or e1 = e2 or e1 > e2 is in P+. Consider a set of predicatesP involving
only elements in a setE. P is order-inducingif E is totally ordered byP . There are exponentially many
different order-inducing sets of predicates for a given set of elements. DefineTO(E) as the set of all order-
inducing sets of predicates forE. For example, consider the set of elementsE = fA;B; 5g. Two of the
order-inducing sets of predicates forE arefA < B; 5 < Ag andfA = B;B < 5g. Note that if a set of
elementsE is totally ordered by a set of predicatesP , thenIND(P;E) 2 TO(E).

For a given set of predicatesP , the equality predicates in the set partition the elements inP into equiv-
alence classes: two elementse1 ande2 belong to the same equivalence class iffe1 = e2 2 P+ .

Definition 3.2 (Boundedness of Attributes) One of the most important properties we use is that ofbound-
ednessof attributes. An attributeA is lower-boundedby a given set of predicatesP if there exists an atomic
predicateA > k 2 P+ for some constantk. Similarly, an attributeA is upper-boundedby P if there exists
an atomic predicateA < k 2 P+. An attribute isboundedif it is both upper-bounded and lower-bounded.
An attribute isunboundedif it is not bounded. 2

Finally, a filter is an atomic predicate whose operands are either an attribute and a constant or two
attributes of the same stream, i.e.,Si:A Op k or Si:A Op Si:B. Filters form an important class of atomic
predicates since they can be evaluated using no extra memory. An atomic predicate that is not a filter requires
“joining” two streams and thus potentially requires unbounded memory.

4 Queries with Duplicate-Preserving Projection

In this section we consider SPJ queries with a duplicate-preservingprojectionoperator. Duplicate-eliminating
queries are covered in the next section. To determine whether a queryQ can be evaluated using a bounded
amount of memory, we first rewriteQ as a union of queries, each of which belongs to a special class that
we callLocally Totally Orderedqueries, orLTO queries for short. LTO queries have a special structure that
makes it easier to determine the maximum amount of memory required to evaluate them, and every SPJ
query can be decomposed into a union of LTO queries. Queries that involve only one stream can always be
computed in bounded memory, since without joins every predicate is a filter and can be computed one tuple
at a time.

Definition 4.1 (Locally Totally Ordered (LTO)) A queryQ(P) is Locally Totally Orderedif for every
S 2 S(Q), E(S) is totally ordered byP . 2

Theorem 4.1 LetQ = _�L(�P (S1 � S2 � � � � � Sn)). Q can be rewritten asQ1 [Q2 [� � � [Qm, where
eachQi is an LTO query and the unions are duplicate-preserving.

Proof: For eachSi, let TO(E(Si)) = fT 1
i ; T

2
i ; : : : ; T

mi
i g. That is, eachT ji is a local total ordering—one

possible total ordering of the attributes ofSi together with the query constants. We consider an exhaustive
union ofm1 �m2 � � � � �mn queries that combines local total orderings of all streams in the query in all
possible ways:

6

Q(P [T 1
1 [T

1
2 [� � � [T 1

n) [Q(P [T 2
1 [T

1
2 [� � � [T 1

n) [� � � [

Q(P [T 1
1 [T

2
2 [� � � [T 1

n) [Q(P [T 2
1 [T

2
2 [� � � [T 1

n) [� � � [

� � � (1)

� � � [Q(P [Tm1
1 [Tm2

2 [� � � [Tmnn)

Each branch of the union is an LTO query. Furthermore, it can be shown that there is a one-to-one corre-
spondence between the tuples in the answer ofQ and the tuples in the answer of the union of LTO queries
in Query (1). 2

Definition 4.2 (MaxRef and MinRef) Consider a queryQ(P) and a streamSi 2 S(Q). MaxRef (Si) is
the set of all unbounded attributesA of Si (Definition 3.2) that participate in an inequality join of the form
Sj :B < Si:A, i 6= j, whereSj :B < Si:A is not redundant (Definition 3.1).MinRef (Si) is similarly defined
as the set of all unbounded attributesA of Si that participate in an inequality join of the formSi:A < Sj :B,
i 6= j, that is not redundant. 2

Theorem 4.2 LetQ = _�L(�P (S1 � S2 � � � � � Sn)) be an LTO query whereP is satisfiable andn > 1.
Q is bounded memory computable (Definition 2.1) iff:

C1: Every attribute in the project listL is bounded.

C2: For every equality join predicateSi:A = Sj :B wherei 6= j, Si:A andSj :B are both bounded.

C3: jMaxRef (Si)j = jMinRef (Si)j = 0 for i = 1; : : : ; n.

Proof: First consider the “if” portion of the proof: If conditions C1, C2, and C3 are satisfied thenQ can be
evaluated with bounded memory. We createsynopsesof then data streams as follows. For each streamSi,
partition the tuples ofSi that satisfy the total order condition onSi into distinct buckets based on the values
of the bounded attributes. Tuples that agree on the values of all bounded attributes are placed in the same
bucket; tuples that differ on at least one bounded attribute are placed in different buckets. For each bucket,
store the values for the bounded attributes (which are common across all tuples in the bucket) and a count of
the total number of tuples falling into that bucket. By the definition of bounded attributes and our discrete
domain assumption, the total size of these synopses is bounded by a constant.

These synopses are sufficient to evaluateQ for all input streams and presentations. Attributes that do not
occur in the project list or join conditions can be ignored. (All local selection conditions must be implied
by the total order, sinceP is satisfiable, so any tuple satisfying the total order necessarily satisfies all filters
that are part of the selection predicate.) Conditions C1 and C2 guarantee that all attributes involved in the
projection or equijoins are bounded, and each synopsis maintains full information about the values of all
bounded attributes for every tuple, so projections and equijoins can be handled properly. By Definition 4.2
of MaxRefandMinRef, condition C3 amounts to an assertion that foreach atomic inequality join predicate
Si:A < Sj :B, i 6= j, either both attributes appearing in the predicate are bounded, or else the total orders
onSi andSj imply Si:A < c < Sj :B wherec is some constant appearing in the query. (If no such constant
exists, then it can be shown thatMinRef (Si) cannot be zero.) In the former case, the synopses maintain full
information about the attribute values, and in the latter case, the actual attribute values are not needed, since
all tuples fromSi that satisfy the total order onSi join with all tuples fromSj that satisfy the total order
onSj (at least as far as this particular join predicate is concerned). Thus no relevant information is lost by
consolidating tuples into buckets.

7

Now consider the “only if” portion of the proof: If one of the conditions C1, C2, or C3 does not hold,
thenQ cannot always be evaluated in bounded memory. For each condition we show that if the condition is
violated, then for any query evaluation algorithmA and any memory boundM , one can construct instances
and a presentation of the input streams for whichA requires more thanM memory to correctly evaluateQ.
The following example illustrates the technique. The complete “only if” proof is provided in Appendix A.

Consider queryQ: _�A(�B<D ^ A>10 ^ A<20 ^ B>20 ^ C<10 ^ D>20 ^ E<10(S�T)). Q is one of the
LTO queries for example queryQ4 with duplicate-preservingprojection:_�A(�B<D ^ A>10 ^ A<20(S�T)).
S:B 2 MinRef (S), so condition C3 is violated inQ and we assert thatQ cannot be computed in bounded
memory. For the sake of a contradiction suppose there exists an algorithmA that can always evaluateQwith
fewer than a constantM units of memory. Define two sets ofN tuples,s = f(15; 21; 5); (15; 22; 5); : : : ;
(15; 20+N; 5)g andt = f(22; 5); (23; 5); : : : ; (21 + N; 5)g. Consider a class of inputs where the instance
of streamS consists of a set of(A;B; C) tuples chosen froms and the instance of streamT consists of a
single(D;E) tuple chosen fromt, and suppose that all theS tuples are presented to algorithmA before the
T tuple is presented. (The order in which theS tuples are presented does not matter.) After receiving theS

tuples but before receiving theT tuple, algorithmA will be in some state. SinceA has fewer thanM units
of memory, the number of distinct states thatA can be in is limited. However, since there are2N subsets of
s, for some sufficiently largeN there must be two distinct subsets ofs that leaveA in the same state. Lets0

ands00 be two such subsets, and let(15; k; 5) be the tuple with the smallest value ofk that is present in one
of s0 or s00 but not in the other. Assume without loss of generality that(15; k; 5) 2 s0. WhenT consists of
the tuple(k + 1; 5), the correct answer toQ depends on whetherS consists ofs0 or s00: the count of tuple
(15) in the answer fors0 is one more than that fors00. Since algorithmA is unable to distinguish betweens0

ands00, it will give the same answer in both cases and one answer will be incorrect. 2

Lemma 4.1 If a queryQ(P) is computable in bounded memory andF is a filter predicate, thenQ(P [fFg)
also is computable in bounded memory.

Proof: Straightforward. 2

Theorem 4.3 Let Q = _�L(�P (S1 � S2 � : : :� Sn)). From Theorem 4.1,Q is equivalent to the union
of LTO queries in (1).Q is computable in bounded memory iff every LTO query in (1) is computable in
bounded memory.

Proof: Let Q be computable in bounded memory. Observe that eachT kii in Equation (1) is a filter. Using
Lemma 4.1, each LTO queryQ(P [T k11 [� � � [T knn) in (1) is computable in bounded memory. Now let
n > 1 and suppose each LTO queryQ(P [T k11 [� � � [T knn) in (1) is computable in bounded memory.
Since the size of the answer to each LTO query is bounded (by condition C1 of Theorem 4.2), we can
compute their union, and henceQ, in bounded memory. Finally, ifn = 1 thenP is a filter and bothQ and
the LTO queries in (1) are computable in bounded memory. 2

As an illustration of Theorem 4.3, consider example queryQ5 for duplicate-preserving projection:
_�A(�B<D ^ B<120 ^ D>20 ^ A>10 ^ A<20(S�T)). LikeQ4, queryQ5 is an inequality join of streamsS and
T , butQ5 adds selection predicates onB andD makingB upper-bounded andD lower-bounded. The pres-
ence of these additional predicates reducesjMinRef (S)j, jMaxRef (S)j, jMinRef (T)j, andjMaxRef (T)j to
zero for each LTO query forQ5. All LTO queries forQ5 satisfy conditions C1–C3 in Theorem 4.2, therefore
Q5 is computable in bounded memory for duplicate-preservingprojection. We leave it to the reader to verify
that applying Theorem 4.3 to all of the example queries in Table 1 produces the results in the column for_�.

8

5 Queries with Duplicate-Eliminating Projection

Our results for SPJ queries with duplicate-eliminating projection follow a similar path to the results for
duplicate-preserving projection.

Theorem 5.1 LetQ = �L(�P (S1 � S2 � � � � � Sn)). Q can be rewritten asQ1 [Q2 [� � � [Qm, where
eachQi is an LTO query and the unions are duplicate-eliminating.

Proof: Same as the proof of Theorem 4.1. 2

Theorem 5.2 LetQ = �L(�P (S1�S2�� � ��Sn)) be an LTO query whereP is satisfiable.Q is bounded
memory computable iff:

C1: Every attribute in the project listL is bounded.

C2: For every equality join predicateSi:A = Sj :B, i 6= j, Si:A andSj :B are both bounded.

C3: jMaxRef (Si)jeq + jMinRef (Si)jeq � 1 for i = 1; : : : ; n.

In condition C3,jEjeq denotes the number ofP -induced equivalence classes in the element setE.

Proof: The proof is similar to the duplicate-preserving case. Here we explain how the “if” argument differs
from the one for the duplicate-preserving case. We also give an example to provide some intuition for the
“only if” part of the proof; the complete “only if” proof is provided in Appendix A.

As in Theorem 4.2, we keep a synopsis for each stream with tuples assigned to buckets based on the
values of their bounded attributes. For duplicate-preserving projection, the synopsis stored the values of the
bounded attributes for each bucket and also the count of tuples in the bucket. For queries with duplicate-
eliminating projection, it is not necessary to remember the count of tuples in the bucket—it suffices to know
only whether the bucket is empty or whether there has been at least one tuple assigned to the bucket. There
is, however, one additional piece of information that we must store for each bucket in streamSi' s synopsis
whenMinRef (Si) or MaxRef (Si) is nonempty. IfMinRef (Si) is nonempty, we store the the minimum
value for any attribute inMinRef (Si) among tuples that have been assigned to that bucket. Similarly, if
MaxRef (Si) is nonempty, we store the maximum value for any attribute inMaxRef (Si) among tuples that
have been assigned to that bucket. Note that by condition C3 at most one ofMaxRef (Si) andMinRef (Si)
can be nonempty, and all attributes in the nonempty set must be from the same equivalence class.

With duplicate-eliminating projection, the number of tuples from other streams that join to a particular
tuple of a streamSi is not important; only the existence of at least one combination of joining tuples from
the other streams is important. Therefore, if there are two tuplest; t0 2 Si that agree on all attributes in
the projection listL and the set of tuples from other streams that will join witht0 is a subset of those that
will join with t, thent0 can be ignored assuming thatt is remembered. This property makes it possible to
determine whether predicates such asSi:A < Sj :B, i 6= j, ever hold for any pair of tuplest1 2 Si and
t2 2 Sj by remembering the current minimum value forSi:A and the current maximum value forSj :B at
any point in time.

We use an example to illustrate the technique of the “only if” proof. Consider queryQ:
�A(�B<D ^ C<E ^ A>10 ^ A<20 ^ B>20 ^ C<10 ^ D>20 ^ E<10(S�T)). Q is one of the LTO queries for
example queryQ8 with duplicate-eliminating projection:�A(�B<D ^ C<E ^ A>10 ^ A<20(S�T)). S:B 2
MinRef (S) andS:C 2 MinRef (S), so condition C3 is violated inQ and we assert thatQ cannot be
computed in bounded memory. Consider an input presentation that begins with a large number of tuples
from S that have(B;C) values of(c;�c) wherec 2 f21; 23; 25; : : :g. For each suchS tuple with(B;C)
equal to(c0;�c0), there exists aT tuple with(D;E)equal to(c0+1; 1�c0) that joins only with(c0;�c0), and
not with any otherS tuple. Therefore any algorithm that fails to remember all of theS tuples will produce
incorrect results for some inputs. 2

9

Theorem 5.3 Let Q = �L(�P (S1 � S2 � : : :� Sn)). From Theorem 5.1,Q is equivalent to the union
of LTO queries in (1).Q is computable in bounded memory iff every LTO query in (1) is computable in
bounded memory.

Proof: Similar to the proof of Theorem 4.3. 2

We leave it to the reader to verify that applying Theorem 5.3 to all of the example queries in Table 1
produces the results in the column for�.

6 Discussion and Future Work

To determine whether a queryQ is computable in bounded memory, we can rewriteQ into the union of LTO
queries in (1) and then use Theorem 4.2 or 5.2 to determine whether each of the LTO queries is computable
in bounded memory. This technique would obviously be very inefficient since the number of LTO queries
for Q is

Qn
i=1mi, wheremi =jTO(E(Si))j,Si 2 S(Q), andn =jS(Q)j. In Appendix B we give an efficient

algorithm for determining bounded memory computability ofQ that is polynomial injE(Q)j, where recall
E(Q) is the set of all elements relevant toQ.

Now let us consider the sizes of our synopses. Recall that our approach is to identify, for each LTO
query for queryQ, constant-sized synopses of the data streams that are sufficient to evaluate the LTO query.
This approach might turn out to be overly conservative in estimating memory requirements, as illustrated by
example queryQ6 with duplicate-eliminating projection:�A(�B>D ^ B>E ^ A=10(S�T)). In terms of the
notation defined in Section 3,jTO(E(S))j= 3 andjTO(E(T))j= 13. The query evaluation algorithm that
follows from Theorem 5.2 uses one memory unit for each element ofTO(E(S)) andTO(E(T)), for a total
of 16 memory units. However,Q6 also can be evaluated by maintaining the maximum value ofB over all
tuples in streamS with A = 10, and maintaining the minimum value ofmax(t:D; t:E) over all tuplest in
streamT . This scheme needs only2 memory units.

The above example shows that our algorithm for building synopses does not build the smallest possible
synopses for each query. In fact, our memory characterization is quite conservative, in part because it
dramatically simplified the proofs of Theorems 4.3 and 5.3. We have designed an alternate algorithm that
builds smaller synopses, including the 2-memory-unit synopses for queryQ6. Furthermore, a practical
implementation can build synopses dynamically during query execution that may not approach the size of
the worst-case bound. However, an algorithm for statically determining the minimum-size synopses for a
queryQ in all cases is a topic of future work.

Our results in Sections 4 and 5 were based on the assumption that all attributes have discrete, ordered
domains. We can relax this assumption as follows. Definesat(A; P) for an attributeA and a set of predicates
P as the set of all possible values that can be assigned toA that makeP true for some assignment of values
to the rest of the attributes inP . Boundedness of an attributeA (Definition 3.2) can now be generalized:A
is bounded by the set of predicatesP iff jsat(A; P)j is a constant. This definition of boundedness extends
Theorems 4.2 and 5.2 to attributes with arbitrary domains. (We assume that an atomic predicate of the form
A > B or A < B is used only if the domain of attributesA andB is ordered.) In addition to allowing
attributes from arbitrary domains, it is useful to handle a richer set of predicates (e.g., atomic predicates
using domain-specific operators, disjunctions of atomic predicates). Expanding the class of predicates is an
important avenue of future work. We also plan to extend the expressiveness of the query language, e.g., by
including grouping, aggregation, and subqueries.

Our results in Sections 4 and 5 also assume that the data inputs to a query consist solely of continuous
data streams. In the case of queries over streams, the query evaluation algorithm has no control over the
instances and presentation (including interleaving) of the input streams. For queries over relations stored

10

in conventional databases, the instances of the relations are finite and may be partially known to the query
processor (e.g., in the form of statistics on the attributes). Also, in a conventional database system, the query
evaluation algorithm usually has some control over the presentation of the relations. Nevertheless, there are
cases in “traditional” settings where it is desirable to perform query processing using only one pass over
each relation. In such cases, our results can be used to generate evaluation plans that use a constant amount
of additional memory regardless of relation sizes.

7 Acknowledgements

Thanks to Rajeev Motwani, Jeff Ullman, and the entire STREAM group at Stanford for many useful discus-
sions.

References

[AMS96] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency moments.
In Proc. of the 1996 Annual ACM Symp. on Theory of Computing, pages 20–29, May 1996.

[BCL89] J. A. Blakeley, N. Coburn, and P. A. Larson. Updating derived relations: Detecting irrelevant and
autonomously computable updates.ACM Trans. on Database Systems, 14(3):369–400, 1989.

[BDM02] B. Babcock, M. Datar, and R. Motwani. Sampling from a moving window over streaming data. InProc.
of the 2002 Annual ACM-SIAM Symp. on Discrete Algorithms, January 2002.

[BW01] S. Babu and J. Widom. Continuousqueries over data streams.SIGMOD Record, 30(3):109–120,Septem-
ber 2001.

[CDTW00] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous query system for internet
databases. InProc. of the 2000 ACM SIGMOD Intl. Conf. on Management of Data, pages 379–390, May
2000.

[DG00] N. G. Duffield and M. Grossglauser. Trajectory sampling for direct traffic observation. InProc. of the
2000 ACM SIGCOMM, pages 271–284, September 2000.

[DGIM02] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over sliding windows. In
Proc. of the 2002 Annual ACM-SIAM Symp. on Discrete Algorithms, January 2002.

[FKSV99] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. An approximate L1-difference algorithm
for massive data streams. InProc. of the 1999 Annual Symp. on Foundations of Computer Science, pages
501–511, October 1999.

[GJM96] A. Gupta, H. V. Jagadish, and I. S. Mumick. Data integration using self-maintainable views. InProc. of
the 1996 Intl. Conf. on Extending Database Technology, pages 140–144, March 1996.

[GKMS01] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surfing wavelets on streams: one-pass
summaries for approximate aggregate queries. InProc. of the 2001 Intl. Conf. on Very Large Data
Bases, pages 79–88, September 2001.

[GKS01a] J. Gehrke, F. Korn, and D. Srivastava. On computing correlated aggregates over continual data streams.
In Proc. of the 2001 ACM SIGMOD Intl. Conf. on Management of Data, pages 13–24, May 2001.

[GKS01b] S. Guha, N. Koudas, and K. Shim. Data-streams and histograms. InProc. of the 2001 Annual ACM
Symp. on Theory of Computing, pages 471–475, July 2001.

[GM95] A. Gupta and I. S. Mumick. Maintenance of materialized views: Problems, techniques, and applications.
IEEE Data Engineering Bulletin, 18(2):3–18, June 1995.

[GMLY98] H. Garcia-Molina, W. J. Labio, and J. Yang. Expiring data in a warehouse. InProc. of the 1998 Intl.
Conf. on Very Large Data Bases, pages 500–511, August 1998.

11

[HF+00] J. M. Hellerstein, M. J. Franklin, et al. Adaptive query processing: Technology in evolution.IEEE Data
Engineering Bulletin, 23(2):7–18, June 2000.

[HRR98] M. R. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams. Technical Report
TR-1998-011, Compaq Systems Research Center, Palo Alto, California, May 1998.

[IFF+99] Z. G. Ives, D. Florescu, M. Friedman, A. Y. Levy, and D. S. Weld. An adaptive query execution system
for data integration. InProc. of the 1999 ACM SIGMOD Intl. Conf. on Management of Data, pages
299–310, June 1999.

[Ind00] P. Indyk. Stable distributions, pseudorandom generators, embeddings and data stream computation. In
Proc. of the 2000 Annual Symp. on Foundations of Computer Science, pages 189–197, November 2000.

[JMS95] H. V. Jagadish, I. S. Mumick, and A. Silberschatz. View maintenance issues for the Chronicle data
model. InProc. of the 1995 ACM Symp. on Principles of Database Systems, pages 113–124, May 1995.

[NACP01] B. Nguyen, S. Abiteboul, G. Cobena, and M. Preda. Monitoring XML data on the web. InProc. of the
2001 ACM SIGMOD Intl. Conf. on Management of Data, pages 437–448, May 2001.

[QGMW96] D. Quass, A. Gupta, I. S. Mumick, and J. Widom. Making views self-maintainable for data warehous-
ing. In Proc. of the 1996 Intl. Conf. on Parallel and Distributed Information Systems, pages 158–169,
December1996.

[SPAM91] U. Schreier, H. Pirahesh, R. Agrawal, and C. Mohan. Alert: An architecture for transforming a passive
DBMS into an active DBMS. InProc. of the 1991 Intl. Conf. on Very Large Data Bases, pages 469–478,
September 1991.

[STR] Stanford Stream Data Management (STREAM) Project. http://www-db.stanford.edu/stream.

[TGNO92] D. B. Terry, D. Goldberg, D. Nichols, and B. M. Oki. Continuous queries over append-only databases.
In Proc. of the 1992 ACM SIGMOD Intl. Conf. on Management of Data, pages 321–330, June 1992.

[Tra] Traderbot home page. http://www.traderbot.com.

[UFA98] T. Urhan, M. J. Franklin, and L. Amsaleg. Cost based query scrambling for initial delays. InProc. of
the 1998 ACM SIGMOD Intl. Conf. on Management of Data, pages 130–141, June 1998.

[Ull89] J.D. Ullman.Principles of Database and Knowledge-Base Systems, Volumes I and II. Computer Science
Press, Rockville, Maryland, 1989.

A Proof of Theorems 4.2 and 5.2

In this section we prove Theorems 4.2 and 5.2, which identify the duplicate-preserving and duplicate-
eliminating LTO queries, respectively, that can be computed in bounded memory. The “if” proofs of the
theorems are given in Sections 4 and 5. We formalize the only-if proofs here. The general technique is as
follows: For any LTO query that does not satisfy one (or more) of the conditions C1–C3, produce a class of
input instances such that any evaluation plan using bounded memory provably fails to produce the correct
answer on at least one instance of the class. In the rest of this section, a query refers to an LTO query.

Note that only condition C3 and the special case ofn = 1 (queries involving only a single stream)
differ between Theorems 4.2 and 5.2. Thus, we combine the only-if proofs for the two theorems, distin-
guishing the different conditions C3, then > 1 in Theorem 4.2, and the different projection operators, only
as necessary. Lemma A.2 proves that any query that violates condition C1, whether duplicate-preserving
or duplicate-eliminating, is not computable in bounded memory. Lemma A.4 proves the same for condi-
tion C2. Lemma A.5 proves that any duplicate-preserving query that violates condition C3 in Theorem 4.2
is not computable in bounded memory. Lemma A.6 proves the same for duplicate-eliminating queries and
Theorem 5.2. Lemmas A.1 and A.3 are used in the proofs of other lemmas.

12

We usetX , whereX is a set of attributes, to denote a tuplet with schemaX . ThustA(S) denotes a tuple
of streamS. We uset[Y] to denote the projection of tuplet onto the attributes ofY . For a streamS, we use
tS andt[S] as shorthand fortA(S) andt[A(S)] respectively. IfX andY are disjoint sets of attributes and
tX1 andtY2 are tuples,htX1 ; t

Y
2 i denotes the tuple overX [Y that uses the mapping oft1 for attributes inX

and that oft2 for attributes inY . In order to construct input instances for a queryQ(P) in our proof, we
often need tuples of the streams that occur inQ that join with each other, i.e., that satisfy all the conditions
of the selection predicateP . For convenience, we do this by constructing a tupletA(Q) that assigns a value
to every attribute that is relevant to the query. We call a tupletA(Q) valid if it satisfies the predicateP .

For a queryQ(P), let EQ(Q) = fE1; E2; : : : ; Emg denote the equivalence classes of the elements ofQ

induced byP (recall the definition of element equivalenceclasses from Section 3). The inequality predicates
induce a partial ordering on the equivalence classes—E i < Ej if there exist elementsei 2 E i andej 2 Ej
such thatei < ej is in P+. Without loss of generality assume that the equivalence classes are numbered
in topological sortorder, i.e., ifE i < Ej theni < j. A valid tuple tA(Q) assigns the same value to all
the attributes of an equivalence class. Thus, when discussing valid tuples, we may use “attribute” and
“equivalence class” interchangeably.

We assumejC(Q)j > 0 for any queryQ considered in this section. The proofs can be extended in a
straightforward way forjC(Q)j = 0.

Lemma A.1 Let m = jEQ(Q)j be the number of equivalence classes of the elements of an LTO queryQ.
LetX � EQ(Q) be some set of unbounded equivalence classes ofQ. Let tX be a tuple that assigns values
to the classes inX . Then we can form a valid tuple that assigns a value to all the equivalence classes EQ(Q)

of the formhtX ; t0(EQ(Q)�X)i if:

1. For anyE i; Ej (i > j) 2 X , (t[E i]� t[Ej]) � m.

2. For any lower-boundedE i 2 X (Definition 3.2) andk 2 C(Q), (t[E i]� k) � m.

3. For any upper-boundedE i 2 X andk 2 C(Q), (k � t[E i]) � m.

(Note thatt[E i] andt[Ej] are individual numeric values.)

Proof Intuitively the lemma asserts that if values of some unbounded equivalence classes, those inX , are
fixed by tuplet, then we can always generate values for the other equivalence classes inQ so as to satisfy
the selection predicateP , provided the values assigned to classes inX are sufficiently “far apart” from each
other and from the constants in the query. The lemma is proved formally by constructing a mappingt0 for
all the equivalence classes in EQ(Q)�X .

1. Since the set of predicatesP is satisfiable, there exists some valid tuple�. Let the tuplet0 use the
mapping of� for all the bounded equivalence classes, i.e., ifE i is bounded,t0[E i] = �[E i].

2. For any lower-bounded equivalence classE i 2 (EQ(Q) � X), let jmi = maxfj j j < i and Ej 2
(X [C(Q))g. If a constantk is in E jmi , then definet0[E i] = k + (i � jmi). Otherwise, define
t0[Ei] = t[Ejmi] + (i� jmi).

3. For any upper-bounded equivalence classE i 2 (EQ(Q) � X), let jmi = minfj j j > i and Ej 2
(X [C(Q))g. If a constantk is in E jmi , then definet0[E i] = k � (i � jmi). Otherwise, define
t0[Ei] = t[Ejmi]� (i� jmi).

It is straightforward to prove that the tupleht; t0i is valid. 2

Lemma A.2 LetQ be an LTO query andL its list of projected attributes. Let attributeA 2 L be unbounded.
ThenQ is not computable in bounded memory if:

13

1. jS(Q)j> 1, or

2. Q has a duplicate-eliminating projection.

Proof Let A belong to streamSa. Let Ea be the equivalence class ofA. SinceA is unbounded, for any
integerN we can construct valid tuplest1; : : : ; tN defined onA(Q) such that eachti has a different value
for attributeA, i.e., ti[A] 6= tj [A] if i 6= j. We construct2N presentations,P1; : : : ;P2N , where each
presentation consists (in any order) of a different subset of the set of tuplesft1[Sa]; : : : ; tN [Sa]g of stream
Sa. We claim that any correct evaluation algorithm for queryQ must be in a different memory state after
seeing each of the above presentations. Consider our two cases.

Case 1(jS(Q)j> 1). In this case the query involves more than one stream. Since none of the presentations
Pi contain tuples from streams other thanSa, the answer at the end of each presentation is empty. Consider
any two presentationsPi andPj (i 6= j). Without loss of generality, assume there exists a tupletk [Sa] that
occurs inPi but not inPj . Consider the set of tuples�P = ftk[Sx] : (x 6= a; Sx 2 S(Q))g. If the set of
tuples�P appears in the input afterPi, the tupletk [L] is in the answer. The tupletk[L] is not in the answer
if �P occurs afterPj . Thus any evaluation algorithm for queryQ that has the same memory state after
seeing eitherP i orPj will produce the wrong answer for at least one of two inputs:Pi followed by�P, or
Pj followed by�P.

Case 2(Q has duplicate-eliminating projection). AssumejS(Q)j= 1; otherwise Case 1 holds. The answer
after seeingPi is the projection of the tuples ofPi onto the attributes inL. Consider any two distinct
presentationsP i andPj and (without loss of generality) a tupletk that occurs inPi but notPj . If tuple
tk appears (again) afterP i, there are no new tuples produced in the answer becausetk is a duplicate. If,
however,tk appears afterPj , the tupletk [L] must be produced in the answer whentk appears. Thus any
evaluation algorithm forQ that has the same memory state after seeing eitherPi or Pj will produce the
wrong answer for at least one of the two input scenarios above.

Any correct evaluation algorithm forQ needs at least thelog 2N = �(N) bits of memory that are required
to encode different states for each ofP1; : : : ;P2N . ThereforeQ is not computable in bounded memory.2

Lemma A.3 LetQ be an LTO query withjS(Q)j> 1. Q is not computable in bounded memory if for any
value ofN there exists a streamS 2 S(Q) and valid tuplest1; t2; : : : ; tN defined onA(Q) such that:

1. The projections of the tuples onS are all distinct, i.e.,ti[S] 6= tj [S] if i 6= j, and

2. hti[S]; tj[A(Q)�A(S)]i is not valid if i 6= j.

Proof Consider any value ofN . We construct2N presentations,P1; : : : ;P2N , where each presentation
consists (in any order) of a different subset of the set of tuplesft1[S]; : : : ; tN [S]g of streamS. We claim
that any correct evaluation algorithm forQ must be in a different memory state after seeing each of the above
presentations. Since none of the presentationsP i contains tuples from streams other thanS, the answer at
the end of each presentation is empty. Consider any two presentationsPi andPj (i 6= j). Without loss
of generality, assume there exists a tupletk [S] that occurs inPi but not inPj . Consider the set of tuples
�P = ftk[S0] j (S0 6= S; S0 2 S(Q))g. If the set of tuples�P appears in the input afterPi, a new answer
tupletk [L] is generated. If�P appears in the input afterPj , no new answer tuples are generated because
of the second condition in the lemma. Thus any evaluation algorithm forQ that has the same memory state
after seeingPi andPj will produce the wrong answer for at least one of two inputs:Pi followed by�P ,
orPj followed by�P. Thus any correct evaluation algorithm forQ needs at leastlog 2N = �(N) bits of
memory, soQ is not computable in bounded memory. 2

14

Lemma A.4 LetQ(P) be an LTO query. Let there be an equality join condition of the formSi:A = Sj :B

in P such that both attributesA andB are unbounded. ThenQ(P) is not computable in bounded memory.

Proof Let E denote the (common) unbounded equivalence class ofA andB. For anyN we can construct
valid tuplest1; : : : ; tN defined onA(Q) such that each tuple assigns a different value to the equivalence
classE , i.e., tk[E] 6= tl[E] if k 6= l. Observe that these tuples satisfy the conditions of Lemma A.3 by using
Si of this lemma as theS in Lemma A.3. The projectionstk [Si] of the tuples ontoSi are all distinct since
they differ at least on the attributeA (equivalence classE). The tuplehtk [Si]; tl[A(Q) � A(Si)]i (k 6= l)
is not valid sinceSi:A = Sj :B is not satisfied. Thus, by Lemma A.3,Q is not computable in bounded
memory. 2

Lemma A.5 LetQ(P) be a duplicate-preservingLTO query such thatjMaxRef (S)j 6= 0 or jMinRef (S)j 6=
0 for someS 2 S(Q). ThenQ(P) is not computable in bounded memory.

Proof We prove the casejMaxRef (Sm)j 6= 0 for someSm 2 S(Q). The proof forjMinRef (Sm)j 6= 0 is
symmetric. By Definition 4.2 ofMaxRef there exists a nonredundant inequality joinSn:B < Sm:A (n 6=
m). Let Ea andEb denote the equivalence classes induced byP for A andB respectively. Note that these
two equivalence classes are distinct sinceP is satisfiable. Assume that neitherEa norEb is upper-bounded.
(There is no loss of generality because the case when neither is lower-bounded is symmetric and the case
where one is lower-bounded and the other upper-bounded is disallowed by the definition ofMaxRef .) For
notational convenience, let<m denote “less than by at leastm”. Let kmax represent the maximum constant
occurring inQ, letm =jEQ(Q)j, and letX = fEa; Ebg. Given any integerN define tuplestX1 ; : : : ; t

X
N with

tXi havingEa = kmax + 2im andEb = kmax + (2i + 1)m. From these tuples defined onX we can use
Lemma A.1 to construct valid tuplest1; : : : ; tn defined onA(Q) such that:

kmax <m t1[Eb] <m t1[Ea] <m t2[Eb] <m t2[Ea] <m � � � <m tN [Eb] <m tN [Ea]

We construct2N presentations,P1; : : : ;P2N , where each presentation consists (in any order) of a different
subset of the set of tuplesft1[Sm]; : : : ; tN [Sm]g of streamSm. We claim that any evaluation algorithm for
the queryQ has to be in a different memory state after seeing each of the above presentations. Since none of
the presentationsPi contain tuples from streams other thanSm, the answer at the end of each presentation
is empty. Consider any two presentationsPi andPj (i 6= j). Let tk[Sm] be the tuple with largest value
of k among all tuples appearing in one ofPi;Pj , but not in the other. Without loss of generality, assume
tk [Sm] appears inP i but not inPj . Note that all the tuplestl[Sm] (l > k) occur either in bothP i andPj

or in neither. Now consider the set of tuples�P = ftk[Sx] : Sx 6= Sm; Sx 2 S(Q)g. Consider two input
cases — the occurrence of�P afterPi and the occurrence of�P afterPj . The answer in the former case
is equal to the answer in the latter case with an additional tupletk [L]. By definition tuples in�P join with
tk [Sm] to producetk[L] in the answer. Also, tuples in�P do not join with any tupletl[Sm] (l < k) since
this would cause the predicateB < A to be violated. It is possible that the tuples in�P join with some
tuplestl[Sm] (l > k), but by our choice ofk, any such tupletl[Sm] that occurs in eitherP i or Pj also
occurs in the other and thus will lead to the same answer in both the cases. Consequently any evaluation
algorithm forQ that has the same memory state after seeingPi andPj will produce the wrong answer for
at least one of the two inputs described above. Therefore any correct evaluation algorithm forQ needs at
leastlog 2N = �(N) bits of memory, soQ is not computable in bounded memory. 2

Lemma A.6 LetQ(P) be a duplicate-eliminating LTO query such thatjMaxRef (S)jeq+ jMinRef (S)jeq >
1 for someS 2 S(Q). ThenQ(P) is not computable in bounded memory.

Proof We assume that there are no equality joins between unbounded attributes of different streams, or else
Lemma A.4 applies. The proof is split into three cases. In each case we show that given any numberN we

15

can generate tuplest1; : : : ; tN that satisfy the conditions of Lemma A.3, proving thatQ is not computable
in bounded memory. We only generate values for some of the attributes for each tuple and use Lemma A.1
to “fill in” the values of the other tuples. As in Lemma A.5, let<m denote “less by at leastm”.

Case 1(jMinRef (Sm)jeq > 1 for some Sm 2 S(Q)). In this case there exist nonredundant atomic predi-
catesp1 = (Sm:A < Sn:C) andp2 = (Sm:B < So:D); m 6= n;m 6= o in P . By Definition 4.2 ofMinRef,
attributesA andB are unbounded and belong to different equivalence classes. Since the attributes of any
stream in an LTO query are totally ordered we can assume without loss of generality thatA < B 2 P+.

We claim that all four attributesA;B; C;D are unbounded and belong to different equivalence classes.
As noted aboveA andB are unbounded and belong to different equivalence classes. AttributesC and
D must be unbounded since otherwisep1 andp2 would be redundant, which contradicts the definition of
MinRef. Moreover, since we assume that there are no equality joins between unbounded attributes belonging
to different streams, all the attributes in an unbounded equivalence class belong to the same stream. Thus
neitherC norD can be in the same equivalence class as eitherA or B. Finally,C andD cannot be in the
same equivalence class as each other since otherwise the predicatesA < B andB < D would imply that
p1 is redundant. This proves the above claim.

Let Ea; Eb; Ec; Ed be the equivalence classes ofA;B; C;D respectively. Recall that we use the con-
vention that the subscriptsi of equivalence classesE i are in topological sort order, meaning thati < j if
E i < Ej . The predicatesA < C;A < B;B < D 2 P+ imply thata < c anda < b < d. It cannot be the
case thatEb < Ec since that would imply thatA < C is redundant. Therefore eitherEc < Eb or Ec andEb
are unrelated according to “<”. In either case, we can construct a valid topological sort ordering satisfying
c < b. Thus without loss of generality we can assumea < c < b < d.

We consider three subcases of Case 1 depending on whether the attributesA;B; C;D are lower-bounded
or upper-bounded. Letkmin andkmax denote the smallest and largest constants occurring inQ, respectively.

Case 1a(None ofA;B ;C ;D are lower-bounded). Given anyN , select values forti[Ea], ti[Eb], ti[Ec], and
ti[Ed], for i = 1; : : : ; N , such that:

t1[Ea] <m t1[Ec] < t2[Ea] <m t2[Ec] < : : : < tN [Ea] <m tN [Ec]

<m tN [Eb] <m tN [Ed] < : : : < t1[Eb] <m t1[Ed]

<m kmin

Using Lemma A.1, we can construct tuplest1; : : : ; tN defined onA(Q) based on the above assignment
of values to equivalence classes in the setX = fEa; Eb; Ec; Edg. The projectionsti[Sm] onto the stream
Sm are all distinct sinceti[A] 6= tj [A], if i 6= j. The tuplehti[Sm]; tj[A(Q) � A(Sm)]i is not valid since
ti[Ed] < tj [Eb] if i < j (violating the predicateB < D) andti[Ea] > tj [Ec] if i > j (violating the predicate
A < C). Thus it follows from Lemma A.3 that queryQ is not computable in bounded memory.

Case 1b(All of A;B ;C ;D are lower-bounded). In this case, the tuplest1; : : : ; tN are constructed such that:

kmax <m t1[Ea] <m t1[Ec] < t2[Ea] <m t2[Ec] < : : : < tN [Ea] <m tN [Ec]

<m tN [Eb] <mtN [Ed] < : : : < t1[Eb] <m t1[Ed]

The remainder of the argument proceeds similarly to Case 1a.

Case 1c(A;C are upper-bounded andB;D are lower-bounded). For this case,t1; : : : ; tN satisfy:

t1[Ea] <m t1[Ec] < t2[Ea] <m t2[Ec] < : : : < tN [Ea] <m tN [Ec]

<m kmin

<m kmax

<m tN [Eb] <m tN [Ed] < : : : < t1[Eb] <m t1[Ed]

The remainder of the argument again parallels Case 1a. This completes the proof of Case 1.

16

Case 2(jMaxRef (Sm)jeq > 1). Symmetric to the proof of Case 1.
Case 3(jMaxRef (Sm)jeq = jMaxRef (Sm)jeq = 1). In this case there exist nonredundant atomic predicates
p1 = (Sm:A > Sn:C) andp2 = (Sm:B < So:D); m 6= n;m 6= o in P . We consider two subcases. In each
subcase we specify only the relationships that need to hold between the values chosen for the projections of
tuplest1; : : : ; tn onto the setX = fEa; Eb; Ec; Edg. The remaining details are analogous to the proof for
Case1a. Note thatC andD can be the same attribute.
Case 3a(Either none ofA; B; C;D is lower-bounded or none is upper-bounded). AssumeA;B; C;D are all
lower-bounded. The same proof applies when some attributes are neither upper-bounded nor lower-bounded,
and the proof when all the attributes are upper-bounded is symmetric. We generate tuplest1; : : : ; tN with
the following property: for anyti; tj (i < j), the values assigned byti to attributesA;B; C;D are all
smaller than the values assigned bytj toA;B; C;D, i.e.,ti[X] < tj [Y], for X; Y 2 fA;B; C;Dg. Further,
eachti assigns values to attributesA;B; C;D such that the predicatesp1 andp2 are satisfied. For example,
if A;B; C;D belong to distinct equivalence classesEa; Eb; Ec; Ed anda > c > b > d, then the tuples
generated satisfy:

kmax <m t1[Ed] <m t1[Eb] <m t1[Ec] <m t1[Ea]

< t2[Ed] <m t2[Eb] <m t2[Ec] <m t2[Ea]

< : : :

< tN [Ed] <m tN [Eb] <m tN [Ec] <m tN [Ea]

Case 3b(Some amongA;B ;C ;D are lower-bounded and some upper-bounded). EitherA andC (respec-
tivelyB andD) are both lower-bounded or are both upper-bounded, otherwise the predicatep1 (respectively
p2) is redundant. Let us assume thatA;C are upper-bounded andB;D lower-bounded. LetEa; Eb; Ec; Ed
be the equivalence classes ofA;B; C;D respectively. None of these equivalence classes can be the same or
P would be unsatisfiable. For this case the tuplest1; : : : ; tN satisfy:

t1[Ec] <m t1[Ea] < t2[Ec] <m t2[Ea] < : : : < tN [Ec] <m tN [Ea]

<m kmin

� kmax

<m t1[Eb] <m t1[Ed] < t2[Eb] <m t2[Ed] < : : : < tN [Eb] <m tN [Ed]

The case whenA;C are lower-bounded andB;D upper-bounded is symmetric. 2

B Efficient Algorithm for Checking Bounded-Memory Computability

A naive algorithm for determining whether a queryQ(P) is computable in bounded memory enumerates
all the LTO queries ofQ and checks if each one is computable in bounded memory. This approach can be
very expensive since there are an exponential number of LTO queries. We propose a simple polynomial
algorithm that checks if a queryQ is computable in bounded memory without explicitly checkingeach LTO
query ofQ.

The outline of the algorithm is shown below. The algorithm handles both duplicate-preserving and
duplicate-eliminating SPJ queries.

Algorithm B.1 (Check Bounded-Memory Computability of an SPJ Query)
Input: SPJ queryQ = �L(�P (S1 � S2 � � � � � Sn))
Output: Yes, if Q is computable in bounded memory.No, otherwise.

17

1. If P is not satisfiable, or ifn = 1 andQ is a duplicate-preserving query, returnYes.

2. If some attributeA 2 L is unbounded, returnNo.

3. If there exists a predicateSi:A = Sj :B 2 P (i 6= j), and at least one attributeA orB is unbounded,
returnNo.

4. For eachX � A(Q)with jXj � 4, form a queryQ0 with an empty projection list,IND(X [fkmax; kming; P)
as the selection predicate, and joining the (at most4) streams that have at least one of their attributes
in X . If any suchQ0 is not computable in bounded memory (using Theorems 4.3 and 5.3,) returnNo.

5. ReturnYes.

3

Step 1 checks ifQ is trivially computable in bounded memory. Steps 2 and 3 check if condition C1
or C2 of Theorem 4.2 or 5.2 is violated. Step 4 checks condition C3 in Theorem 4.2 (ifQ is duplicate-
preserving) or Theorem 5.2 (ifQ is duplicate-eliminating). If none of the conditions C1–C3 are violated,Q

is computable in bounded memory andYes is returned in Step 5.
The correctness of steps 3 and 4 follows from the observation that an unbounded attribute in any LTO

query ofQ is unbounded inQ as well, and any unbounded attribute inQ is unbounded in some LTO query
of Q. Suppose some LTO queryQL of a duplicate-eliminating queryQ violates condition C3. Then there
exist two non-filter, nonredundant predicatesp1 andp2 in QL that cause violation of condition C3. LetX be
the set of (at most4) attributes that occur in eitherp1 or p2. It can be shown that queryQ0 constructed from
X in Step 4 is not computable in bounded memory. Thus our algorithm correctly returnsNo. Conversely, if
there is someQ0 that is not computable in bounded memory, it can be shown that there exists an LTO query
ofQ that violates condition C3 of Theorem 5.2. A similar argument holds for the duplicate-preserving case.

Clearly, steps 1–3 can be executed in polynomial time in the size of the input query. Each queryQ0 in
Step 4 is ofO(1) size, so we can check its LTO queries in constant time. Since there are�(jA(Q)j4) subsets
of A(Q), Step 4 takes polynomial time. Thus Algorithm B.1 is polynomial in the size of the input query.

C Queries with Self-Joins

We extend our main results to queries containing self-joins.
In a self-join query, at least one stream appears more than once in the join list. We use the notation
S(1); S(2); : : : to denote different occurrences of the same stream,S, in a query. For instance, query
�S(1):A(�S(1):A=S(2):A(S

(1) � S(2))) is a (natural) self-join of streamS with itself on attributeA. Note
that unlike two different streams, there is an implicit constraint on self-joined streams: at any point of time,
the instances ofS(j) andS(k) are the same for anyj; k.

For duplicate-preserving queries, all of our results in Section 4 (most importantly Theorems 4.2 and 5.2)
carry over to queries with self-joins. Some modifications to the “only if” part of the proof of Theorem 4.2 are
needed to accommodate self-joins; all other reasoning and proofs carry over directly. The efficient algorithm
in Appendix B also applies, so it can be used to test whether a duplicate-preserving query with self-joins is
computable in bounded memory.

Hereafter we consider duplicate-eliminating SPJ queries. Theorem 5.3 remains valid in the presence
of self-joins. However, Theorem 5.2 does not hold for self-join LTO queries, as the following example
illustrates.

18

Example C.1 Consider the following LTO queryQ:

Q = �S(1):A(�S(1):A=10 ^ S(1):A=S(2):A ^ S(1):B=S(2):B ^ S(1):B>10(S
(1)�S(2)))

AttributesS(1):B andS(2):B are unbounded, which violates condition C2 of Theorem 5.2. However, query
Q is equivalent to the queryQ0 = �A(�A=10 ^ B>10(S)), which is clearly computable in bounded memory.

2

Conditions C1–C3 in Theorem 5.2 are still sufficient to ensure that an LTO query is computable in
bounded memory, but they are not necessary, i.e., there exist LTO queries (e.g., queryQ of Example C.1)
that violate one or more of conditions C1–C3, but are computable in bounded memory. In our example,
queryQ with two occurrences of streamS is equivalent to the reduced queryQ0 with only one occurrence
of S. Intuitively, one of the occurrences ofS in Q was redundant. We generalize this observation to obtain
a characterization of bounded-memory computability for duplicate-eliminating self-join queries.

Definition C.1 (Redundant Stream) Consider a duplicate-eliminating LTO queryQ(P). A streamS(j)
i in

Q is said to beredundantif there exists a streamS(k)
i (j 6= k) such that:

1. The total ordering of elementsE(S(j)
i) of S(j)

i is the same as the ordering of elementsE(S
(k)
i) of S(k)

i .

2. If S(j)
i :A 2 L, whereL is the list of projected attributes, then predicate(S

(j)
i :A = S

(k)
i :A) 2 P+.

3. If (S(j)
i :A Op Sj :B) 2 P , then(S(k)

i :A Op Sj :B) 2 P+

We say thatS(k)
i coversS(j)

i in Q. 2

Let Q be a self-join LTO query such thatS(j)
i 2 S(Q) is redundant. LetS(k)

i be a stream that covers

S
(j)
i . The queryQ0 obtained fromQ by eliminatingS(j)

i and replacing every occurrence of attributeS
(j)
i :A

by S(k)
i :A is equivalent toQ.

Theorem 5.2 holds for LTO queries with self-joins provided they do not contain any redundant occur-
rences of a stream. Thus, to check bounded-memory computability of a duplicate-eliminating queryQ with
self-joins, we first eliminate all redundant occurrences of streams (e.g., using a greedy algorithm) to obtain
an equivalent queryQ0. We can then check the conditions of Theorem 5.2 forQ0, or use the more efficient
algorithm in Appendix B.

19

