
Static Optimization of Conjunctive Queries with Sliding
Windows Over Infinite Streams

 Ahmed M. Ayad Jeffrey F.Naughton
 Department of Computer Sciences
University of Wisconsin - Madison

1210 W. Dayton, Madison, WI 53706
{ahmed, naughton}@cs.wisc.edu

ABSTRACT

We define a framework for static optimization of sliding window
conjunctive queries over infinite streams. When computational
resources are sufficient, we propose that the goal of optimization
should be to find an execution plan that minimizes resource usage
within the available resource constraints. When resources are
insufficient, on the other hand, we propose that the goal should be
to find an execution plan that sheds some of the input load (by
randomly dropping tuples) to keep resource usage within bounds
while maximizing the output rate. An intuitive approach to load
shedding suggests starting with the plan that would be optimal if
resources were sufficient and adding "drop boxes" to this plan.
We find this to be often times suboptimal – in many instances the
optimal partial answer plan results from adding drop boxes to
plans that are not optimal in the unlimited resource case. In view
of this, we use our framework to investigate an approach to
optimization that unifies the placement of drop boxes and the
choice of the query plan from which to drop tuples. The
effectiveness of our optimizer is experimentally validated and the
results show the promise of this approach.

1. INTRODUCTION
The focus of research on data and information processing has

recently shifted towards an emerging type of applications in which
the data is streaming from its sources. Such applications include
monitoring network traffic, intrusion detection,
telecommunications, sensor networks, financial services, and e-
business applications.

Some major assumptions made by traditional data management
systems do not hold in the context of streaming applications. In
these applications, the system has no control over the arrival time
of the data. Hence, the adoption of a push model of computation
is mandatory. Also, in such applications, monitoring queries can
run for a long time (e.g., on the order of days or months) so that
they can be assumed for all practical purposes to be running
continuously, hence the name continuous queries.

An important goal in systems designed for such applications is

to provide an easy framework for users to express their queries. A
good approach is to provide users with a declarative method to do
so, leaving the decision on arranging how the query is executed to
the system. Such approach is taken by the STREAM [29] team
which extended the SQL query language with constructs to pose
queries on any combination of relations and continuous streaming
sources [3]. This approach opens the problem of query
optimization for continuous queries.

In the context of data streaming systems, the optimization
problem is distinguished by the necessity to adopt the push model.
The system has no choice but to keep up with the incoming data.
Given a continuous query in steady state, each execution plan can
be viewed as a queuing network system in which arriving tuples
from the input streams are the clients and query operators are the
servers. From basic queuing theory [20], if the system capacity
exceeds the requirements for the input rate (utilization < 100%),
the system is stable. Otherwise, the system is said to be saturated
or unstable. In the context of continuous queries, an execution
plan for the query is feasible if the system it will execute on will
be stable. A feasible query is one for which at least one feasible
plan exists.

To illustrate the above, Figure 1 shows an example of a simple
query composed of two selections, σ

1 and σ
2, on a single data

stream. The cost per tuple for the first selection, C1, is half a
millisecond and its selectivity, f1, is 0.25. The cost per tuple for
the second, C2, is one millisecond and its selectivity, f2, is 0.5. The
rate of the input data stream is 1000 tuples/sec. For each selection
operator, assuming computational resources are available (see
section 3), the output rate of a selection is computed as simply its
input rate multiplied by its selectivity. Two alternative plans exist
for the query. In the first alternative (plan A), it takes 500

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

SIGMOD 2004, June 13–18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 …$5.00.

σ1

σ2

C1= 5*10-4

f1 = 0.25

C2= 10-3

f2 = 0.5 λ
 = 1000

λ
 = 250

c(1) = 0.5
c(2) = 0.25

c(1) = 0.25
c(2) = 1

Plan A - Feasible Plan B - Infeasible

σ2

σ1

C2= 10-3

f2 = 0.5

C1= 5*10-4

f1 = 0.25 λ
 = 1000

λ
 = 500

Figure 1. Feasible and infeasible alternatives to a query.
c(i) is the cost per second of σ i.

milliseconds, on average, for selection σ
1 to process its input in

one second, and 250 milliseconds for σ
2. This means that there is

75% average resource utilization and there is enough time for
both operators to handle the load coming their way in a unit time.
Hence, both operators can share the same processing resources
and the plan is feasible. Plan B, on the other hand, dictates that σ

1

needs 250 milliseconds, and σ
2 needs one second to handle the

arrivals in a unit time. Hence, it is infeasible. Since a feasible plan
exists for the query, the query itself is feasible.

It can be observed that, if an execution plan is feasible, its final
output rate is only determined by the rates of the input streams.
Since the input is the same for all plans of a query, this leads
directly to the observation that all feasible plans of the same query
have the same final output rate (see Section 3.1.3).

If no feasible plans exist for the query, load shedding becomes
a necessity to bring down the demand on the system to within the
available resources. Load shedding can be done by several
methods (e.g., random or semantic dropping of tuples) and can
have several objectives, see [1][23] for a discussion. In this work,
we choose random dropping of tuples as the method of load
shedding. This is achieved by inserting random drop boxes at
several points in the query plan. When tuples are being dropped
from a plan, the final output rate becomes dependent on the
amount of shed load. Since, as demonstrated above, plans differ in
their resource usage, different plans will need different amounts of
load shedding. Therefore, the final output rates of plans with drop
boxes inserted will differ. In light of this, we choose the goal of
load shedding to be the plan that maximizes the output rate of the
partial answer query. In this context, there are two different
problems that need to be addressed. The first is the optimal
placement of drop boxes in an execution plan and the optimal
setting of their sampling rate. The second is concerned with the
choice of plan to shed load from. Notice that in this case, all the
plans considered should finally have the same resource utilization,
the maximum possible, while differing on the final output rate.
Recent research on load shedding (e.g., [7][25]) focused on
examining the best method to shed load from a given plan. The
plan used is usually assumed to be the plan selected when
resources where sufficient. We are unaware of any attempts to
address the issue of selecting the best plan for load shedding.

Given the above discussion, a static query optimizer for
continuous queries faces a number of challenges. In case the
query is feasible, the optimizer has to find the feasible plan for the
query that has the lowest resource utilization, or at least avoid the
infeasible plans to avoid unnecessary load shedding. In case the
query is infeasible, the goal becomes to search for the plan that,
when tuples are dropped from it, yields the maximum output rate.
We present a framework for static query optimization that tackles
these challenges. In particular, our main contributions are:
• We develop a model for estimating the final output rate and

resource utilization of an execution plan of a continuous
query.

• We use the model to investigate the best way to shed load
from a plan by inserting random drop boxes.

• We show that the approach of shedding load from the plan
that was running when resources were sufficient is often times
suboptimal. Significant gains can be achieved if the query is
re-optimized with load shedding in mind.

• We develop an optimizer that integrates load shedding into the
optimization process by taking resource constraints into
account.

• We experimentally validate the effectiveness of our
optimization framework.

Much of the recent work on systems for streaming information
sources is built on being able to dynamically adapt to the
changing characteristics of the data as it flows by. The paradigm
is: start with a plan, and then continuously change it as you know
more about the data. Examples are the work in [4][17][28]. This
is built on the earlier idea of mid-query re-optimization [18]. It is
important to note that, by introducing a static optimization
framework, we are not effectively stating that it is a better way to
approach the problem. Static optimizations can be useful in cases
where the rates of the input streams are slow changing, and the
pattern of change is predictable (e.g., network/transportation
traffic loads, building sensors.) It suffers from its rigidity and
inadaptability to rapid changes of basic assumptions about the
data characteristics. The adaptive approach solves these problems,
but it is not without its overhead. The question of which is better
depends upon several things, including the exact amount of
overhead, and how volatile the environment is. At one extreme,
very static environments, static optimization will be best. At the
other extreme, very dynamic environments, adaptive may be
superior. In between the two are a number of tradeoffs (e.g.,
optimize and monitor then re-optimize when necessary, or
optimize every k number of seconds.) Our goal is not to answer
the question of which is better or when to use which. To be able
to answer such questions, we need first to know what it means to
do static optimization for continuous queries, which is the goal of
this paper.

The rest of the paper is organized as follows: Section 2
discusses the semantics of sliding window conjunctive streaming
queries that we study. Section 3 describes the cost model used in
the optimization problem. Section 4 tackles the load shedding
problem. Section 5 defines the optimization framework and the
proposed optimizer. Section 6 discusses the experimental
evaluation. Section 7 discusses related work in the literature.
Section 8 concludes the paper.

2. THE SEMANTICS OF SLIDING
WINDOW CONTINUOUS QUERIES

There has been no agreed upon concrete semantics for queries
over data streams. Attempts towards this goal can be found in
[1][3]. These attempts differ slightly on the meaning of a
timestamp, whether strict ordering of tuples is required, handling
out of order tuples, timestamps for generated tuples, querying
relational data, and how resulting tuples are streamed out.

For the purpose of this work, we are only concerned with the
modeling of a data stream and the precise semantics of the
selection and the sliding window join operators. We assume a
global, discrete, ordered time domain T from which timestamp
values are derived. For ease of analysis, we also make some
simplifying assumptions:
1- For any data stream, the time stamps are unique; there are no

ties.
2- Tuples arrive in the stream in a monotonically increasing

order by its time stamp; there is no out of order arrival.
3- There are no relational tables involved in the query.
The easiest way to satisfy our assumptions for timestamps is to
assume that they are assigned by the system for each tuple upon
its arrival.

2.1 Definitions
We adopt the definition of data streams in [3].
Definition 1: Data Stream. A streams S is a bag of elements
<s, t>, where s is a tuple belonging to the schema of the stream
and t∈T is the timestamp of the element. �

Besides their semantic usages, window predicates are a means
to restrict an infinite stream for operations like stream joins to
become feasible. Many types of window predicates exist; each has
its own modeling requirements. A discussion of the different types
can be found in [1][3][8]. For the purpose of this paper, we will
only consider tuple-based and time-based sliding windows. Again,
we adopt the definitions in [3].
Definition 2: Time-based Window. At any time instant t, a time-
based window of size T on a stream S defines a subset of S
containing all elements of S with timestamp t’ such that t-t’≤ T. �

Definition 3: Tuple-based Window. At any time instant t, a tuple-
based window of size W on a stream S defines a subset of S with
the largest W timestamps not exceeding t. If the size of S at time t
is less than W, the window includes all elements of the stream. �

Note that the number of tuples satisfying the window predicate
is affected by the tuple arrival rate in the case of time-based
windows only. Tuples satisfying the window predicate can
become stale by the passage of time and the window size can
eventually be zero if no new tuples arrive. This is in contrast with
tuple-based windows, in which, once the window is full, the
number of tuples satisfying the predicate remains constant
regardless of the rate of new arrivals.

2.2 Selection and Join Semantics
A selection operator, also called a filter, takes a stream S as

input and outputs a stream O whose elements are the subset of S
that satisfy the selection predicate. Elements in the output stream
of a selection have the same timestamps and relative order they
had in the input stream.

As for joins, since we are only considering streaming sources,
we are only interested in sliding window joins. Also, without loss
of generality, we will only consider equality predicates. From [2],
equi-joins on infinite streaming sources result in unbounded
memory requirements, hence the necessity of sliding window
predicates.

The sliding window join is a symmetric operator that takes two
input streams, S and R. For every arriving tuple on any of the two
input streams, the operator joins it with the current window
contents on the other input stream. The operator then streams out
resulting tuples that satisfy the join predicate. The timestamp of a
resulting element from the join is the greater of the two

timestamps of its components. The resulting stream is ordered on
the timestamps of its elements.

3. THE COST MODEL
In this section, we provide the necessary calculations to

estimate the expected processing constraints for providing an
answer to continuous queries. First, we derive the necessary
equations to estimate the output rate for the different operators
assuming there are no constraints (i.e., assuming the plan is
feasible.) Second, we estimate the size of the active window. By
that we mean the average number of output elements that are
eligible for participation as input if the output of the operator is
fed into the input of a second one. Consider the example in Figure
2. It shows two plans for the same query that joins streams A and
B and has a selection on A. Both streams have tuple-based
window predicates, WA and WB respectively. For the plan on the
right, each element arriving from stream B joins with the latest WA
elements of stream A. This can’t be true for the left plan or else we
would be joining elements from B with the latest WA elements that
pass the selection, instead of the latest WA arriving. Instead, for
the left plan, elements from stream B should join only with the
active elements in the window on A, the size of which is WA
multiplied by the selectivity of the selection operator. A similar
argument can be made for the size of the active window if the
windows were time-based instead. Lastly, we move to estimate
average processing requirements for these operators together with
the constraints on such requirements.

We assume steady state conditions and use the average rate to
characterize the rate of arrivals of incoming tuples from external
sources. This implicitly assumes a stable arrival rate. We also
assume that there is enough memory to hold the buffering
requirements for any query plan. Table 1 defines the notation used
throughout the paper. All costs are in time units.

We will develop the cost model for tuple-based windows only.
However, since we are concerned with steady state conditions and
are using average rate, it is easy to adapt the model for time-based
windows using the following argument. On average, the number
of active tuples in a window i of size T is λ i·T. So, by replacing the
size Wi of a tuple-based window with λ i·T, the equations will be
applicable to time-based windows as well.

The development of the results concerning the output rates and
costs of single operators resembles the one in [19].

3.1 Rate and Window Calculations

3.1.1 Selections and Projections
We will consider projections as a special case of selections in

which the selectivity factor is equal to 1. The number of tuples a
selection/projection operator handles in a unit time is λ i. Of those,
only f·λ i qualify for the selection. Hence, the output rate is λ o= f·λ i (1)

For a selection operator with a window Wi defined on its input,
the active window size is (see discussion of Figure 2 above)

Wo= f·Wi (2)

3.1.2 Joins and Cartesian Products
A Cartesian product can be viewed as a special case of a join

with the selectivity factor equal to 1. We define the selectivity
factor of a sliding window join to be the percentage of tuples
satisfying the join predicate relative to a simple Cartesian product.

⋈⋈ ⋈⋈

A

B

σ

⋈⋈ ⋈⋈

A B

σ

Figure 2. Two plans for the same query. The active
window size on the left side of the join is less in the

left plan.

WB WA

WB

WA

We assume, without loss of generality, that the selectivity is
symmetric relative to the two inputs.

Now, the number of tuples arriving from the left side of the
operator in a unit time is equal to λ L. From the join semantics,
each of which is expected to join with f·WR tuples from the right
side window. Hence, the number of tuples produced as a result of
tuples arriving from the left side is f·WR·λ L per unit time.
Similarly, the number of tuples resulting from right side arrivals is
f·WL·λ R. So, the total output rate for a window join is λ o= f (WR·λ L + WL·λ R) (3)

To compute the active window size, we need to estimate the
average number of valid tuples coming out of the join. A joined
tuple is considered valid (not expired) only if all the original
tuples it is comprised from are still valid. Consider the join
operator at steady state. There are WL and WR active tuples in the
windows on the left and the right sides respectively. Each of
which must have already joined with the other active tuples in the
opposite window. The resulting size of this join is f·WL·WR. Now,
consider arrivals on the left(right) side of the join. Each arriving
tuple that is inserted into the window on the left(right) side
produces f·WR(f·WL) new tuples. While at the same time, the
arriving tuple invalidates the earliest one in the window, causing
the same number of tuples to become invalid. Hence, on average,
the number of resulting active tuples stays the same. So

Wo=f·WL·WR (4)

3.1.3 The general case
The above equations are all derived for binary joins. Using

these derivations, it is possible to generalize them for the case of
n-way joins. In doing so, we arrive at the following observation.

Observation 1
The output rate of an n-ary join of n streams is constant and is

estimated by

∑ ∏∏
=

≠
=

⋅⋅=
n

k

n

ki
i

ik

ctivitiessele
all

n
o Wf

1 1

λλ (5)

where λ k is the arrival rate of stream k, and Wi is the size of the
tuple-based window predicate on stream i.

The size of the resulting active window for an n-ary join can
also be estimated by

∏∏
=

⋅=
n

i
i

ctivitiessele
all

n
o WfW

1

 (6)

Proof
The proof is simply by induction on the number of streams

involved in the join and using equations (3) and (4) for the base
case. �

It is clear from the above that the final output rate and active
window size resulting from joining n streams are independent of
how the join operation is performed. This is intuitively equivalent
to the fact that, for a traditional relational query, the size of the
final result is independent of the execution plan.

The previous observation, coupled with the equations in
Section 3.1.1, suggest that the steady state output rate of a
conjunctive continuous query, given enough resources, is
independent of the execution plan and that it should not be the
goal of query optimization.

3.1.4 Discussion
We pause to discuss some issues relating to the previous

observation. We have proved that all feasible plans of a
continuous query have the same output rate. From the semantics
discussed in Section 2, all feasible plans must produce the same
tuples in the same order, and with the same timestamps. This does
not mean, however, that all feasible plans produce the same
output at exactly the same time. To understand this, it may be
helpful again to regard a query execution plan as an open queuing
system. From queuing theory, the utilization and response times
of two stable systems may vary between the two depending on the
characteristics of each. In our context, the response time of a
result tuple is the time difference between the production time of
the tuple and its timestamp. The response time of a plan is the
average response time of all its resulting tuples. Feasible plans
differ in their response times, meaning that they produce the same
result tuples with each shifted in time, from its timestamp, by an
average amount equal to the average response time of the plan.

3.2 Processing Constraints
We move to derive the necessary computational resource

requirements for the different types of operators given their
inputs. We also compute the constraints on these resources.

3.2.1 Selections and Projections
The cost of handling a tuple for a selection or a projection

operator, Cσ , includes reading, inspecting the condition, and
writing out the result, if necessary. For a selection or a projection
operator to be able to correctly handle an arriving tuple, Cσ must
be, on average, less than the average time until the next arrival.
Hence, the following constraint holds

Cσ ·λ i < 1 (7)

3.2.2 Joins and Cartesian Products
In the case of joining infinite streams, only non-blocking

algorithms can be used, like the symmetric hash join [33]. Kang et
al. made the observation in [19] that the join cost can be divided
into the cost of performing the left and the right parts of the join,
and that the method of performing the two parts are completely
independent. They derived a general cost model for the sliding

Table 1. Variables used in estimating resource requirements.

Cσ Cost of performing a selection on a single tuple

CP Cost to probe an active window for a matching tuple just
arriving

CI Cost to insert an arriving tuple into the sliding window

CV Cost to invalidate an expired tuple from the sliding
window σ Selectivity factor of a selection predicate

f Join selectivity factor λ i Rate of arrival of tuples from source i

W Size of a tuple-based window

T Size of a time-base window

window join which we will use here. The cost of the join per unit
time is

CL = λ R·CP(L) + λ L· (CI(R) + CV(R))
CR = λ L·CP(R) + λ R· (CI(L) + CV(L))

CL
⋈

R = CL + CR

(8)

The previous calculations are necessary if asymmetric
operators will be used on the left and right side of the join. If, on
the other hand, the traditional symmetric operator is used, the cost
functions can be simplified to

CL
⋈

R = (λ R + λ L)·(CI + CV + CP) (9)
In both cases, the constraint is

CL
⋈

R < 1 (10)
In the later case, the operator can be seen as having an arrival rate
of (λ R + λ L) and a service rate of (CL + CR + CP), analogous to
equation (7).

It is worth mentioning that the cost of the join is dependent on
the join algorithm used. The model presented in [19] can be used
to choose the best possible algorithm for each binary join.

3.2.3 Notes on the Processing Constraints
The constraints derived in this section have the subtle

assumption that the operator will be the only running process in
the system. In case a host of operators are sharing processing
resources, the previous bounds are not tight. For the constraints to
become tight in this case, the cost values of each operator should
be dilated by the inverse of the fraction of time the operator is
scheduled to run on the system. For example, if it takes 1
millisecond to process a tuple for selection, but the operator is
sharing the processor fairly with another 9 identical operators,
then the cost should increase ten fold to 10 milliseconds.

Example 1
We end this section with a concrete example on the application

of the cost model. Consider the following simple SQL-like query
(the window constraint syntax is modeled after [23]):

SELECT A.a, B.b, C.c
FROM A [ROWS 10]

B [ROWS 10]
C [ROWS 10]

WHERE A.a = B.a
AND B.b = C.b

This is a simple three-way tuple-based window join between the
streams A, B, and C with the window being the latest 10 rows in

each stream. Assume 0.5 is the selectivity of A
⋈

B and 0.2 is the
selectivity of B

⋈
C. Also assume that 10, 70, and 20 are the rates

of arrival of streams A, B, and C respectively in tuples/second.
Further assume, for ease of exposition, that any join operator
takes a constant amount of time to handle an incoming tuple from
either side of the join. Since the cost of the plan is the summation
of the individual costs of its operators (in this case the two joins)
the previous assumption makes the cost of the plan directly
proportional to the summation of the input streams rates and the
output rate of the intermediate join. It is not hard to also show that
the utilization of every plan is the multiplication of this sum by
the join cost. Figure 3 shows the possible plans to evaluate the
query. Note that using the model and assuming each plan has
enough computational resources to execute, all three have the
same final output rate.

First, assume that a join operator takes 0.5 milliseconds to join
an incoming tuple, which means that the system can handle at
most 2000 tuples/second. In this case, it is obvious that any of the
plans is feasible. The plans differ dramatically, however in terms
of their resource utilization. While plan (a) keeps the system 25%
utilized (500*.0005), plan (c) has only 20% utilization
(400*.0005), and plan (b) has 14% utilization (280*.0005). Plan
(b) is therefore the best choice. Choosing plan (a) results in a
170% increase in the necessary resources to answer the query.

Now, assume that a join requires 3 milliseconds to handle an
incoming tuple, meaning that the system capacity is about 334
tuples/second. In this case, plan (a) will have 150% utilization,
plan (c) will have 120% utilization, and plan (b) will have 84%
utilization meaning that only plan (b) is feasible. Choosing either
of the other two plans will unnecessarily require load shedding.

If a join requires 5 milliseconds per incoming tuple (i.e.,
maximum system capacity of 200 tuples/second), all plans become
infeasible and some load must be shed. One way to approximate
the result of a query is to randomly drop tuples from the input
queues of the different operators. A heuristic measure of the
quality of load shedding can be the final plan throughput; the plan
that drops the least number of tuples might be the best choice (the
MAX-subset measure in [11]). We discuss in the next section how
to arrive at this choice.

⋈⋈ ⋈⋈

⋈⋈ ⋈⋈

A B

C λ
=10

λ
=70

λ
=20

f =0.5

f =0.2
⋈⋈ ⋈⋈

C λ
=20

⋈⋈ ⋈⋈ A

B

λ
=10 λ

=70

f =0.2

f =0.5
⋈⋈ ⋈⋈

λ
=10

xxxx

A

B

C

λ
=70 λ

=20

f =1

f =0.1

Plan (a) Plan (b) Plan (c) λ A
⋈

B= 0.5*(10*10+70*10) = 400 λ B
⋈

C= 0.2*(20*10+70*10) = 180 λ A
⋈

C= 1*(10*10+20*10) = 300

WA
⋈

B= 0.5*10*10 = 50 WB
⋈

C= 0.2*10*10 = 20 WA
⋈

C= 1*10*10 = 100 λ (A
⋈

B)
⋈

C = 0.2*(400*10+20*50) = 1000 λ A
⋈ (

B
⋈

C) = 0.5*(180*10+20*10) = 1000 λ (A
⋈

C)
⋈

B = 0.1*(300*10+70*100) = 1000

Figure 3. Possible plans to evaluate the join. Assuming enough resources, all three plans have the same final output rate.

4. LOAD SHEDDING
We now turn to the case when all the plans are infeasible and a

partial answer is inevitable. Load shedding [1] is one form of
approximation which reduces load by dropping tuples from the
incoming streams. Load shedding can be done by several methods
(e.g., random or semantic dropping of tuples) and can have
several objectives (e.g., maximize throughput or quality of
service), see [1][23] for a discussion. In this section, we consider
random dropping of tuples as the method of load shedding and the
goal is to maximize the output rate of the approximated query. We
consider the best way to place random filters1, and the optimal
setting of the amount that each filter should drop. As mentioned in
the introduction, there are two basic questions the optimizer needs
to answer. The first is, given a plan to shed load from, where do
we place the random filters, and how much should we drop in
each? The second, which plan do we choose for load shedding?
Intuition suggests that we should choose the best plan when
resources were sufficient. We test the validity of this intuition
here.

We assume for convenience that the random filter has
negligible cost compared to other operators. Since the drop boxes
are artificial operators, we will also assume that they are
semantically invisible (i.e., the query operators will not
differentiate between a drop in arrival rate at the source and one
resulting from a drop box.) We start by handling the case of only
selection operators and then extend the problem to include joins.

4.1 Selection Only Queries
Consider a query consisting of n consecutive filters, and an

execution plan for it that orders the filters in ascending order by
their designated numbers. The cost per tuple for filter i is ci time
units, and its selectivity is σ

i. Now, assume that the plan is
infeasible and drop boxes should be used to shed load. There are
n+1 possible places to put drop boxes (see Figure 4.) We will
assume that the selectivity of drop box i is xi (i.e., the filter
randomly drops 100*(1-xi) percent of the tuples it sees.) Notice
that the filter becomes unnecessary if its parameter is equal to 1.
The problem is to determine the optimum values of the xi’s such
that the output rate is maximized. Using the model, the output rate
of the partial answer plan will be

∏
+

=

⋅=
1

1

n

i

ioapprox xλλ (11)

and its total cost will be

() ()∑ ∏
= =

⋅=

n

i

i

j

jxicpC
1 1

 (12)

where λ o is the output rate of un-approximated plan, calculated as

∏
=

⋅=
n

j

jo

1

λσλ (13)

1 We use random filter and drop box interchangeably.

and c(i) is the cost per unit time of filter i, i=1..n, calculated as

() ∏
−

=

⋅⋅=
1

1

i

j

jicic σλ (14)

Using the previous equations, and noticing that we will only
need to drop tuples in case the plan is infeasible (i.e., the cost of
the plan is greater than 1), we can formulate the problem as a
constrained optimization one as follows

Max λ approx

Subject to

() 1=pC

1...1,10 +=≤≤ nixi

(15)

The above formulation leads to the following observation.

Observation 2

To approximate a plan for a filtering-only continuous query,
we only need to drop tuples directly from the streaming source
before they are processed by any of the filters. Furthermore, the
approximation should be performed on the plan with the least cost
in order to maximize the output rate given certain computational
resources.

Proof
The easiest way to prove the above is to consider the analogy

between the problem at hand and the one concerning the optimum
way to order a number of expensive predicates over a relational
table, replacing the input relation cardinality by the input stream
rate2. From rank optimization [14], all random filters have zero
cost and selectivities less than one, which means they will all have
infinite rank. Hence they should all be pushed to the left to be
applied the earliest. Since a combination of random filters
amounts to a single one, we deduce that the optimum solution is
to have a single filter at the beginning. This proves the first part of
the observation and leads to the following solution of equation
(15):

()

1..2,1

1

*

1

*
1

+==

=

∑
=

njx

ic

x

j

n

i
 (16)

The optimum value of the objective function becomes

oapprox x λλ ⋅= *
1

* (17)

To prove that the load shedding should be performed on the
plan with the least cost, two observations are necessary. First, the
solution above is applicable for any given plan for the query.
Second, given a certain plan, c(i) is the cost per unit time for filter

i, making the summation in the denominator of *
1x the cost of

running the plan without load shedding. Combining these two, the

lower the cost of the plan, the higher *
1x is (i.e., the fewer the

number of tuples dropped.) Since the optimum approximate rate is

directly proportional to *
1x , we deduce that the plan with the

lowest cost yields the highest rate. �

2 Another method is to directly solve the constrained optimization

problem.

σ1 x1 … σn xn+1
λ

λ
o xn

Figure 4. A plan with n filtering operators with
drop boxes in all possible places.

The first part of this observation provides a rigorous validation of
a rule of thumb reported in [25].

4.2 Join Queries
We now turn to the case where the query contains window

joins. For ease of analysis, we will only consider tuple-based
windows in this section. We first investigate the optimum method
to drop tuples from a given query plan, and then we move to
investigate the choice of the plan to shed load from.

4.2.1 Shedding Load from a Specific Plan
We first look at the where to put the drop boxes. For a query

plan joining n streams, using binary joins, a drop box can be put
before each of the two inputs to the n-1 join operators, plus a box
right after the last join is performed, resulting in 2n - 1 possible
places. We can show, however, that similar to the filter-only case,
we need to drop tuples only from the input streams before they are
processed by any join operator.

Observation 3
To approximate a plan for a continuous query joining n

streams, it is sufficient to drop tuples only from the input sources
before they are processed by any join operator.

Proof Sketch
Figure 5 shows an arbitrary join operator in an approximated

plan for the n-way join with drop boxes in all possible locations.
As a first step to prove the observation, we need to show that,
given any values of the parameters x1; x2; and x3 of the drop
boxes, we can always arbitrarily increase x3 without affecting the
rest of the plan while decreasing the cost of the join.

The operator’s effect on the rest of the plan is through its
output rate, and the resulting active window size. If we prove the
manipulations of the filter values will not affect both values, we
can guarantee they will not affect the rest of the plan.

In the case of tuple-based windows, it can be easily shown by
examining equations (4) and (6) that in steady state, the size of the
resulting active window size of any join in a query plan is always
independent of the values of the input stream rates. Hence,
manipulating the settings for the drop box won’t affect the active
window size. This leaves the resulting output rate.

For the output rate, it suffices to show that, to keep the output
rate the same after increasing x3, the values of x1 and x2 must
decrease. Since x3 does not contribute to the cost of this join, the
final effect of this manipulation would be a decrease in the join
cost.

Now, assume the arbitrary join in Figure 5 is the top most join
in the query plan. We can then consider it to be a base case and
recursively apply the previous observation to the joins feeding its

inputs until reaching the original input streams. This completes
the proof. �

Despite the difference in characteristics between time-based
and tuple-based windows (the number of active tuples in a time-
based window is dependant on the input rates), a similar
reasoning can be applied to prove the previous observation for
time-based windows.

We now turn to determining the selectivity of each box. As in
the previous section, we can formulate the problem as an
optimization one. Placing drop boxes only at the leaves of a query
plan decreases the complexity of the problem significantly. For
every input stream i to the query with rate λ i, there exists an
associated drop box with the parameter xi. Using equation (5), we
can estimate the output rate after load shedding for a query with n
input streams to be

i

n

i

i

n

ik
k

k

iesselectivit
all

approx xWf ⋅

⋅

⋅= ∑ ∏∏
=

≠
=1 1

λλ (18)

It can also be easily verified that the cost function is linear in the
values of the xi’s. We can therefore express it as

() ∑
=

⋅=
n

i

ii xapC
1

 (19)

where the ai’s are constants. The problem can then be formulated
as

Max λ approx

Subject to

() 1=pC

nixi ...1,10 =≤≤

(20)

The solution of the problem can be obtained by observing that
the problem has a linear objective function, one linear constraint
in all the variables, and a set of limiting constraints on each
variable. This problem is then an instance of the continuous
knapsack problem. Thus, the solution is by the following
algorithm:
1- Set all values of the variables to 0.
2- For every variable xi, compute the ratio

i

i

n

ik
k

k

a

W λ⋅

∏
≠
=1

which is the ratio between its coefficients in the objective
function (less the multiplication of all selectivities since it is
constant for all variables), and the equality constraint
respectively.

3- Sort the ratios in descending order.
4- If all ratios have been considered, then stop.
5- Set the value of the variable that corresponds to the current

highest ratio to the maximum possible; 100%.
6- If setting the latest variable causes C(p) to exceed 1 then

decrease it until C(p) reaches 1 and stop. Else, remove the
variable and its ratio from the list.

7- Repeat step 4. �

⋈⋈ ⋈⋈ λ A λ B

x3

Figure 5. A join operator with drop boxes placed at
all three possible locations.

λ o

x1 x2

f

4.2.2 Choice of Plan for Load Shedding
We now move to investigate the second question concerning

load shedding; what is the best plan to select? In Section 4.1 we
have confirmed for selection queries the intuition that the plan to
select is the one with the lowest resource utilization. Interestingly,
this intuition does not carry over in the case of join queries.
Depending on the available resources, a plan that would have
been suboptimal when resources were abundant can be a better
choice for load shedding. We show this using a simple example.
Consider the query of Example 1 presented in Section 3. We
tested the behavior of each of the three alternative plans for the
query when the join cost per tuple increases from 0 (infinitely fast
processor) to 100 milliseconds. For each plan, we computed the
optimum output rate at each join cost. When a plan is infeasible,
the optimum output rate is the one obtained after drop boxes have
been optimally inserted into the plan. The left side of Figure 6
shows the behavior of the three plans. All three plans start by
delivering 1000 tuples/sec., which is the maximum possible rate.
As resources become scarcer, the throughputs of the plans start to
drop as they are forced to shed load. The plans start shedding load
in the order of their average utlization, starting with the worst,
plan (a), followed by plan (c) then finally, when the join cost
exceeds 3.5 milliseconds, plan (b) starts to shed load. Somewhere
between the join cost of 4 and 4.5 milliseconds per tuple, a switch
over occurs (see the right side of Figure 6.) For join costs starting
4.5 milliseconds and higher, plan (c) becomes the best choice,
delivering the maximum throughput. This trend continues until all
plans deliver the same throughput at join cost of 100 milliseconds.

A number of interesting observations can be made on the
previous example:
1- The plan with the lowest utilization is not always the best

choice for load shedding.
2- The gap between the lowest utilization plan and the best plan

to shed load from keeps increasing until the point when the
join cost is approximately 14 milliseconds. At this point, the
throughput of the best plan is more than twice the throughput
of the lowest utilization plan.

3- It may be the case that the lowest utilization plan is actually
the worst choice, as it is in the example when the join cost
exceeds 17 milliseconds.

From the previous demonstration, it is evident that load
shedding has to be integrated in the process of optimization, as
opposed to being treated as an afterthought. When searching for
the best plan, the optimizer must take into account the resource
constraints in addition to the input stream rates, window sizes and
selectivities. This is the focus of the rest of the paper.

5. THE OPTIMIZATION FRAMEWORK
We are now ready to formulate the optimization problem for

conjunctive queries over infinite streaming sources. We start by
defining a query plan, and then we move on to the objective of the
optimization. Finally, we discuss a heuristic based dynamic
programming optimizer developed to approximate the best left
deep tree for a tuple-based sliding window conjunctive query.
Although, as in the load shedding section above, we only develop
the problem for tuple-based sliding windows, many aspects of the
solution carry to time-based windows. A complete treatment of
time-based windows is left for future work.

5.1 The Optimization Problem
Given a conjunctive query Q on streaming sources, we can

define two functions on any execution plan p for Q. The first is λ (p), which is the throughput of the plan, and the second is C(p),
which is the utilization cost of the plan. λ (p) is bounded by the
maximum output rate of the query, and C(p) is bounded from
above by 100%.

From the previous discussions it is now clear that there are two
distinct modes of operation. The first is when the query is
feasible, and the second is when it is not. For the first mode, the
goal of optimization is to minimize C(p). While in this mode, λ (p)
is fixed at its maximum value for all feasible plans p of the query.
In the second mode, the goal is to maximize λ (p). In this mode,
the value of C(p) is fixed at its maximum value for all p.

To tackle the problem in a uniform manner, we will assume
that the search space of alternative plans for Q is always equipped
with drop boxes for load shedding, if necessary. This way, all

Figure 6. Optimum throughput for the query of Example 1.
The figure on the right magnifies the upper left corner of the left figure, with more data points.

plans in the search space will be feasible, and we can treat the
problem as an unconstrained one.

Now, we can define the objective of the optimization of a
query Q as

Max () ()
()pC

p
pR

λ= , where p is a plan for Q (21)

To see why this works, consider a feasible query. For all plans
p of the query, either p has no drop boxes, which means that the
numerator of R is fixed at the maximum query throughput while
the denominator is less than 1, or p has drop boxes, which means
that the denominator is now 1, while the numerator is less than the
maximum throughput. It is then obvious that all plans with no
drop boxes have a higher value of R than any one with. Among all
plans with no drop boxes, the one with the least cost has the
highest value. If the query itself is infeasible, all plans will have
drop boxes and the one with maximum throughput will have the
highest R value.

Using equation (21), the simplest optimization algorithm is
now as follows:
1- Generate the set P of all plans of the query.
2- For all p ∈ P , compute C(p).
3- If C(p) > 1, insert drop boxes in p using the algorithm of

Section 4.2.1.
4- Compute R(p).
5- Return p* that maximizes R(p). �

The complexity of the above algorithm is obviously
combinatorial in the number of input streams being joined. Since
the algorithm to determine the optimum settings of the drop boxes
is linear in the number of input streams, the problem has, in
essence, not changed a lot from the traditional optimization
problem of conjunctive queries for relational data. Some
techniques should be directly applicable here (e.g., randomized
algorithms, as in [15].) In the next section, we propose a bottom
up dynamic programming optimizer, similar to the approach in
[24], which searches the space of left deep plans.

5.2 A Heuristic Optimizer
One technique used in relational optimization to reduce the

size of the search space is to confine the search to only left deep
plans. This was used by the original System R optimizer [24]. In
this section, we adapt the dynamic programming optimizer of
System R to search, bottom up, for the best left deep plan for a
continuous query. The optimizer uses equation (21) as its
objective function.

At first glance, the problem looks trivial. The optimizer should
treat the drop boxes as regular selection operators and proceed
with optimization normally. The catch is, unlike normal
selections, the selectivity of the drop boxes are not known
beforehand. In fact, the selectivity of the drop boxes is one output
of the optimization procedure.

The way our proposed algorithm works is by proceeding as the
original System R optimizer, building the plan bottom up by
storing the best plans for successively larger subsets of the input
streams. When computing the best plan for any subset, the
algorithm tests whether this subplan is actually feasible given the
resource constraints. If the plan is infeasible, the algorithm tunes
the values of the drop boxes placed at its input streams using the

load shedding algorithm. The subplan is then stored with the
settings of its drop boxes. At the next stage when it is
reconsidered, the stored settings of the drop boxes are taken into
account as if the drop boxes were normal filters. If at any stage the
algorithm places a drop box in front of a stream which had
another one from a previous round, the two are combined into one
drop box whose selectivity is the product of the original two.

The astute reader will notice that we have relied on the same
optimality principal employed by the System R optimizer; namely
that the best plan to join a subset of the streams of size k+1 in
which stream k+1 is the last one to join is the plan that joins
stream k+1 with the best subplan joining the other k streams. It
can be shown that the optimality principal holds if the query has a
feasible left deep plan. The algorithm is guaranteed to arrive at the
best feasible left deep plan for the query if any exists. If the query
is infeasible, however, this is not necessarily true. This is why we
call it a heuristic, since the algorithm is not guaranteed to arrive at
the best plan which maximizes throughput if no feasible plan
exists. We can intuitively argue though, that the heuristic will
perform well in most cases. The reason is, it postpones the
decision for dropping tuples until the latest possible round and
progressively adjusts the values of the drop boxes only when
needed.

We test the performance of our optimizer in the next section.

6. EXPERIMENTAL EVALUATION
In this section we discuss a number of experiments designed to

study the following points:
1- We have shown by example that reoptimization when load

shedding is necessary can be better than sticking with the
lowest utilization plan. The question is: Was this just an
artificially constructed pathological case, or is this something
that occurs often enough that it is worth paying attention to?

2- We study the benefits of reoptimization when load shedding
is necessary. In particular, we answer the question: How
much do we lose if we shed load from the lowest utilization
plan and ignore reoptimization?

3- We validate the effectiveness of the heuristic optimizer
developed in the previous section.

We limited the search space throughout the study to that of left
deep plans.

Table 2. Fixed parameters for the
randomized queries.

fA ⋈
B 0.2 WA 100

fA ⋈
C 0.5 WB 300

fB ⋈
D 0.1 WC 500

fD ⋈
E 0.001 WD 400

 WE 1000

6.1 Setup
For all experiments, we generated 1000 random continuous

queries with tuple-based sliding window joins. Each query
represents a join of five input streaming sources A, B, C, D, and
E. For all queries, the window sizes and join selectivities were
fixed, while the rates of the input streams were randomly picked
uniformly from 10 to 1000 tuples/sec. We tried the same set of
experiments with different values of the join selectivities and

window sizes but found the general trends in our results to be
relatively insensitive to these changes. Table 2 contains the
settings used for the fixed parameters.

As in Example 1 above, we assumed that the join cost per tuple
is fixed. This enables the characterization of system resources to
be represented only by this single value. Using an exhaustive
optimizer that searches the space of left deep plans, we
determined for each query the plan with the lowest resource
utilization. Then, we found the join cost per tuple at which the
query becomes infeasible. We call the inverse of this value
(measured in tuples/sec) the saturation resources, which means
that at this capacity, the system becomes saturated. We then
gradually increased the join cost and took measurements at 1%
decrements of the saturation resources (e.g., if the saturation
resources are 1000 tuples/sec, we measured at resources
decreasing by 10 tuples/sec.) At each of these points, we
optimized each query using the exhaustive optimizer, then again
with our heuristic optimizer. We report our findings at 100% of
saturation resources then decreasing by 10% until 10% of
saturation resources, then finally at the 1% level. All the reported
results are based on the predictions of our cost model of the
performance of the query plans.

6.2 The Need for Reoptimization
In this experiment we measured for every examined level of

system resources, the percentage of queries which benefited from
reoptimization (i.e. the lowest utilization plan is not the best
choice for load shedding.)

Figure 7 shows the results of the experiment. The probability
that a plan would need reoptimization rises almost linearly with
decreasing system resources. At about 60% of saturation
resources, a plan will more likely than not need reoptimization.
The curve flattens at around 30% of saturation resources, after
which, it is almost certain that reoptimization is better.

We then measure the tangible benefits of reoptimization. At
each examined resource level, we compute for each query the
throughput after load shedding for the best left deep plan with
drop boxes. We then compute the throughput of the lowest
utilization plan after load shedding. We compute the gain as the
ratio between the difference of the two throughputs and the lowest
utilization throughput (i.e., a gain of 100% means that the best
plan delivers twice the throughput of the lowest utilization one.)
We then compute the average gain for all queries.

From Figure 8, at very low resources, the gain is very
significant (almost 8 folds at the 1% mark.) Significance drops,
however, as more resources become available. At the 60% level,
when there is more than a 50% chance of having improvement,
the average gain is about 4%.

To check the effect of dilution from the queries that didn’t
need reoptimization, we repeated the previous experiment but
computed the average gain only among the queries that benefited
from reoptimization. We also report, at every resource level, the
max gain attained. The results are shown in Figure 9. As expected,
the most notable difference between the two averages was when
available resources are near the saturation level. Starting from the
50% level, most of the plans benefit from reoptimization and there
is no notable dilution effect. The figure also depicts the maximum
gain measured at each level of resources. As resources decrease,
the ratio between the maximum and the average gain also
decreases. Near the saturation resources level, the gain is
negligible for most queries needing reoptimization, but it makes a
huge difference for the worst case. With decreasing resources, the
benefit of reoptimization becomes more distributed among all
queries.

6.3 Testing the Heuristic Optimizer
Our final experiment is designed to gauge the effectiveness of

the heuristic optimizer developed in Section 5.2. To accomplish
this, at every examined level of resources, we optimized every
query using our optimizer. Then, for every query, we computed
the difference in the value of the objective function between the
plan found by the optimizer, and the best one acquired through
the exhaustive search. The ratio between this difference and the
best value is the relative error of the optimizer for this query.

0

10

20

30

40

50

60

70

80

90

100

1% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Available processing resources as a percentage of saturation resources

P
er

ce
n

ta
g

e
n

ee
d

in
g

 r
eo

p
ti

m
im

za
ti

o
n

Figure 7. Percentage of queries benefiting from
reoptimization.

Figure 8. Average gain in throughput over using the lowest
utilization plan.

0

20

40

60

80

100

120

140

160

180

200

1% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Available processing resources as a percentage of saturation resources

A
ve

ra
g

e
g

ai
n

 (
%

)

690%

Figure 9. Average and maximum gain.

0

20

40

60

80

100

120

140

160

180

200

220

1% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Available processing resources as a percentage of saturation resources

G
ai

n
 (

%
)

Max Gain
Average Gain

803%690%6619% 364%

From Figure 10, it is clear that, except at very low resources, the
performance of the heuristic optimizer is quite impressive. At the
1% mark, the worst case, the average error was 28%. For all other
scenarios, the average error never exceeded 0.2%. For the
experiments that we have conducted, the error was never more
than 100%, which means that the best throughput for the query
was always within a factor of 2 of the optimizer’s pick.

7. RELATED WORK
The existence of applications built on streaming information

motivated building specialized systems to manage streaming data.
Among the recent examples are: Niagara [9], STREAM [29],
Aurora [1], and Telegraph [28]. The survey in [5] contains a good
documentation of earlier models and systems that are also targeted
at such applications, together with a number of issues related to
building a data stream management system. Sensor networks and
databases (e.g., TinyDB [21] and the Cougar [34] project) are also
closely related.

The seminal work of [24] introduced a framework for
optimization of relational queries aimed at minimizing query
completion time. NiagaraCQ [9] aims at addressing the scalability
of a system supporting a large number of continuous queries by
grouping predicates and queries together. The work in [8][10][22]
uses similar techniques by extending the earlier work on eddies
[4] to support multiple concurrent continuous queries. The
difference between this body of work and ours is that they are all
dynamic optimization methods that adapt at run time to changing
data and query characteristics; they do not deal with static
optimization.

The Aurora system [1] treats multiple streaming sources and
multiple output queries as data flows between operators (boxes)
that are input by the user. The queries in Aurora are composed by
the user through an interface, and then the system manages them
with little, if any, modification. Similarly, the work on scheduling
operators in [6][12] deals with scheduling operators of a static
plan to minimize resource usage or response time. Different
problems related to scheduling and static resource allocation are
reported in [23] together with a brief discussion of solutions. The
assumption in such work is that a query optimizer has already
arrived at a best plan.

The work in [31] advocates moving from cardinality-based
optimization to rate-based optimization and provides a model for
a rate-based optimizer. Such work is geared towards optimizing
queries over finite streaming sources, or short lived queries on
infinite streams. It does not model the effect of sliding windows
for continuous queries over infinite sources. The work in [32]

provides a symmetric multi-join operator for multiple joined
streams to minimize memory usage as opposed to using multiple
binary join operators. Also close is [26] in which the authors
provide a queuing model for distributed eddies. One interesting
result provided is that sometimes no single plan is the best if the
goal is to achieve the maximum input rate before the system
saturates. A combination of plans running concurrently, each with
some share of the input load is proven to be better. The subtle
difference between this work and ours is that it assumes the
operators are running on different processors, hence each has its
fixed resources. Our work assumes all operators share a pool of
resources. In this case, one plan is always better; the one our
framework optimizes for. An interesting direction would be to
look at how an optimum plan can be distributed over multiple
processors if operators are allowed to be duplicated on the
different processors.

A lot of work dealt with providing partial answers to
continuous queries. In [23], the authors survey a number of
methods to arrive at a partial answer, among which is random
sampling (i.e., random dropping of tuples) discussed here. The
work in [25] provides algorithms for placing drop boxes to reduce
resource usage. It explores both random and semantic filtering.
The work in [7] also deals with the optimum placement of random
filters for multiple aggregation queries sharing operators and
resources over data streams. The difference between this body of
work and ours is that it does not explore the effect of modifying
the query plan to achieve better results. The work in [19]
discusses single join approximation using random drops in case of
either memory or computational resource shortages or both. This
work extends that by studying the problem of insufficient
computational resources for multiple joins. Also close to our work
is [11], in which the authors study the problem of maximizing the
result size of a single sliding window join in case of memory
constraints by smartly selecting tuples to drop (semantic load
shedding [1].) There is a brief discussion about extending the
work to multiple joins and to deal with resource constraints. In
this work, we deal with computational resource constraints, and
multiple window joins. A comparison between our technique
extended to handle smart load shedding and theirs after extension
to multiple joins and resource constraints is another interesting
direction.

8. CONCLUSION AND FUTURE WORK
In this paper, we proposed a framework for static optimization

of sliding window conjunctive queries over infinite streams. We
illustrated the constrained nature of the optimization problem and
proposed different goals for the optimization when computational
resources are sufficient and when they are tight. We developed a
cost model to estimate the average resource utilization and output
rate of a query plan. Using the model, we studied the problem of
how to optimally shed load from a query by randomly dropping
tuples such that the final output rate is maximized. We
demonstrated that the intuition suggesting that the plan to shed
load from is the same plan that is selected when resources are
sufficient is often times incorrect. We then proposed an
optimization algorithm that integrates resource constraints into the
optimization process. Finally, we analyzed the need for
reoptimization when resources are insufficient. We also analyzed
the effectiveness of the proposed optimization algorithm.

In developing a solution for the problem, we have made some
simplifying assumptions. There are a number of future directions

Figure 10. Average relative error for the optimizer.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Available processing resources as a percentage of saturation resources

R
el

at
iv

e
er

ro
r

(%
)

28%

to be explored by relaxing those assumptions. We have
considered the optimization of single isolated queries. In reality,
streaming systems are envisioned to handle multiple concurrent
queries, often with significant overlap in their requirements. In
this scenario resource sharing between queries is a must. This
makes multi-query optimization an immediate extension to our
work.

We have also focused on modeling the average steady state rate
of arrival for data streams. It might be more interesting to consider
the effect of the variance of the rate around its average on the
different query plans.

It is an interesting extension to this work to investigate
semantic load shedding, in which tuples are smartly dropped
based on their data values. It is not clear if the results presented
here will hold for the semantic load shedding case.

To answer the question of when to use static or dynamic
optimization, models for both the overhead of adaptability and the
change in data characteristics are needed to determine which
situations each technique is more beneficial at, and when it would
be better to use a hybrid scheme of the two.

Finally, a feasible plan that is close to 100% utilization can still
have a large response time and buffer requirements. While there is
a quick fix to this situation in our model by restricting the actual
resources to leave more head-room for the system to avoid
approaching saturation, a better approach would be to use a
queuing model to optimize directly for response time and
buffering requirements.

REFERENCES
[1] D. Abadi, D. Carney, et al. Aurora: a new model and

architecture for data stream management. The VLDB
Journal, Vol.12(2), pp. 120 – 139, 2003.

[2] A. Arasu, B. Babcock, et al. Characterizing Memory
Requirements for Queries over Continuous Data Streams.
ACM PODS, June 2002.

[3] A. Arasu, S. Babu, J. Widom. The CQL Continuous Query
Language: Semantic Foundations and Query Execution.
Technical Report, Department of Computer Sciences,
Stanford University, October 2003.

[4] R. Avnur, J. M. Hellerstein. Eddies: Continuously Adaptive
Query Processing. SIGMOD, May 2000.

[5] B. Babcock, S. Babu, et al. Models and Issues in Data
Stream Systems. PODS, June 2002.

[6] B. Babcock, S. Babu, M. Datar, R. Motwani. Chain:
Operator Scheduling for Memory Minimization in Data
Stream Systems. SIGMOD, June 2003.

[7] B. Babcock, M. Datar, R. Motwani. Load Shedding for
Aggregation Queries over Data Streams. ICDE 2004.

[8] S. Chandrasekaran, A. Deshpande, et al. TelegraphCQ:
Continuous Dataflow Processing for an Uncertain World.
CIDR, January 2003.

[9] J. Chen, D. J. DeWitt, F. Tian, Y. Wang. NiagaraCQ: A
Scalable Continuous Query System for Internet Databases.
SIGMOD, May 2000.

[10] S. Chandrasekaran, M. J. Franklin. Streaming Queries over
Streaming Data. VLDB 2002.

[11] A. Das, J. Gehrke, M. Riedewald, Approximate Join
Processing Over Data Streams. SIGMOD, June 2003.

[12] M. A. Hammad, M. J. Franklin, et al. Scheduling for shared
window joins over data streams. VLDB 2003.

[13] P. J. Haas and J. M. Hellerstein. Ripple Joins for Online
Aggregation. ACM SIGMOD, June 1999.

[14] J. M. Hellerstein. Optimization Techniques for Queries with
Expensive Methods. TODS 23(2), pp. 113-157, 1998.

[15] Y. Ioannidis and Y. Kang. Randomized Algorithms for
Optimizing Large Join Queries. SIGMOD, May 1990.

[16] T. Ibaraki, T. Kameda. On the Optimal Nesting Order for
Computing N-Relational Joins. ACM Transactions on
Database Systems, Vol. 9, No. 3, September 1984.

[17] Z. Ives, D. Florescu, et al. An Adaptive Query Execution
System for Data Integration. SIGMOD, June 1999.

[18] N. Kabra, J. DeWitt. Efficient Mid-Query Reoptimization of
Sub-Optimal Query Execution Plans. SIGMOD, June 1998.

[19] J. Kang, J. F. Naughton, S. D. Viglas. Evaluating Window
Joins over Unbounded Streams. ICDE 2003.

[20] E. D. Lazowska, J. Zahorjan, G. S. Graham, K. C. Sevcik,
Quantitative System Performance, Prentice Hall, 1984.

[21] S. Madden, M. Franklin, J. Hellerstein, W. Hong. The
Design of an Acquisitional Query Processor for Sensor
Networks. SIGMOD, June 2003.

[22] S. Madden, M. Shah, et al. Continuously Adaptive
Continuous Queries over Streams. SIGMOD, June 2002.

[23] R. Motwani, J. Widom, et al. Query Processing,
Approximation, and Resource Management, in a Data Stream
Management System. CIDR, January 2003.

[24] P. Selinger, M. Astrahan, et al. Access Path Selection in a
Relational Database Management System. SIGMOD, May
1979.

[25] N. Tatbul, U. Çetintemel, et al. Load Shedding in a Data
Stream Manager. VLDB 2003.

[26] F. Tian, D. J. DeWitt. Tuple Routing Strategies for
Distributed Eddies. VLDB 2003.

[27] The Linear Road Benchmark.
http://www.cs.brown.edu/research/aurora/linear-road.pdf.

[28] The Telegraph Project. http://telegraph.cs.berkeley.edu

[29] The Stanford Stream Data Manager.
http://www-db.stanford.edu/stream.

[30] T. Urhan, M. J. Franklin, L. Amsaleg. Cost Based Query
Scrambling for Initial Delays, SIGMOD, May 1998.

[31] S. D. Viglas, J. F. Naughton. Rate-Based Query
Optimization for Streaming Information Sources, SIGMOD,
June 2002.

[32] S. Viglas, J. F. Naughton, J. Burger. Maximizing the Output
Rate of Multi-Way Join Queries over Streaming Information
Sources. VLDB 2003.

[33] A. N. Wilschut, P. M. G. Apers. Dataflow Query Execution
in a Parallel Main-Memory Environment. PDIS 1991.

[34] Y. Yao, J. E. Gehrke, Query Processing in Sensor Networks,
CIDR 2003.

