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ABSTRACT  

We define a framework for static optimization of sliding window 
conjunctive queries over infinite streams. When computational 
resources are sufficient, we propose that the goal of optimization 
should be to find an execution plan that minimizes resource usage 
within the available resource constraints. When resources are 
insufficient, on the other hand, we propose that the goal should be 
to find an execution plan that sheds some of the input load (by 
randomly dropping tuples) to keep resource usage within bounds 
while maximizing the output rate. An intuitive approach to load 
shedding suggests starting with the plan that would be optimal if 
resources were sufficient and adding "drop boxes" to this plan.  
We find this to be often times suboptimal – in many instances the 
optimal partial answer plan results from adding drop boxes to 
plans that are not optimal in the unlimited resource case. In view 
of this, we use our framework to investigate an approach to 
optimization that unifies the placement of drop boxes and the 
choice of the query plan from which to drop tuples. The 
effectiveness of our optimizer is experimentally validated and the 
results show the promise of this approach. 

1. INTRODUCTION 
The focus of research on data and information processing has 

recently shifted towards an emerging type of applications in which 
the data is streaming from its sources. Such applications include 
monitoring network traffic, intrusion detection, 
telecommunications, sensor networks, financial services, and e-
business applications. 

Some major assumptions made by traditional data management 
systems do not hold in the context of streaming applications. In 
these applications, the system has no control over the arrival time 
of the data. Hence, the adoption of a push model of computation 
is mandatory. Also, in such applications, monitoring queries can 
run for a long time (e.g., on the order of days or months) so that 
they can be assumed for all practical purposes to be running 
continuously, hence the name continuous queries. 

An important goal in systems designed for such applications is 

to provide an easy framework for users to express their queries. A 
good approach is to provide users with a declarative method to do 
so, leaving the decision on arranging how the query is executed to 
the system. Such approach is taken by the STREAM [29] team 
which extended the SQL query language with constructs to pose 
queries on any combination of relations and continuous streaming 
sources [3]. This approach opens the problem of query 
optimization for continuous queries.  

In the context of data streaming systems, the optimization 
problem is distinguished by the necessity to adopt the push model. 
The system has no choice but to keep up with the incoming data. 
Given a continuous query in steady state, each execution plan can 
be viewed as a queuing network system in which arriving tuples 
from the input streams are the clients and query operators are the 
servers. From basic queuing theory [20], if the system capacity 
exceeds the requirements for the input rate (utilization < 100%), 
the system is stable. Otherwise, the system is said to be saturated 
or unstable. In the context of continuous queries, an execution 
plan for the query is feasible if the system it will execute on will 
be stable. A feasible query is one for which at least one feasible 
plan exists. 

To illustrate the above, Figure 1 shows an example of a simple 
query composed of two selections, σ

1 and σ
2, on a single data 

stream. The cost per tuple for the first selection, C1, is half a 
millisecond and its selectivity, f1, is 0.25. The cost per tuple for 
the second, C2, is one millisecond and its selectivity, f2, is 0.5. The 
rate of the input data stream is 1000 tuples/sec. For each selection 
operator, assuming computational resources are available (see 
section  3), the output rate of a selection is computed as simply its 
input rate multiplied by its selectivity. Two alternative plans exist 
for the query. In the first alternative (plan A), it takes 500 

 
Permission to make digital or hard copies of all or part of this work 
for personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial 
advantage and that copies bear this notice and the full citation on the 
first page. To copy otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission and/or a fee. 
 
SIGMOD 2004, June 13–18, 2004, Paris, France. 
Copyright 2004 ACM 1-58113-859-8/04/06 …$5.00. 
 

σ1 

σ2 

C1= 5*10-4 

f1 = 0.25 

C2= 10-3 

f2 = 0.5 λ
 = 1000 

λ
 = 250 

c(1) = 0.5 
c(2) = 0.25 

c(1) = 0.25 
c(2) = 1 

Plan A - Feasible Plan B - Infeasible 

σ2 

σ1 

C2= 10-3 

f2 = 0.5 

C1= 5*10-4 

f1 = 0.25 λ
 = 1000 

λ
 = 500 

Figure 1. Feasible and infeasible alternatives to a query. 
c(i) is the cost per second of σ i. 



milliseconds, on average, for selection σ
1 to process its input in 

one second, and 250 milliseconds for σ
2. This means that there is 

75% average resource utilization and there is enough time for 
both operators to handle the load coming their way in a unit time. 
Hence, both operators can share the same processing resources 
and the plan is feasible. Plan B, on the other hand, dictates that σ

1 

needs 250 milliseconds, and σ
2 needs one second to handle the 

arrivals in a unit time. Hence, it is infeasible. Since a feasible plan 
exists for the query, the query itself is feasible. 

It can be observed that, if an execution plan is feasible, its final 
output rate is only determined by the rates of the input streams. 
Since the input is the same for all plans of a query, this leads 
directly to the observation that all feasible plans of the same query 
have the same final output rate (see Section  3.1.3). 

If no feasible plans exist for the query, load shedding becomes 
a necessity to bring down the demand on the system to within the 
available resources. Load shedding can be done by several 
methods (e.g., random or semantic dropping of tuples) and can 
have several objectives, see [1][23] for a discussion. In this work, 
we choose random dropping of tuples as the method of load 
shedding. This is achieved by inserting random drop boxes at 
several points in the query plan. When tuples are being dropped 
from a plan, the final output rate becomes dependent on the 
amount of shed load. Since, as demonstrated above, plans differ in 
their resource usage, different plans will need different amounts of 
load shedding. Therefore, the final output rates of plans with drop 
boxes inserted will differ. In light of this, we choose the goal of 
load shedding to be the plan that maximizes the output rate of the 
partial answer query. In this context, there are two different 
problems that need to be addressed. The first is the optimal 
placement of drop boxes in an execution plan and the optimal 
setting of their sampling rate. The second is concerned with the 
choice of plan to shed load from. Notice that in this case, all the 
plans considered should finally have the same resource utilization, 
the maximum possible, while differing on the final output rate. 
Recent research on load shedding (e.g., [7][25]) focused on 
examining the best method to shed load from a given plan. The 
plan used is usually assumed to be the plan selected when 
resources where sufficient. We are unaware of any attempts to 
address the issue of selecting the best plan for load shedding. 

Given the above discussion, a static query optimizer for 
continuous queries faces a number of challenges. In case the 
query is feasible, the optimizer has to find the feasible plan for the 
query that has the lowest resource utilization, or at least avoid the 
infeasible plans to avoid unnecessary load shedding. In case the 
query is infeasible, the goal becomes to search for the plan that, 
when tuples are dropped from it, yields the maximum output rate. 
We present a framework for static query optimization that tackles 
these challenges. In particular, our main contributions are: 
• We develop a model for estimating the final output rate and 

resource utilization of an execution plan of a continuous 
query. 

• We use the model to investigate the best way to shed load 
from a plan by inserting random drop boxes. 

• We show that the approach of shedding load from the plan 
that was running when resources were sufficient is often times 
suboptimal. Significant gains can be achieved if the query is 
re-optimized with load shedding in mind. 

• We develop an optimizer that integrates load shedding into the 
optimization process by taking resource constraints into 
account. 

• We experimentally validate the effectiveness of our 
optimization framework. 

Much of the recent work on systems for streaming information 
sources is built on being able to dynamically adapt to the 
changing characteristics of the data as it flows by. The paradigm 
is: start with a plan, and then continuously change it as you know 
more about the data. Examples are the work in [4][17][28]. This 
is built on the earlier idea of mid-query re-optimization [18]. It is 
important to note that, by introducing a static optimization 
framework, we are not effectively stating that it is a better way to 
approach the problem. Static optimizations can be useful in cases 
where the rates of the input streams are slow changing, and the 
pattern of change is predictable (e.g., network/transportation 
traffic loads, building sensors.) It suffers from its rigidity and 
inadaptability to rapid changes of basic assumptions about the 
data characteristics. The adaptive approach solves these problems, 
but it is not without its overhead. The question of which is better 
depends upon several things, including the exact amount of 
overhead, and how volatile the environment is. At one extreme, 
very static environments, static optimization will be best. At the 
other extreme, very dynamic environments, adaptive may be 
superior. In between the two are a number of tradeoffs (e.g., 
optimize and monitor then re-optimize when necessary, or 
optimize every k number of seconds.) Our goal is not to answer 
the question of which is better or when to use which. To be able 
to answer such questions, we need first to know what it means to 
do static optimization for continuous queries, which is the goal of 
this paper. 

The rest of the paper is organized as follows: Section 2 
discusses the semantics of sliding window conjunctive streaming 
queries that we study. Section 3 describes the cost model used in 
the optimization problem. Section 4 tackles the load shedding 
problem. Section 5 defines the optimization framework and the 
proposed optimizer. Section 6 discusses the experimental 
evaluation. Section 7 discusses related work in the literature. 
Section 8 concludes the paper. 

2. THE SEMANTICS OF SLIDING 
WINDOW CONTINUOUS QUERIES 

There has been no agreed upon concrete semantics for queries 
over data streams. Attempts towards this goal can be found in 
[1][3]. These attempts differ slightly on the meaning of a 
timestamp, whether strict ordering of tuples is required, handling 
out of order tuples, timestamps for generated tuples, querying 
relational data, and how resulting tuples are streamed out.  

For the purpose of this work, we are only concerned with the 
modeling of a data stream and the precise semantics of the 
selection and the sliding window join operators. We assume a 
global, discrete, ordered time domain T  from which timestamp 
values are derived. For ease of analysis, we also make some 
simplifying assumptions: 
1- For any data stream, the time stamps are unique; there are no 

ties. 
2- Tuples arrive in the stream in a monotonically increasing 

order by its time stamp; there is no out of order arrival. 
3- There are no relational tables involved in the query. 
The easiest way to satisfy our assumptions for timestamps is to 
assume that they are assigned by the system for each tuple upon 
its arrival. 



2.1  Definitions 
We adopt the definition of data streams in [3]. 
Definition 1: Data Stream. A streams S is a bag of elements 
<s, t>, where s is a tuple belonging to the schema of the stream 
and t∈T  is the timestamp of the element.  � 

Besides their semantic usages, window predicates are a means 
to restrict an infinite stream for operations like stream joins to 
become feasible. Many types of window predicates exist; each has 
its own modeling requirements. A discussion of the different types 
can be found in [1][3][8]. For the purpose of this paper, we will 
only consider tuple-based and time-based sliding windows. Again, 
we adopt the definitions in [3]. 
Definition 2: Time-based Window. At any time instant t, a time-
based window of size T on a stream S defines a subset of S 
containing all elements of S with timestamp t’  such that t-t’≤ T.  � 

Definition 3: Tuple-based Window. At any time instant t, a tuple-
based window of size W on a stream S defines a subset of S with 
the largest W timestamps not exceeding t. If the size of S at time t 
is less than W, the window includes all elements of the stream. � 

Note that the number of tuples satisfying the window predicate 
is affected by the tuple arrival rate in the case of time-based 
windows only. Tuples satisfying the window predicate can 
become stale by the passage of time and the window size can 
eventually be zero if no new tuples arrive. This is in contrast with 
tuple-based windows, in which, once the window is full, the 
number of tuples satisfying the predicate remains constant 
regardless of the rate of new arrivals. 

2.2 Selection and Join Semantics 
A selection operator, also called a filter, takes a stream S as 

input and outputs a stream O whose elements are the subset of S 
that satisfy the selection predicate. Elements in the output stream 
of a selection have the same timestamps and relative order they 
had in the input stream. 

As for joins, since we are only considering streaming sources, 
we are only interested in sliding window joins. Also, without loss 
of generality, we will only consider equality predicates. From [2], 
equi-joins on infinite streaming sources result in unbounded 
memory requirements, hence the necessity of sliding window 
predicates. 

The sliding window join is a symmetric operator that takes two 
input streams, S and R. For every arriving tuple on any of the two 
input streams, the operator joins it with the current window 
contents on the other input stream. The operator then streams out 
resulting tuples that satisfy the join predicate. The timestamp of a 
resulting element from the join is the greater of the two 

timestamps of its components. The resulting stream is ordered on 
the timestamps of its elements. 

3. THE COST MODEL 
In this section, we provide the necessary calculations to 

estimate the expected processing constraints for providing an 
answer to continuous queries. First, we derive the necessary 
equations to estimate the output rate for the different operators 
assuming there are no constraints (i.e., assuming the plan is 
feasible.) Second, we estimate the size of the active window. By 
that we mean the average number of output elements that are 
eligible for participation as input if the output of the operator is 
fed into the input of a second one. Consider the example in Figure 
2. It shows two plans for the same query that joins streams A and 
B and has a selection on A. Both streams have tuple-based 
window predicates, WA and WB respectively. For the plan on the 
right, each element arriving from stream B joins with the latest WA 
elements of stream A. This can’t be true for the left plan or else we 
would be joining elements from B with the latest WA elements that 
pass the selection, instead of the latest WA arriving. Instead, for 
the left plan, elements from stream B should join only with the 
active elements in the window on A, the size of which is WA 
multiplied by the selectivity of the selection operator. A similar 
argument can be made for the size of the active window if the 
windows were time-based instead. Lastly, we move to estimate 
average processing requirements for these operators together with 
the constraints on such requirements. 

We assume steady state conditions and use the average rate to 
characterize the rate of arrivals of incoming tuples from external 
sources. This implicitly assumes a stable arrival rate. We also 
assume that there is enough memory to hold the buffering 
requirements for any query plan. Table 1 defines the notation used 
throughout the paper. All costs are in time units. 

We will develop the cost model for tuple-based windows only. 
However, since we are concerned with steady state conditions and 
are using average rate, it is easy to adapt the model for time-based 
windows using the following argument. On average, the number 
of active tuples in a window i of size T is λ i·T. So, by replacing the 
size Wi of a tuple-based window with λ i·T, the equations will be 
applicable to time-based windows as well. 

The development of the results concerning the output rates and 
costs of single operators resembles the one in [19]. 

3.1 Rate and Window Calculations 

3.1.1 Selections and Projections 
We will consider projections as a special case of selections in 

which the selectivity factor is equal to 1. The number of tuples a 
selection/projection operator handles in a unit time is λ i. Of those, 
only f·λ i qualify for the selection. Hence, the output rate is λ o= f·λ i (1) 

For a selection operator with a window Wi defined on its input, 
the active window size is (see discussion of Figure 2 above) 
 

Wo= f·Wi (2) 

3.1.2 Joins and Cartesian Products 
A Cartesian product can be viewed as a special case of a join 

with the selectivity factor equal to 1. We define the selectivity 
factor of a sliding window join to be the percentage of tuples 
satisfying the join predicate relative to a simple Cartesian product. 
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Figure 2. Two plans for the same query. The active 
window size on the left side of the join is less in the 

left plan. 
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We assume, without loss of generality, that the selectivity is 
symmetric relative to the two inputs. 

Now, the number of tuples arriving from the left side of the 
operator in a unit time is equal to λ L. From the join semantics, 
each of which is expected to join with f·WR tuples from the right 
side window. Hence, the number of tuples produced as a result of 
tuples arriving from the left side is f·WR·λ L per unit time. 
Similarly, the number of tuples resulting from right side arrivals is 
f·WL·λ R. So, the total output rate for a window join is  λ o= f (WR·λ L + WL·λ R) (3) 

To compute the active window size, we need to estimate the 
average number of valid tuples coming out of the join. A joined 
tuple is considered valid (not expired) only if all the original 
tuples it is comprised from are still valid. Consider the join 
operator at steady state. There are WL and WR active tuples in the 
windows on the left and the right sides respectively. Each of 
which must have already joined with the other active tuples in the 
opposite window. The resulting size of this join is f·WL·WR. Now, 
consider arrivals on the left(right) side of the join. Each arriving 
tuple that is inserted into the window on the left(right) side 
produces f·WR(f·WL) new tuples. While at the same time, the 
arriving tuple invalidates the earliest one in the window, causing 
the same number of tuples to become invalid. Hence, on average, 
the number of resulting active tuples stays the same. So 

Wo=f·WL·WR (4) 

3.1.3 The general case 
The above equations are all derived for binary joins. Using 

these derivations, it is possible to generalize them for the case of 
n-way joins. In doing so, we arrive at the following observation.  

Observation 1 
The output rate of an n-ary join of n streams is constant and is 

estimated by 
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where λ k is the arrival rate of stream k, and Wi is the size of the 
tuple-based window predicate on stream i.  

The size of the resulting active window for an n-ary join can 
also be estimated by 
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Proof 
The proof is simply by induction on the number of streams 

involved in the join and using equations (3) and (4) for the base 
case. � 

It is clear from the above that the final output rate and active 
window size resulting from joining n streams are independent of 
how the join operation is performed. This is intuitively equivalent 
to the fact that, for a traditional relational query, the size of the 
final result is independent of the execution plan. 

The previous observation, coupled with the equations in 
Section  3.1.1, suggest that the steady state output rate of a 
conjunctive continuous query, given enough resources, is 
independent of the execution plan and that it should not be the 
goal of query optimization. 

3.1.4 Discussion 
We pause to discuss some issues relating to the previous 

observation. We have proved that all feasible plans of a 
continuous query have the same output rate. From the semantics 
discussed in Section  2, all feasible plans must produce the same 
tuples in the same order, and with the same timestamps. This does 
not mean, however, that all feasible plans produce the same 
output at exactly the same time. To understand this, it may be 
helpful again to regard a query execution plan as an open queuing 
system. From queuing theory, the utilization and response times 
of two stable systems may vary between the two depending on the 
characteristics of each. In our context, the response time of a 
result tuple is the time difference between the production time of 
the tuple and its timestamp. The response time of a plan is the 
average response time of all its resulting tuples. Feasible plans 
differ in their response times, meaning that they produce the same 
result tuples with each shifted in time, from its timestamp, by an 
average amount equal to the average response time of the plan. 

3.2 Processing Constraints 
We move to derive the necessary computational resource 

requirements for the different types of operators given their 
inputs. We also compute the constraints on these resources. 

3.2.1 Selections and Projections 
The cost of handling a tuple for a selection or a projection 

operator, Cσ , includes reading, inspecting the condition, and 
writing out the result, if necessary. For a selection or a projection 
operator to be able to correctly handle an arriving tuple, Cσ  must 
be, on average, less than the average time until the next arrival. 
Hence, the following constraint holds 

Cσ ·λ i < 1 (7) 

3.2.2 Joins and Cartesian Products 
In the case of joining infinite streams, only non-blocking 

algorithms can be used, like the symmetric hash join [33]. Kang et 
al. made the observation in [19] that the join cost can be divided 
into the cost of performing the left and the right parts of the join, 
and that the method of performing the two parts are completely 
independent. They derived a general cost model for the sliding 

Table 1. Variables used in estimating resource requirements. 

Cσ  Cost of performing a selection on a single tuple 

CP Cost to probe an active window for a matching tuple just 
arriving 

CI Cost to insert an arriving tuple into the sliding window 

CV Cost to invalidate an expired tuple from the sliding 
window σ  Selectivity factor of a selection predicate 

f Join selectivity factor λ i Rate of arrival of tuples from source i 

W Size of a tuple-based window 

T Size of a time-base window 

 



window join which we will use here. The cost of the join per unit 
time is 

CL = λ R·CP(L) + λ L· (CI(R) + CV(R)) 
CR = λ L·CP(R) + λ R· (CI(L) + CV(L)) 

CL
⋈

R = CL + CR 

(8) 

The previous calculations are necessary if asymmetric 
operators will be used on the left and right side of the join. If, on 
the other hand, the traditional symmetric operator is used, the cost 
functions can be simplified to 

CL
⋈

R = (λ R + λ L)·(CI + CV + CP) (9) 
In both cases, the constraint is  

CL
⋈

R < 1 (10) 
In the later case, the operator can be seen as having an arrival rate 
of (λ R + λ L) and a service rate of (CL + CR + CP), analogous to 
equation (7). 

It is worth mentioning that the cost of the join is dependent on 
the join algorithm used. The model presented in [19] can be used 
to choose the best possible algorithm for each binary join. 

3.2.3 Notes on the Processing Constraints 
The constraints derived in this section have the subtle 

assumption that the operator will be the only running process in 
the system. In case a host of operators are sharing processing 
resources, the previous bounds are not tight. For the constraints to 
become tight in this case, the cost values of each operator should 
be dilated by the inverse of the fraction of time the operator is 
scheduled to run on the system. For example, if it takes 1 
millisecond to process a tuple for selection, but the operator is 
sharing the processor fairly with another 9 identical operators, 
then the cost should increase ten fold to 10 milliseconds. 

Example 1 
We end this section with a concrete example on the application 

of the cost model. Consider the following simple SQL-like query 
(the window constraint syntax is modeled after [23]): 

SELECT A.a, B.b, C.c 
FROM A [ROWS 10] 

B [ROWS 10] 
C [ROWS 10] 

WHERE  A.a = B.a  
AND  B.b = C.b 

This is a simple three-way tuple-based window join between the 
streams A, B, and C with the window being the latest 10 rows in 

each stream. Assume 0.5 is the selectivity of A
⋈

B and 0.2 is the 
selectivity of B

⋈
C. Also assume that 10, 70, and 20 are the rates 

of arrival of streams A, B, and C respectively in tuples/second. 
Further assume, for ease of exposition, that any join operator 
takes a constant amount of time to handle an incoming tuple from 
either side of the join. Since the cost of the plan is the summation 
of the individual costs of its operators (in this case the two joins) 
the previous assumption makes the cost of the plan directly 
proportional to the summation of the input streams rates and the 
output rate of the intermediate join. It is not hard to also show that 
the utilization of every plan is the multiplication of this sum by 
the join cost. Figure 3 shows the possible plans to evaluate the 
query. Note that using the model and assuming each plan has 
enough computational resources to execute, all three have the 
same final output rate. 

First, assume that a join operator takes 0.5 milliseconds to join 
an incoming tuple, which means that the system can handle at 
most 2000 tuples/second. In this case, it is obvious that any of the 
plans is feasible. The plans differ dramatically, however in terms 
of their resource utilization. While plan (a) keeps the system 25% 
utilized (500*.0005), plan (c) has only 20% utilization 
(400*.0005), and plan (b) has 14% utilization (280*.0005). Plan 
(b) is therefore the best choice. Choosing plan (a) results in a 
170% increase in the necessary resources to answer the query. 

Now, assume that a join requires 3 milliseconds to handle an 
incoming tuple, meaning that the system capacity is about 334 
tuples/second. In this case, plan (a) will have 150% utilization, 
plan (c) will have 120% utilization, and plan (b) will have 84% 
utilization meaning that only plan (b) is feasible. Choosing either 
of the other two plans will unnecessarily require load shedding. 

If a join requires 5 milliseconds per incoming tuple (i.e., 
maximum system capacity of 200 tuples/second), all plans become 
infeasible and some load must be shed. One way to approximate 
the result of a query is to randomly drop tuples from the input 
queues of the different operators. A heuristic measure of the 
quality of load shedding can be the final plan throughput; the plan 
that drops the least number of tuples might be the best choice (the 
MAX-subset measure in [11]). We discuss in the next section how 
to arrive at this choice. 
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Figure 3. Possible plans to evaluate the join. Assuming enough resources, all three plans have the same final output rate. 



4. LOAD SHEDDING 
We now turn to the case when all the plans are infeasible and a 

partial answer is inevitable. Load shedding [1] is one form of 
approximation which reduces load by dropping tuples from the 
incoming streams. Load shedding can be done by several methods 
(e.g., random or semantic dropping of tuples) and can have 
several objectives (e.g., maximize throughput or quality of 
service), see [1][23] for a discussion. In this section, we consider 
random dropping of tuples as the method of load shedding and the 
goal is to maximize the output rate of the approximated query. We 
consider the best way to place random filters1, and the optimal 
setting of the amount that each filter should drop. As mentioned in 
the introduction, there are two basic questions the optimizer needs 
to answer. The first is, given a plan to shed load from, where do 
we place the random filters, and how much should we drop in 
each? The second, which plan do we choose for load shedding? 
Intuition suggests that we should choose the best plan when 
resources were sufficient. We test the validity of this intuition 
here. 

We assume for convenience that the random filter has 
negligible cost compared to other operators. Since the drop boxes 
are artificial operators, we will also assume that they are 
semantically invisible (i.e., the query operators will not 
differentiate between a drop in arrival rate at the source and one 
resulting from a drop box.) We start by handling the case of only 
selection operators and then extend the problem to include joins. 

4.1 Selection Only Queries 
Consider a query consisting of n consecutive filters, and an 

execution plan for it that orders the filters in ascending order by 
their designated numbers. The cost per tuple for filter i is ci time 
units, and its selectivity is σ

i. Now, assume that the plan is 
infeasible and drop boxes should be used to shed load. There are 
n+1 possible places to put drop boxes (see Figure 4.) We will 
assume that the selectivity of drop box i is xi (i.e., the filter 
randomly drops 100*(1-xi) percent of the tuples it sees.) Notice 
that the filter becomes unnecessary if its parameter is equal to 1. 
The problem is to determine the optimum values of the xi’s such 
that the output rate is maximized. Using the model, the output rate 
of the partial answer plan will be 

∏
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and its total cost will be 
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where λ o is the output rate of un-approximated plan, calculated as  
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1 We use random filter and drop box interchangeably. 

and c(i) is the cost per unit time of filter i, i=1..n, calculated as 
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Using the previous equations, and noticing that we will only 
need to drop tuples in case the plan is infeasible (i.e., the cost of 
the plan is greater than 1), we can formulate the problem as a 
constrained optimization one as follows 

Max λ approx 

Subject to 

( ) 1=pC  

1...1,10 +=≤≤ nixi  

(15) 

The above formulation leads to the following observation. 

Observation 2 

To approximate a plan for a filtering-only continuous query, 
we only need to drop tuples directly from the streaming source 
before they are processed by any of the filters. Furthermore, the 
approximation should be performed on the plan with the least cost 
in order to maximize the output rate given certain computational 
resources. 

Proof 
The easiest way to prove the above is to consider the analogy 

between the problem at hand and the one concerning the optimum 
way to order a number of expensive predicates over a relational 
table, replacing the input relation cardinality by the input stream 
rate2. From rank optimization [14], all random filters have zero 
cost and selectivities less than one, which means they will all have 
infinite rank. Hence they should all be pushed to the left to be 
applied the earliest. Since a combination of random filters 
amounts to a single one, we deduce that the optimum solution is 
to have a single filter at the beginning. This proves the first part of 
the observation and leads to the following solution of equation 
(15): 
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The optimum value of the objective function becomes 

oapprox x λλ ⋅= *
1

*  (17) 

To prove that the load shedding should be performed on the 
plan with the least cost, two observations are necessary. First, the 
solution above is applicable for any given plan for the query. 
Second, given a certain plan, c(i) is the cost per unit time for filter 

i, making the summation in the denominator of *
1x  the cost of 

running the plan without load shedding. Combining these two, the 

lower the cost of the plan, the higher *
1x  is (i.e., the fewer the 

number of tuples dropped.) Since the optimum approximate rate is 

directly proportional to *
1x , we deduce that the plan with the 

lowest cost yields the highest rate. � 

                                                                 
2 Another method is to directly solve the constrained optimization 

problem. 

σ1 x1 … σn xn+1 
λ
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Figure 4. A plan with n filtering operators  with 
drop boxes in all possible places. 



The first part of this observation provides a rigorous validation of 
a rule of thumb reported in [25]. 

4.2 Join Queries  
We now turn to the case where the query contains window 

joins. For ease of analysis, we will only consider tuple-based 
windows in this section. We first investigate the optimum method 
to drop tuples from a given query plan, and then we move to 
investigate the choice of the plan to shed load from. 

4.2.1 Shedding Load from a Specific Plan 
We first look at the where to put the drop boxes. For a query 

plan joining n streams, using binary joins, a drop box can be put 
before each of the two inputs to the n-1 join operators, plus a box 
right after the last join is performed, resulting in 2n - 1 possible 
places. We can show, however, that similar to the filter-only case, 
we need to drop tuples only from the input streams before they are 
processed by any join operator. 

Observation 3 
To approximate a plan for a continuous query joining n 

streams, it is sufficient to drop tuples only from the input sources 
before they are processed by any join operator. 

Proof Sketch 
Figure 5 shows an arbitrary join operator in an approximated 

plan for the n-way join with drop boxes in all possible locations. 
As a first step to prove the observation, we need to show that, 
given any values of the parameters x1; x2; and x3 of the drop 
boxes, we can always arbitrarily increase x3 without affecting the 
rest of the plan while decreasing the cost of the join.  

The operator’s effect on the rest of the plan is through its 
output rate, and the resulting active window size. If we prove the 
manipulations of the filter values will not affect both values, we 
can guarantee they will not affect the rest of the plan.  

In the case of tuple-based windows, it can be easily shown by 
examining equations (4) and (6) that in steady state, the size of the 
resulting active window size of any join in a query plan is always 
independent of the values of the input stream rates. Hence, 
manipulating the settings for the drop box won’t affect the active 
window size. This leaves the resulting output rate. 

For the output rate, it suffices to show that, to keep the output 
rate the same after increasing x3, the values of x1 and x2 must 
decrease. Since x3 does not contribute to the cost of this join, the 
final effect of this manipulation would be a decrease in the join 
cost. 

Now, assume the arbitrary join in Figure 5 is the top most join 
in the query plan. We can then consider it to be a base case and 
recursively apply the previous observation to the joins feeding its 

inputs until reaching the original input streams. This completes 
the proof. � 

Despite the difference in characteristics between time-based 
and tuple-based windows (the number of active tuples in a time-
based window is dependant on the input rates), a similar 
reasoning can be applied to prove the previous observation for 
time-based windows. 

We now turn to determining the selectivity of each box. As in 
the previous section, we can formulate the problem as an 
optimization one. Placing drop boxes only at the leaves of a query 
plan decreases the complexity of the problem significantly. For 
every input stream i to the query with rate λ i, there exists an 
associated drop box with the parameter xi. Using equation (5), we 
can estimate the output rate after load shedding for a query with n 
input streams to be 
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It can also be easily verified that the cost function is linear in the 
values of the xi’s. We can therefore express it as 
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where the ai’s are constants. The problem can then be formulated 
as 

Max λ approx 

Subject to 

( ) 1=pC  

nixi ...1,10 =≤≤  

(20) 

The solution of the problem can be obtained by observing that 
the problem has a linear objective function, one linear constraint 
in all the variables, and a set of limiting constraints on each 
variable. This problem is then an instance of the continuous 
knapsack problem. Thus, the solution is by the following 
algorithm: 
1- Set all values of the variables to 0. 
2- For every variable xi, compute the ratio 
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which is the ratio between its coefficients in the objective 
function (less the multiplication of all selectivities since it is 
constant for all variables), and the equality constraint 
respectively. 

3- Sort the ratios in descending order. 
4- If all ratios have been considered, then stop.  
5- Set the value of the variable that corresponds to the current 

highest ratio to the maximum possible; 100%. 
6- If setting the latest variable causes C(p) to exceed 1 then 

decrease it until C(p) reaches 1 and stop. Else, remove the 
variable and its ratio from the list. 

7- Repeat step 4.  � 

⋈⋈ ⋈⋈  λ A λ B 

x3 

Figure 5. A join operator with drop boxes placed at 
all three possible locations. 
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4.2.2 Choice of Plan for Load Shedding 
We now move to investigate the second question concerning 

load shedding; what is the best plan to select? In Section  4.1 we 
have confirmed for selection queries the intuition that the plan to 
select is the one with the lowest resource utilization. Interestingly, 
this intuition does not carry over in the case of join queries. 
Depending on the available resources, a plan that would have 
been suboptimal when resources were abundant can be a better 
choice for load shedding. We show this using a simple example. 
Consider the query of Example 1 presented in Section  3. We 
tested the behavior of each of the three alternative plans for the 
query when the join cost per tuple increases from 0 (infinitely fast 
processor) to 100 milliseconds. For each plan, we computed the 
optimum output rate at each join cost. When a plan is infeasible, 
the optimum output rate is the one obtained after drop boxes have 
been optimally inserted into the plan. The left side of Figure 6 
shows the behavior of the three plans. All three plans start by 
delivering 1000 tuples/sec., which is the maximum possible rate. 
As resources become scarcer, the throughputs of the plans start to 
drop as they are forced to shed load. The plans start shedding load 
in the order of their average utlization, starting with the worst, 
plan (a), followed by plan (c) then finally, when the join cost 
exceeds 3.5 milliseconds, plan (b) starts to shed load. Somewhere 
between the join cost of 4 and 4.5 milliseconds per tuple, a switch 
over occurs (see the right side of Figure 6.) For join costs starting 
4.5 milliseconds and higher, plan (c) becomes the best choice, 
delivering the maximum throughput. This trend continues until all 
plans deliver the same throughput at join cost of 100 milliseconds. 

A number of interesting observations can be made on the 
previous example: 
1- The plan with the lowest utilization is not always the best 

choice for load shedding. 
2- The gap between the lowest utilization plan and the best plan 

to shed load from keeps increasing until the point when the 
join cost is approximately 14 milliseconds. At this point, the 
throughput of the best plan is more than twice the throughput 
of the lowest utilization plan. 

3- It may be the case that the lowest utilization plan is actually 
the worst choice, as it is in the example when the join cost 
exceeds 17 milliseconds. 

From the previous demonstration, it is evident that load 
shedding has to be integrated in the process of optimization, as 
opposed to being treated as an afterthought. When searching for 
the best plan, the optimizer must take into account the resource 
constraints in addition to the input stream rates, window sizes and 
selectivities. This is the focus of the rest of the paper. 

5. THE OPTIMIZATION FRAMEWORK 
We are now ready to formulate the optimization problem for 

conjunctive queries over infinite streaming sources. We start by 
defining a query plan, and then we move on to the objective of the 
optimization. Finally, we discuss a heuristic based dynamic 
programming optimizer developed to approximate the best left 
deep tree for a tuple-based sliding window conjunctive query. 
Although, as in the load shedding section above, we only develop 
the problem for tuple-based sliding windows, many aspects of the 
solution carry to time-based windows. A complete treatment of 
time-based windows is left for future work. 

5.1 The Optimization Problem 
Given a conjunctive query Q on streaming sources, we can 

define two functions on any execution plan p for Q. The first is λ (p), which is the throughput of the plan, and the second is C(p), 
which is the utilization cost of the plan. λ (p) is bounded by the 
maximum output rate of the query, and C(p) is bounded from 
above by 100%.  

From the previous discussions it is now clear that there are two 
distinct modes of operation. The first is when the query is 
feasible, and the second is when it is not. For the first mode, the 
goal of optimization is to minimize C(p). While in this mode, λ (p) 
is fixed at its maximum value for all feasible plans p of the query. 
In the second mode, the goal is to maximize λ (p). In this mode, 
the value of C(p) is fixed at its maximum value for all p. 

To tackle the problem in a uniform manner, we will assume 
that the search space of alternative plans for Q is always equipped 
with drop boxes for load shedding, if necessary. This way, all 

Figure 6. Optimum throughput for the query of Example 1.  
The figure on the right magnifies the upper left corner of the left figure, with more data points. 



plans in the search space will be feasible, and we can treat the 
problem as an unconstrained one.  

Now, we can define the objective of the optimization of a 
query Q as 

Max ( ) ( )
( )pC

p
pR

λ= , where p is a plan for Q (21) 

To see why this works, consider a feasible query. For all plans 
p of the query, either p has no drop boxes, which means that the 
numerator of R is fixed at the maximum query throughput while 
the denominator is less than 1, or p has drop boxes, which means 
that the denominator is now 1, while the numerator is less than the 
maximum throughput. It is then obvious that all plans with no 
drop boxes have a higher value of R than any one with. Among all 
plans with no drop boxes, the one with the least cost has the 
highest value. If the query itself is infeasible, all plans will have 
drop boxes and the one with maximum throughput will have the 
highest R value. 

Using equation (21), the simplest optimization algorithm is 
now as follows: 
1- Generate the set P  of all plans of the query. 
2- For all p ∈ P , compute C(p). 
3- If C(p) > 1, insert drop boxes in p using the algorithm of 

Section  4.2.1. 
4- Compute R(p). 
5- Return p* that maximizes R(p).  � 

The complexity of the above algorithm is obviously 
combinatorial in the number of input streams being joined. Since 
the algorithm to determine the optimum settings of the drop boxes 
is linear in the number of input streams, the problem has, in 
essence, not changed a lot from the traditional optimization 
problem of conjunctive queries for relational data. Some 
techniques should be directly applicable here (e.g., randomized 
algorithms, as in [15].) In the next section, we propose a bottom 
up dynamic programming optimizer, similar to the approach in 
[24], which searches the space of left deep plans. 

5.2 A Heuristic Optimizer 
One technique used in relational optimization to reduce the 

size of the search space is to confine the search to only left deep 
plans. This was used by the original System R optimizer [24]. In 
this section, we adapt the dynamic programming optimizer of 
System R to search, bottom up, for the best left deep plan for a 
continuous query. The optimizer uses equation (21) as its 
objective function. 

At first glance, the problem looks trivial. The optimizer should 
treat the drop boxes as regular selection operators and proceed 
with optimization normally. The catch is, unlike normal 
selections, the selectivity of the drop boxes are not known 
beforehand. In fact, the selectivity of the drop boxes is one output 
of the optimization procedure. 

The way our proposed algorithm works is by proceeding as the 
original System R optimizer, building the plan bottom up by 
storing the best plans for successively larger subsets of the input 
streams. When computing the best plan for any subset, the 
algorithm tests whether this subplan is actually feasible given the 
resource constraints. If the plan is infeasible, the algorithm tunes 
the values of the drop boxes placed at its input streams using the 

load shedding algorithm. The subplan is then stored with the 
settings of its drop boxes. At the next stage when it is 
reconsidered, the stored settings of the drop boxes are taken into 
account as if the drop boxes were normal filters. If at any stage the 
algorithm places a drop box in front of a stream which had 
another one from a previous round, the two are combined into one 
drop box whose selectivity is the product of the original two. 

The astute reader will notice that we have relied on the same 
optimality principal employed by the System R optimizer; namely 
that the best plan to join a subset of the streams of size k+1 in 
which stream k+1 is the last one to join is the plan that joins 
stream k+1 with the best subplan joining the other k streams. It 
can be shown that the optimality principal holds if the query has a 
feasible left deep plan. The algorithm is guaranteed to arrive at the 
best feasible left deep plan for the query if any exists. If the query 
is infeasible, however, this is not necessarily true. This is why we 
call it a heuristic, since the algorithm is not guaranteed to arrive at 
the best plan which maximizes throughput if no feasible plan 
exists. We can intuitively argue though, that the heuristic will 
perform well in most cases. The reason is, it postpones the 
decision for dropping tuples until the latest possible round and 
progressively adjusts the values of the drop boxes only when 
needed. 

We test the performance of our optimizer in the next section. 

6. EXPERIMENTAL EVALUATION 
In this section we discuss a number of experiments designed to 

study the following points: 
1- We have shown by example that reoptimization when load 

shedding is necessary can be better than sticking with the 
lowest utilization plan. The question is: Was this just an 
artificially constructed pathological case, or is this something 
that occurs often enough that it is worth paying attention to? 

2- We study the benefits of reoptimization when load shedding 
is necessary. In particular, we answer the question: How 
much do we lose if we shed load from the lowest utilization 
plan and ignore reoptimization? 

3- We validate the effectiveness of the heuristic optimizer 
developed in the previous section. 

We limited the search space throughout the study to that of left 
deep plans.  

Table 2. Fixed parameters for the 
randomized queries. 

fA ⋈
B 0.2 WA 100 

fA ⋈
C 0.5 WB 300 

fB ⋈
D 0.1 WC 500 

fD ⋈
E 0.001 WD 400 

  WE 1000 

6.1 Setup 
For all experiments, we generated 1000 random continuous 

queries with tuple-based sliding window joins. Each query 
represents a join of five input streaming sources A, B, C, D, and 
E. For all queries, the window sizes and join selectivities were 
fixed, while the rates of the input streams were randomly picked 
uniformly from 10 to 1000 tuples/sec. We tried the same set of 
experiments with different values of the join selectivities and 



window sizes but found the general trends in our results to be 
relatively insensitive to these changes. Table 2 contains the 
settings used for the fixed parameters. 

As in Example 1 above, we assumed that the join cost per tuple 
is fixed. This enables the characterization of system resources to 
be represented only by this single value. Using an exhaustive 
optimizer that searches the space of left deep plans, we 
determined for each query the plan with the lowest resource 
utilization. Then, we found the join cost per tuple at which the 
query becomes infeasible. We call the inverse of this value 
(measured in tuples/sec) the saturation resources, which means 
that at this capacity, the system becomes saturated. We then 
gradually increased the join cost and took measurements at 1% 
decrements of the saturation resources (e.g., if the saturation 
resources are 1000 tuples/sec, we measured at resources 
decreasing by 10 tuples/sec.) At each of these points, we 
optimized each query using the exhaustive optimizer, then again 
with our heuristic optimizer. We report our findings at 100% of 
saturation resources then decreasing by 10% until 10% of 
saturation resources, then finally at the 1% level. All the reported 
results are based on the predictions of our cost model of the 
performance of the query plans. 

6.2 The Need for Reoptimization 
In this experiment we measured for every examined level of 

system resources, the percentage of queries which benefited from 
reoptimization (i.e. the lowest utilization plan is not the best 
choice for load shedding.) 

Figure 7 shows the results of the experiment. The probability 
that a plan would need reoptimization rises almost linearly with 
decreasing system resources. At about 60% of saturation 
resources, a plan will more likely than not need reoptimization. 
The curve flattens at around 30% of saturation resources, after 
which, it is almost certain that reoptimization is better. 

We then measure the tangible benefits of reoptimization. At 
each examined resource level, we compute for each query the 
throughput after load shedding for the best left deep plan with 
drop boxes. We then compute the throughput of the lowest 
utilization plan after load shedding. We compute the gain as the 
ratio between the difference of the two throughputs and the lowest 
utilization throughput (i.e., a gain of 100% means that the best 
plan delivers twice the throughput of the lowest utilization one.) 
We then compute the average gain for all queries.  

From Figure 8, at very low resources, the gain is very 
significant (almost 8 folds at the 1% mark.) Significance drops, 
however, as more resources become available. At the 60% level, 
when there is more than a 50% chance of having improvement, 
the average gain is about 4%. 

To check the effect of dilution from the queries that didn’t 
need reoptimization, we repeated the previous experiment but 
computed the average gain only among the queries that benefited 
from reoptimization. We also report, at every resource level, the 
max gain attained. The results are shown in Figure 9. As expected, 
the most notable difference between the two averages was when 
available resources are near the saturation level. Starting from the 
50% level, most of the plans benefit from reoptimization and there 
is no notable dilution effect. The figure also depicts the maximum 
gain measured at each level of resources. As resources decrease, 
the ratio between the maximum and the average gain also 
decreases. Near the saturation resources level, the gain is 
negligible for most queries needing reoptimization, but it makes a 
huge difference for the worst case. With decreasing resources, the 
benefit of reoptimization becomes more distributed among all 
queries. 

6.3 Testing the Heuristic Optimizer 
Our final experiment is designed to gauge the effectiveness of 

the heuristic optimizer developed in Section  5.2. To accomplish 
this, at every examined level of resources, we optimized every 
query using our optimizer. Then, for every query, we computed 
the difference in the value of the objective function between the 
plan found by the optimizer, and the best one acquired through 
the exhaustive search. The ratio between this difference and the 
best value is the relative error of the optimizer for this query. 
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Figure 7. Percentage of queries benefiting from 
reoptimization. 

Figure 8. Average gain in throughput over using the lowest 
utilization plan. 
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Figure 9. Average and maximum gain. 
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From Figure 10, it is clear that, except at very low resources, the 
performance of the heuristic optimizer is quite impressive. At the 
1% mark, the worst case, the average error was 28%. For all other 
scenarios, the average error never exceeded 0.2%. For the 
experiments that we have conducted, the error was never more 
than 100%, which means that the best throughput for the query 
was always within a factor of 2 of the optimizer’s pick. 

7. RELATED WORK 
The existence of applications built on streaming information 

motivated building specialized systems to manage streaming data. 
Among the recent examples are: Niagara [9], STREAM [29], 
Aurora [1], and Telegraph [28]. The survey in [5] contains a good 
documentation of earlier models and systems that are also targeted 
at such applications, together with a number of issues related to 
building a data stream management system. Sensor networks and 
databases (e.g., TinyDB [21] and the Cougar [34] project) are also 
closely related. 

The seminal work of [24] introduced a framework for 
optimization of relational queries aimed at minimizing query 
completion time. NiagaraCQ [9] aims at addressing the scalability 
of a system supporting a large number of continuous queries by 
grouping predicates and queries together. The work in [8][10][22] 
uses similar techniques by extending the earlier work on eddies 
[4] to support multiple concurrent continuous queries. The 
difference between this body of work and ours is that they are all 
dynamic optimization methods that adapt at run time to changing 
data and query characteristics; they do not deal with static 
optimization. 

The Aurora system [1] treats multiple streaming sources and 
multiple output queries as data flows between operators (boxes) 
that are input by the user. The queries in Aurora are composed by 
the user through an interface, and then the system manages them 
with little, if any, modification. Similarly, the work on scheduling 
operators in [6][12] deals with scheduling operators of a static 
plan to minimize resource usage or response time. Different 
problems related to scheduling and static resource allocation are 
reported in [23] together with a brief discussion of solutions. The 
assumption in such work is that a query optimizer has already 
arrived at a best plan. 

The work in [31] advocates moving from cardinality-based 
optimization to rate-based optimization and provides a model for 
a rate-based optimizer. Such work is geared towards optimizing 
queries over finite streaming sources, or short lived queries on 
infinite streams. It does not model the effect of sliding windows 
for continuous queries over infinite sources. The work in [32] 

provides a symmetric multi-join operator for multiple joined 
streams to minimize memory usage as opposed to using multiple 
binary join operators. Also close is [26] in which the authors 
provide a queuing model for distributed eddies. One interesting 
result provided is that sometimes no single plan is the best if the 
goal is to achieve the maximum input rate before the system 
saturates. A combination of plans running concurrently, each with 
some share of the input load is proven to be better. The subtle 
difference between this work and ours is that it assumes the 
operators are running on different processors, hence each has its 
fixed resources. Our work assumes all operators share a pool of 
resources. In this case, one plan is always better; the one our 
framework optimizes for. An interesting direction would be to 
look at how an optimum plan can be distributed over multiple 
processors if operators are allowed to be duplicated on the 
different processors. 

A lot of work dealt with providing partial answers to 
continuous queries. In [23], the authors survey a number of 
methods to arrive at a partial answer, among which is random 
sampling (i.e., random dropping of tuples) discussed here. The 
work in [25] provides algorithms for placing drop boxes to reduce 
resource usage. It explores both random and semantic filtering. 
The work in [7] also deals with the optimum placement of random 
filters for multiple aggregation queries sharing operators and 
resources over data streams. The difference between this body of 
work and ours is that it does not explore the effect of modifying 
the query plan to achieve better results. The work in [19] 
discusses single join approximation using random drops in case of 
either memory or computational resource shortages or both. This 
work extends that by studying the problem of insufficient 
computational resources for multiple joins. Also close to our work 
is [11], in which the authors study the problem of maximizing the 
result size of a single sliding window join in case of memory 
constraints by smartly selecting tuples to drop (semantic load 
shedding [1].) There is a brief discussion about extending the 
work to multiple joins and to deal with resource constraints. In 
this work, we deal with computational resource constraints, and 
multiple window joins. A comparison between our technique 
extended to handle smart load shedding and theirs after extension 
to multiple joins and resource constraints is another interesting 
direction. 

8. CONCLUSION AND FUTURE WORK 
In this paper, we proposed a framework for static optimization 

of sliding window conjunctive queries over infinite streams. We 
illustrated the constrained nature of the optimization problem and 
proposed different goals for the optimization when computational 
resources are sufficient and when they are tight. We developed a 
cost model to estimate the average resource utilization and output 
rate of a query plan. Using the model, we studied the problem of 
how to optimally shed load from a query by randomly dropping 
tuples such that the final output rate is maximized. We 
demonstrated that the intuition suggesting that the plan to shed 
load from is the same plan that is selected when resources are 
sufficient is often times incorrect. We then proposed an 
optimization algorithm that integrates resource constraints into the 
optimization process. Finally, we analyzed the need for 
reoptimization when resources are insufficient. We also analyzed 
the effectiveness of the proposed optimization algorithm. 

In developing a solution for the problem, we have made some 
simplifying assumptions. There are a number of future directions 

Figure 10. Average relative error for the optimizer. 
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to be explored by relaxing those assumptions. We have 
considered the optimization of single isolated queries. In reality, 
streaming systems are envisioned to handle multiple concurrent 
queries, often with significant overlap in their requirements. In 
this scenario resource sharing between queries is a must. This 
makes multi-query optimization an immediate extension to our 
work.  

We have also focused on modeling the average steady state rate 
of arrival for data streams. It might be more interesting to consider 
the effect of the variance of the rate around its average on the 
different query plans. 

It is an interesting extension to this work to investigate 
semantic load shedding, in which tuples are smartly dropped 
based on their data values. It is not clear if the results presented 
here will hold for the semantic load shedding case. 

To answer the question of when to use static or dynamic 
optimization, models for both the overhead of adaptability and the 
change in data characteristics are needed to determine which 
situations each technique is more beneficial at, and when it would 
be better to use a hybrid scheme of the two. 

Finally, a feasible plan that is close to 100% utilization can still 
have a large response time and buffer requirements. While there is 
a quick fix to this situation in our model by restricting the actual 
resources to leave more head-room for the system to avoid 
approaching saturation, a better approach would be to use a 
queuing model to optimize directly for response time and 
buffering requirements. 
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