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ABSTRACT
We consider the problem of pipelined filters, where a continuous
stream of tuples is processed by a set of commutative filters. Pipe-
lined filters are common in stream applications and capture a large
class of multiway stream joins. We focus on the problem of order-
ing the filters adaptively to minimize processing cost in an envi-
ronment where stream and filter characteristics vary unpredictably
over time. Our core algorithm, A-Greedy (for Adaptive Greedy),
has strong theoretical guarantees: If stream and filter characteristics
were to stabilize, A-Greedy would converge to an ordering within
a small constant factor of optimal. (In experiments A-Greedy usu-
ally converges to the optimal ordering.) One very important feature
of A-Greedy is that it monitors and responds to selectivities that
are correlated across filters (i.e., that are nonindependent), which
provides the strong quality guarantee but incurs run-time overhead.
We identify a three-way tradeoff among provable convergence to
good orderings, run-time overhead, and speed of adaptivity. We
develop a suite of variants of A-Greedy that lie at different points
on this tradeoff spectrum. We have implemented all our algorithms
in the STREAM prototype Data Stream Management System and
a thorough performance evaluation is presented.

1. INTRODUCTION
Many modern applications deal with data that is updated con-

tinuously and needs to be processed in real-time. Examples in-
clude network monitoring, financial monitoring over stock tickers,
sensor processing for environmental monitoring or inventory track-
ing, telecommunications fraud detection, and others. These appli-
cations have spurred interest in general-purpose stream processing
systems, e.g., [5, 6, 11, 26]. A fundamental challenge faced by
these systems is that data and arrival characteristics of streams may
vary significantly over time [6]. Since queries in stream systems
frequently are long-running, or continuous [8, 25], it is important
to consider adaptive approaches to query processing [1]. Without
adaptivity, performance may drop drastically over time as stream
and other characteristics change.
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This paper addresses the processing of data streams whose char-
acteristics vary unpredictably over time. We focus in particular on
streams processed by a set of commutative filters, where overall
processing costs depend on how the filters are ordered, and the best
orderings are dependent on current stream and filter characteristics.
Commutative filters capture many stream applications, including a
wide class of stream joins. Let us consider an example drawn from
the network monitoring domain.

Example 1. Stream processing systems can be used to support
traffic monitoring for large networks such as the backbone of an In-
ternet Service Provider (ISP) [11, 13]. A sample continuous query
in this domain is [13]:

Monitor the amount of common traffic flowing through
four routers, R1, R2, R3, and R4, in the ISP’s network
over the last 10 minutes.

A network analyst might pose this query to detect service-level
agreement violations, to find opportunities for load balancing, or
to monitor network health [13].

Data collection in the routers [13] feeds four streams which for
convenience we also denote R1, R2, R3, and R4. Each stream
tuple contains a packet identifier pid, the packet’s size, and its des-
tination dest. Figure 1 depicts an execution strategy for this query.
Each stream feeds a 10-minute sliding window, Wi for Ri, with a
hash index on pid [22]. Tuples are inserted and deleted from these
windows as data arrives and time advances.

When a tuple t is inserted into W1, the other three windows are
probed with t.pid in some order, e.g., the order W3, W4, W2 is
used in Figure 1. If all windows contain a tuple matching t.pid,
then t is sent as an insertion to the aggregation operator sum(size).
Otherwise, processing on t stops at the first window that does not
contain a matching tuple. Similar processing occurs for deletions
from W1, and for insertions and deletions to the other three win-
dows (not shown in the figure). Note that each Wi has its own
order for probing the other windows.

The stream of insertions and deletions from each window in Fig-
ure 1 is processed by a conjunction of filters in a pipelined fashion.
In this example, each filter is an index-lookup on another window,
which returns true if a matching tuple is found. Pipelined filters are
very common in stream applications [14, 29]. In general, filters can
vary considerably in cost and complexity, e.g., simple predicates
like dest = “12.34.56.78”, index-lookups on windowed streams as
in our example, longest-prefix-match joins with stored tables [11],
regular-expression matching [11], expensive user-defined functions
like domain(dest) = “yahoo.com”, and others. Pipelined filters also
capture a large class of multiway joins over streams as we will show
in this paper.
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Figure 1: Pipelined filters for updates to W1

Overall processing costs can vary widely across different filter
orderings. In our example, suppose most of the traffic flowing
through router R1 comes from R3 or R4, and rarely comes from
R2. Then, an ordering that begins with W2 is preferred for process-
ing tuples from W1 since W2 will “drop” as quickly as possible W1

tuples that will be dropped eventually.1 Further suppose that most
traffic that flows through R2 and R1 comes from R3, and rarely
comes from R4. Then, the ordering W2, W4, W3 for processing
tuples from W1 will have lower processing cost than the ordering
W2, W3, W4.

1.1 Filter Ordering
Our example motivates the problem of selecting good orderings

for pipelined filters. This problem poses several challenges:

1. Ordering decisions are based on filter selectivities, and as
we have seen, selectivities across filters may be correlated,
i.e., nonindependent. In traditional database systems, corre-
lations are known to be one of the biggest pitfalls of query
optimization [9, 30]. We are able to make strong theoretical
claims about our ordering algorithms, and achieve good per-
formance in practice, by monitoring and taking into account
correlated filter selectivities. To our knowledge this work is
the first to give polynomial-time algorithms with provable
quality guarantees for ordering correlated filters and joins.

2. For n filters, an exhaustive algorithm must consider n! pos-
sible orderings. This approach may be feasible for one-time
optimization and small n, but it quickly becomes infeasible
as n increases, and also is impractical for an online adap-
tive approach. We present a greedy ordering algorithm that
is provably within a small constant factor of optimal for our
cost model, and that nearly always finds the optimal order-
ings in practice.

3. Stream data and arrival characteristics may change over time
[6]. In addition, since we are considering arbitrary filters
which could involve, for example, joins with other data or
network communication, filter selectivities and processing
times also may change considerably over time, independent
of the incoming stream characteristics. Overall, an order-
ing that is optimal at one point in time may be extremely

1Note that if a packet p flows from router R1 to R2, then the tu-
ple corresponding to p in stream R1 will be dropped during filter
processing, but it remains in W1 and will later match with the tuple
corresponding to p in stream R2.

inefficient later on. Our adaptive approach for handling this
problem is discussed next.

1.2 Adaptive Ordering of Filters
Even with an effective greedy algorithm for filter ordering, we

face additional challenges in the continuous query environment when
stream and filter characteristics may change considerably during
the lifetime of a query.
• Run-time overhead: Suppose we have established a filter or-

dering based on current data and processing-time statistics. To
adapt to changes in stream and filter characteristics, we must
monitor continuously to determine when statistics change. In
particular, we must detect when statistics change enough that
our current ordering is no longer consistent with the ordering
that would be selected by the greedy algorithm. Since the greedy
algorithm is based on correlated filter selectivities, in theory we
must continuously monitor selectivities for all possible order-
ings of two or more filters to determine if a better overall or-
dering exists. We provide a variety of techniques for efficiently
approximating these statistics.

• Convergence properties: An adaptive algorithm continuously
changes its solution to a problem as the input characteristics
change. Thus, it is difficult to prove anything concrete about
the behavior of such an algorithm. One approach for making
claims is to prove convergence properties of an adaptive algo-
rithm: Imagine that data and filter characteristics stabilize; then
the adaptive algorithm would converge to a solution with de-
sirable properties. Our core adaptive algorithm, A-Greedy (for
Adaptive Greedy), has good convergence properties: If statis-
tics were to stabilize, A-Greedy would converge to the same
solution found by the static greedy algorithm using those statis-
tics, which is provably within a small constant factor of optimal.

• Speed of adaptivity: Even if an adaptive algorithm has good
convergence properties, it may adapt slowly. In reality, statis-
tics may not stabilize. Thus, an algorithm that adapts slowly
may constantly lag behind the current optimal solution, partic-
ularly in a rapidly-changing environment. On the other hand,
an algorithm that adapts too rapidly may react inappropriately
to transient situations. We show how A-Greedy balances adap-
tivity and robustness to transient situations.

It turns out we face a three-way tradeoff: Algorithms that adapt
quickly and have good convergence properties require significantly
more run-time overhead. If we have strict limitations on run-time
overhead then we must sacrifice either speed of adaptivity or con-
vergence. We develop a suite of variants on our statistics collec-
tion scheme and our A-Greedy algorithm that lie at different points
along this tradeoff spectrum. We have implemented all of our al-
gorithms in a Data Stream Management System and a thorough
performance evaluation is presented.

1.3 Outline of Paper
Section 2 discusses related work. Section 3 formalizes the prob-

lem and establishes notation. Section 4 presents the A-Greedy al-
gorithm and analyzes its convergence properties, run-time over-
head, and speed of adaptivity. Sections 5–7 present variants of
A-Greedy. Section 8 shows how pipelined filters and our algo-
rithms directly handle a large class of multiway stream joins. Sec-
tion 9 presents experimental evaluation of our algorithms and we
conclude in Section 10.

2. RELATED WORK
We classify related work into three categories: pipelined filters,

adaptive query processing, and multiway stream joins.
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Figure 2: Running example

When filters are independent, the optimal ordering of a set of
pipelined filters can be computed in polynomial time. Most pre-
vious work on pipelined filters and related problems makes the in-
dependence assumption and uses this ordering technique, e.g., [7,
18, 24]. Without the independence assumption, the problem is NP-
hard. Previous work on ordering of correlated filters, e.g., [23, 29],
either uses exhaustive search or proposes simple heuristics with no
provable guarantees on the solution obtained. Approximation algo-
rithms for the NP-hard pipelined set cover (or min-sum set cover)
problem are proposed in [10, 15, 27]. Our analysis of the conver-
gence properties of our adaptive algorithms is based on a mapping
from pipelined filters to pipelined set cover. In [27] we develop
a linear-programming framework to analyze several approximation
algorithms for pipelined set cover.

Previous work on adaptive query processing considers primarily
traditional relational query processing. One technique is to collect
statistics about query subexpressions during execution and use the
accurate statistics to generate better plans for future queries [4, 30].
Two other approaches [20, 21] reoptimize parts of a query plan fol-
lowing a materialization point, based on accurate statistics on the
materialized subexpression. Convergent query processing is pro-
posed in [19]: a query is processed in stages, each stage leveraging
its increased knowledge of input statistics from the previous stage
to improve the query plan. Unlike our algorithms, the algorithms
proposed in [19] do not extend to continuous queries and provide
no guarantees on convergence. Reference [31] explores the idea
of moving to different parts of a query plan adaptively when input
relations brought from remote nodes incur high latency.

The novel Eddies architecture [1, 6, 12, 25, 28] enables very
fine-grained adaptivity by eliminating query plans entirely, instead
routing each tuple adaptively across the operators that need to pro-
cess it. Our approach is more coarse-grained than Eddies, since at a
given point in time one ordering is followed by all tuples. Neverthe-
less, one of our algorithms (the Independent algorithm) is compara-
ble to the original Eddies algorithm proposed in [1]. A more recent
Eddies paper [12] reduces run-time overhead by routing tuples in
batches. However, the effects on adaptivity are not studied, and the
statistics that need to be monitored is exponential in the number of
inputs and operators. Note that one application of our algorithms
could be to provide efficient routing schemes for Eddies.

Multiway windowed stream joins have received a great deal of
attention recently, although no work has considered adaptive order-
ing to the best of our knowledge. A multiway stream join opera-
tor called MJoin is specified in [32] which studies the advantages
of MJoins over trees of binary joins in the stream environment.
Algorithms to maintain windows lazily in MJoins to improve per-
formance are presented in [16]. Reference [17] proposes different
types of sliding window specifications and algorithms to reduce
run-time memory requirements for multiway joins based on these
specifications. Multiway joins in the Eddies context are considered
in [25, 28]: [28] extends the original Eddies architecture so that the

router can simulate MJoins, while [25] considers sharing of com-
putation across queries, which we do not address in this paper.

3. PRELIMINARIES
Let query Q process input stream I , applying the conjunction

of n commutative filters F1, F2, . . . , Fn. Each filter Fi takes a
stream tuple e as input and returns either true or false. If Fi returns
false for tuple e we say that Fi drops e. A tuple is emitted in the
continuous query result if and only if all n filters return true.

A plan for executing Q consists of an ordering P = Ff(1), Ff(2),
. . ., Ff(n).

2 When a tuple e is processed by P , first Ff(1) is eval-
uated. If it returns false (e is dropped by Ff(1)), then e is not pro-
cessed further. Otherwise, Ff(2) is evaluated on e, and so on.

At any time, the cost of an ordering O is the expected time to
process an incoming tuple in I to completion (either emitted or
dropped), using O. Consider O = Ff(1), Ff(2), . . . , Ff(n). We
use d(i|j) to denote the conditional probability that Ff(i) will drop
a tuple e from input stream I , given that e was not dropped by
any of Ff(1), Ff(2), . . . , Ff(j). The unconditional probability that
Ff(i) will drop an I tuple is d(i|0). We use ti to denote the ex-
pected time for Fi to process one tuple. Note that d(i|j) and ti

are expected to vary over time as input characteristics change; we
always refer to their current values. With this notation we can now
formalize the cost of O = Ff(1), Ff(2), . . . , Ff(n) as:

n�
i=1

tiDi, where Di = � 1 i = 1� i−1
j=1(1 − d(j|j − 1)) i > 1

(1)

Our goal is to maintain filter orderings that minimize this cost at
any point in time.

Example 2. Figure 2(a) shows a sequence of tuples arriving on
stream I: 1, 2, 1, 4, .... We have four filters F1–F4, each a hash-
indexed set of values such that Fi drops a tuple e if and only if
Fi does not contain e. Let us consider the number of hash probes
required to process the input sequence shown, for different order-
ings. Note that all of the incoming tuples except e = 1 are dropped
by some filter. For O1 = F1, F2, F3, F4, the total number of
probes for the eight I tuples shown is 20. (For example, e = 2 re-
quires three probes—F1 , F2, and F3—before it is dropped by F3.)
The corresponding number for O2 = F3, F2, F4, F1 is 18, while
O3 = F3, F1, F2, F4 is optimal for this example at 16 probes.

4. THE A-GREEDY ADAPTIVE FILTER OR-
DERING ALGORITHM

In this section we develop A-Greedy, the core adaptive ordering
algorithm for pipelined filters that we propose in this paper. Let
2We use f throughout the paper to denote the mapping from po-
sitions in the filter ordering to the indexes of the filters at those
positions.



us first consider a greedy algorithm based on stable statistics. Us-
ing our cost metric introduced in Section 3 and assuming for the
moment uniform times ti for all filters, a greedy approach to filter
ordering proceeds as follows:
1. Choose the filter Fi with highest unconditional drop probability

d(i|0) as Ff(1).
2. Choose the filter Fj with highest conditional drop probability

d(j|1) as Ff(2).
3. Choose the filter Fk with highest conditional drop probability

d(k|2) as Ff(3).
4. And so on.

To factor in varying filter times ti, we replace d(i|0) in step 1 with
d(i|0)/ti, d(j|1) in step 2 with d(j|1)/tj , and so on. We refer to
this ordering algorithm as Static Greedy, or simply Greedy. We will
see later that this algorithm has strong theoretical guarantees and
very good performance in practice. Greedy maintains the following
Greedy Invariant (GI):

DEFINITION 4.1. (Greedy Invariant) Ff(1), Ff(2), . . . , Ff(n)

satisfies the Greedy Invariant if:

d(i|i − 1)

tf(i)
≥

d(j|i − 1)

tf(j)
, 1 ≤ i ≤ j ≤ n

The goal of our adaptive algorithm A-Greedy is to maintain, in
an online manner, an ordering that satisfies the GI. A-Greedy has
two logical components: a profiler and a reoptimizer. The profiler
continuously collects and maintains statistics about input charac-
teristics. These statistics are used by the reoptimizer to detect and
correct violations of the GI in the current filter ordering.

4.1 The A-Greedy Profiler
To maintain the GI, the reoptimizer needs continuous estimates

of (conditional) filter selectivities, as well as tuple-processing times.
We consider each in turn.

4.1.1 Selectivity Estimates
Our greedy approach is based on d(i|j) values, which denote

the conditional probability that Ff(i) will drop a tuple e, given that
e was not dropped by any of Ff(1), Ff(2), . . ., Ff(j). Selectiv-
ity generally refers to the inverse of drop probability—that is, the
selectivity of filter Ff(i) executed after Ff(1), Ff(2), . . . , Ff(j) is
1 − d(i|j), or the probability of a tuple passing the filter. For n fil-
ters, the total number of conditional selectivities is n2n−1. Clearly
it is impractical for the profiler to maintain online estimates of all
these selectivities. Fortunately, to check whether a given ordering
satisfies the GI, we need to check (n + 2)(n − 1)/2 = O(n2)
selectivities only. Thus, by monitoring O(n2) selectivities, we can
detect when statistics change sufficiently that the GI is violated by
the current ordering.

Once a GI violation has occurred, to find a new ordering that
satisfies the GI we may need O(n2) new selectivities in the worst
case. Furthermore, the new set of required selectivities depends on
the new input characteristics, so it cannot be predicted in advance.
Our approach is to balance run-time monitoring overhead and the
extra computation required to correct a violation: The profiler does
not estimate filter selectivities directly. Instead, it maintains a pro-
file of tuples dropped in the recent past. The reoptimizer can com-
pute any selectivity estimates that it requires from this profile. As
we will see in Section 4.2, the reoptimizer maintains a view over
this profile for efficient incremental monitoring of conditional se-
lectivities.

The profile is a sliding window of profile tuples created by sam-
pling tuples from input stream I that get dropped during filter pro-
cessing. A profile tuple contains n boolean attributes b1, . . . , bn

corresponding to filters F1, . . . , Fn. Profile tuples are created as
follows: When a tuple e ∈ I is dropped during processing, e is
profiled with probability p, called the drop-profiling probability. If
e is chosen for profiling, processing of e continues artificially to de-
termine whether any of the remaining filters unconditionally drop
e. The profiler then logs a tuple with attribute bi = 1 if Fi drops e
and bi = 0 otherwise, 1 ≤ i ≤ n.

The profile is maintained as a sliding window so that older input
data does not contribute to statistics used by the reoptimizer. This
profile window could be time-based, e.g., tuples in the last 5 min-
utes, or tuple-based, e.g., the last 10,000 tuples. The window must
be large enough so that:
1. Statistics can be estimated with high confidence.
2. Reoptimization is robust to transient bursts.

In our current implementation, we fix a single drop-profiling proba-
bility and profile window size for each pipelined-filter query. There
may be advantages to modifying these parameters adaptively, which
we plan to explore in future work (Section 10).

Example 3. Figure 2(b) shows the profile window for the exam-
ple in Figure 2(a) when the drop-profiling probability is 1, i.e., all
dropped tuples are profiled, and the profile window is a tuple-based
window of size 6.

4.1.2 Processing-Time Estimates
In addition to selectivities, the GI is based on expected time ti for

each filter Fi to process a tuple. Since overhead is incurred to mea-
sure and record processing times, we want to measure processing
times for only a sample of tuples. Furthermore, so that old statis-
tics are not used by the reoptimizer, we maintain a sliding window
of processing-time samples. While the sampling rate and sliding
window for processing-time estimates need not be the same as for
selectivity estimates, currently we use the same profile tuples as for
selectivity estimates, and record the times as n additional columns
in the profile window (not shown in Figure 2(b)). We use ai to
denote the average time for Fi to process a tuple, computed as the
running average of processing-time samples for Fi.

4.2 The A-Greedy Reoptimizer
The reoptimizer’s job is to ensure that the current filter ordering

satisfies the GI. Specifically, the reoptimizer maintains an ordering
O such that O satisfies the GI for statistics estimated from the tu-
ples in the current profile window. For efficiency, the reoptimizer
incrementally maintains a specific view over the profile window.
We describe this view next, then explain how the view is used to
maintain the GI.

4.2.1 The Matrix View
The view maintained over the profile window is an n × n up-

per triangular matrix V [i, j], 1 ≤ i ≤ j ≤ n, so we call it the
matrix view. The n columns of V correspond in order to the n fil-
ters in O. That is, the filter corresponding to column c is Ff(c).
Entries in the ith row of V represent the conditional selectivities
of filters Ff(i), Ff(i+1), . . . , Ff(n) for tuples that are not dropped
by Ff(1), Ff(2), . . . , Ff(i−1). Specifically, V [i, j] is the number
of tuples in the profile window that were dropped by Ff(j) among
tuples that were not dropped by Ff(1), Ff(2), . . . , Ff(i−1). Notice
that V [i, j] is proportional to d(j|i − 1).

The reoptimizer maintains the ordering O such that the matrix
view for O always satisfies the condition:

V [i, i]

af(i)

≥
V [i, j]

af(j)

, 1 ≤ i ≤ j ≤ n (2)



1. /** Input: Profile tuple 〈b1, . . . , bn〉 inserted into the profile window */
2. /** Find the first filter Ff(dc) that dropped the corresponding tuple */
3. dc = 1;
4. while (bf(dc) == 0)
5. dc = dc + 1;
6. /** Increment V entries for filters that dropped the tuple */
7. for (c = dc; c ≤ n; c = c + 1)
8. if (bf(c) == 1)
9. for (r = 1; r ≤ dc; r = r + 1)
10. V [r, c] = V [r, c] + 1;

Figure 3: Updating V on an insert to the profile window

1. /** old, new: Values of V [i, j]/af(j) before and after an update */
2. if (new > old and i < j and V [i, i]/af(i) < new)
3. Violation at position i, so invoke Figure 5 with input i;
4. if (new < old and i == j)
5. for (c = i + 1; c ≤ n; c = c + 1)
6. if (new < V [i, c]/af(c)) {
7. Violation at position i, so invoke Figure 5 with input i;
8. return; }

Figure 4: Detecting a violation of the Greedy Invariant

By the definition of V , Equation (2) is equivalent to saying that O
satisfies the GI for the statistics estimated from the tuples in the
profile window. If the estimated V [i, j] and ai represent the real
d(j|i − 1) and ti respectively, then O satisfies the GI.

Example 4. Consider the scenario in Figure 2 and assume that
all measured processing times are equal (not unreasonable for hash-
probes into similarly-sized tables), so ai = 1, 1 ≤ i ≤ n. Fig-
ure 2(c) shows the matrix view over the profile window in Fig-
ure 2(b). Ordering O = F3, F1, F2, F4 satisfies the GI. Recall
from Example 2 that we computed this ordering as having the low-
est number of hash probes to process the example input stream.

Matrix view V must be updated as profile tuples are inserted
into and deleted from the profile window. Figure 3 contains the
pseudocode for updating V when a new profile tuple is recorded.
The same code is used for deletion of a profile tuple, with line 10
replaced by V [r, c] = V [r, c] − 1.

4.2.2 Violation of the Greedy Invariant
Suppose an update to the matrix view or to a processing-time

estimate causes the following condition to hold:

V [i, i]

af(i)

<
V [i, j]

af(j)

, 1 ≤ i < j ≤ n (3)

Equation (3) states that Ff(j) has a higher ratio of drop probability
to processing time for tuples that were not dropped by Ff(1), Ff(2),
. . ., Ff(i−1) than Ff(i) has. Thus, O = Ff(1), . . ., Ff(i), . . . , Ff(j),
. . . , Ff(n) no longer satisfies the GI. We call this situation a GI vi-
olation at position i. An update to V or to an ai can cause a GI
violation at position i either because it reduces V [i, i]/af(i), or be-
cause it increases some V [i, j]/af(j), j > i. Figures 4 and 5 con-
tain pseudocode to detect and to correct, respectively, violations of
GI at position i.

Example 5. From Example 4 and Figure 2(c), O = F3, F1, F2,
F4 satisfies the GI. Let the next two tuples arriving in I be 3 and
6 respectively, both of which will be dropped. Since the drop-
profiling probability is 1, both 3 and 6 are profiled, expiring the

1. /** Input: O violates the Greedy Invariant at position i */
2. maxr = i;
3. for (r = i; r ≤ maxr; r = r + 1) {
4. /** Greedy Invariant holds at positions 1, . . . , r − 1 and at
5. * maxr + 1, . . . , n. Compute V entries for row r */
6. for (c = r; c ≤ n; c = c + 1)
7. V [r, c] = 0;
8. for each profile tuple 〈b1, b2, . . . , bn〉 in the profile window {
9. /** Ignore tuples dropped by Ff(1), Ff(2), . . . , Ff(r−1) */
10. if (bf(1) == 0 and bf(2) == 0 and · · · and bf(r−1) == 0)
11. for (c = r; c ≤ n; c = c + 1)
12. if(bf(c) == 1) V [r, c] = V [r, c] + 1;
13. }

14. /** Find the column maxc with maximum V [r,maxc]
tf(maxc)

*/

15. maxc = r;
16. for (c = r + 1; c ≤ n; c = c + 1)
17. if (V [r, c]/af(c) > V [r,maxc]/af(maxc)) {
18. maxc = c;
19. if (maxc > maxr) maxr = maxc;
20. }
21. if (r 6= maxc) {
22. /** Current filter Ff(maxc) becomes the new Ff(r).
23. * We swap the filters at positions maxc and r */
24. for (k = 0; k ≤ r; k = k + 1)
25. Swap V [k, r] and V [k,maxc]; }

Figure 5: Correcting a violation of the Greedy Invariant

earliest two profile tuples in the 6-tuple window. Figure 6(a) shows
the resulting profile window. Figure 6(b) shows the updated matrix
view, which indicates a GI violation at position 1. (Recall that pro-
cessing times are all 1.) The new ordering F4, F3, F1, F2 satisfying
the GI and the corrected matrix view are shown in Figure 6(c).

4.2.3 Discussion
From the algorithm in Figure 5 we see that if we reorder the fil-

ters such that there is a new filter at position i, then we may need to
reevaluate the filters at positions > i because their conditional se-
lectivities may have changed. Each reevaluation requires a full scan
of the profile window to compute the required conditional selectiv-
ities. Thus, the algorithm in Figure 5 may require anywhere from 1
to n − i scans of the profile window, depending on the changes in
input characteristics.

The adaptive ordering can thrash if both sides of Equation (2) are
almost equal for some pair of filters. To avoid thrashing, we flag a
violation and invoke the algorithm in Figure 5 only if:

V [i, i]

af(i)

< α
V [i, j]

af(j)

, 1 ≤ i < j ≤ n (4)

Parameter α ≤ 1, called the thrashing-avoidance parameter, is a
constant to reduce the possibility of thrashing. α has a theoretical
basis as we show in the next section.

We now analyze the behavior of A-Greedy with respect to the
three important properties introduced in Section 1: guaranteed con-
vergence to a good plan in the presence of a stable environment,
run-time overhead to achieve this guarantee, and speed of adaptiv-
ity as statistics change.

4.3 Convergence Properties
We say the stream and filter characteristics have stabilized when

the following three conditions hold over a long interval of time:
C1: The data distribution of stream tuples is constant.
C2: For every subset of filters F1, F2, . . . , Fn, the data distribution

of input tuples passing all of the filters in the subset is constant.
C3: The expected processing time ti for each filter Fi is constant.
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When stream and filter characteristics stabilize, A-Greedy soon
produces the same filter ordering that would be produced by the
Static Greedy algorithm (Section 4), namely the ordering that guar-
antees the GI (Definition 4.1). We prove that this ordering is within
a small constant factor of the optimal ordering according to our cost
metric.

THEOREM 4.1. When stream and filter characteristics are sta-
ble, the cost of a filter ordering satisfying the GI is at most four
times the cost of the optimal filter ordering.

A complete proof is provided in the online technical report [2].
The key to the proof is showing that the filter ordering problem
is equivalent to the pipelined set cover problem [10, 15, 27]. The
proof establishes the equivalence of our problem to pipelined set
cover and shows that Static Greedy is equivalent to a greedy 4-
approximation algorithm for pipelined set cover [10, 15, 27].

The equivalence of pipelined filters and pipelined set cover brings
out some interesting characteristics of our problem. Pipelined set
cover is MAX SNP-hard [27], which implies that any polynomial-
time ordering algorithm can at best provide a constant-factor ap-
proximation guarantee for this problem. Reference [15] shows that
the factor 4 in Theorem 4.1 is tight. However, a nice property is
that the constant factor depends on problem size, e.g., for 20, 100,
and 200 filters the bound is 2.35, 2.61, and 2.8 respectively; the
theoretical constant 4 requires an infinite number of filters. Irre-
spective of these theoretical bounds, our experiments in Section 9
show that A-Greedy usually finds the optimal ordering.

Recall from the end of Section 4 that we introduce a constant
α ≤ 1 to avoid thrashing behavior, replacing equation (3) with
equation (4) in determining whether the GI is violated. When this
parameter is incorporated, the constant 4 in Theorem 4.1 is replaced
with 4

α
[27]. Here too, the constant depends on the number of

filters, and generally the optimal ordering is found in practice.

4.4 Run-time Overhead and Adaptivity
The overhead of adaptive ordering using A-Greedy is the run-

time cost of the profiler and the reoptimizer. It can be divided into
four components:

1. Profile-tuple creation. The profiler creates profile tuples for
a fraction of dropped tuples equal to the drop-profiling prob-
ability. To create a profile tuple for a tuple e dropped by
Ff(i), the profiler needs to additionally evaluate the n− i fil-
ters following Ff(i), recording whether the filter is satisfied
and measuring the time for each filter to process e.

2. Profile-window maintenance. The profiler must insert and
delete profile tuples to maintain a sliding window. It also
must maintain the running averages ai of filter processing
times as tuples are inserted into and deleted from the profile
window.

3. Matrix-view update. The reoptimizer updates V (Figure 3)
whenever a profile tuple is inserted into or deleted from the
profile window, accessing up to n2/4 entries.

4. Detection and correction of GI violations. The reoptimizer
must detect violations (Figure 4) caused by changes in input
characteristics, and correct them (Figure 5). To detect a vi-
olation on an update, up to n entries in V may need to be
accessed, while it may require up to n − i full scans of the
profile window to correct a GI violation at position i.

A change in stream or filter characteristics that causes a GI viola-
tion will cause a violation of Equation (2) and will be detected im-
mediately. Furthermore, A-Greedy can correct the violation imme-
diately (Figure 5), because any additional conditional selectivities
required to find the new filter ordering can be computed from the
existing profile window. Thus, A-Greedy is a very rapidly adapting
algorithm.

5. THE SWEEP ALGORITHM
As we have seen in the previous section, A-Greedy has very good

convergence properties and extremely fast adaptivity, but it imposes
nonnegligible run-time overhead. Thus, it is natural to consider
whether we can sacrifice some of A-Greedy’s convergence prop-
erties or adaptivity speed to reduce its run-time overhead. It is
possible to do so, as we demonstrate through several variants of
A-Greedy presented in this and the next two sections.

A-Greedy detects every violation of GI in an ordering O as soon
as it occurs by continuously verifying the relative ordering for each
pair of filters in O. Suppose instead that at a given point in time we
only check for violations of GI involving the filter at one specific
position j, with respect to any filter at a position k < j. By rotating
j over 2, . . . , n, we can still detect all violations, although not as
quickly as A-Greedy. This approach is taken by our first variant of
A-Greedy, which we call Sweep.

Sweep proceeds in stages. During a stage, only the filter at a
position j in O, i.e., Ff(j), is profiled. (Details of profiling are
given momentarily.) A stage ends either when a violation of GI
at position j is detected, or when a prespecified number of profile
tuples are collected with no violation. Sweep maintains a weaker
invariant than the GI.

DEFINITION 5.1. (Sweep Invariant) Let Ff(j) be the currently
profiled filter. Ff(1), . . ., Ff(n) satisfies the Sweep Invariant if:

d(i|i − 1)

tf(i)

≥
d(j|i − 1)

tf(j)

, 1 ≤ i < j

Within each stage, Sweep works like A-Greedy: A profiler col-
lects profile tuples and a reoptimizer detects and corrects viola-
tions of the Sweep Invariant efficiently by maintaining a matrix
view V over the profile tuples. To maintain the Sweep Invari-
ant when Ff(j) is being profiled, the reoptimizer needs to main-
tain V [i, i], 1 ≤ i ≤ j and V [i, j], 1 ≤ i < j only, as shown
in Figure 7(a). Furthermore, to maintain these entries, only at-
tributes bf(1), bf(2), . . . , bf(j) in the profile window are required.
The Sweep profiler collects profile tuples by profiling dropped tu-
ples with the same drop-profiling probability as the A-Greedy pro-
filer. However, for each profiled tuple, the Sweep profiler needs to
additionally evaluate Ff(j) only.

5.1 Convergence Properties, Run-time Over-
head, and Adaptivity

Like A-Greedy, if characteristics stabilize then Sweep provably
converges to an ordering that satisfies the GI. Furthermore, the run-
time overhead of profiling and reoptimization is lower for Sweep
than for A-Greedy: For a profiled tuple that is dropped by Ff(i),
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the A-Greedy profiler evaluates n − i additional filters, while the
Sweep profiler evaluates at most one additional filter. Similarly,
the worst-case cost of updating V for profile-tuple insertions and
deletions is O(n2) for A-Greedy, but O(n) for Sweep.

The lower run-time overhead of Sweep comes at the cost of re-
duced adaptivity speed compared to A-Greedy. Since only one fil-
ter is profiled in each stage of Sweep, an ordering that violates the
GI can remain undetected for a relatively long time (up to n − 2
stages of Sweep), and can have arbitrarily poor performance. Even
after the violation is detected, Sweep may take longer to converge
to the new GI ordering than A-Greedy would.

6. THE INDEPENDENT ALGORITHM
A-Greedy is designed specifically to perform well in the pres-

ence of nonindependent filters. Suppose we assume the filters are
independent, an assumption made frequently in database literature
although it is seldom true in practice [9, 30]. Under the indepen-
dence assumption, conditional selectivities reduce to simple one-
filter selectivities, and the GI reduces to the following invariant:

DEFINITION 6.1. (Independent Invariant) Ff(1), Ff(2), . . .,
Ff(n) satisfies the Independent Invariant if:

d(i|0)

tf(i)

≥
d(j|0)

tf(j)

, 1 ≤ i ≤ j ≤ n

The Independent algorithm maintains the above invariant irrespec-
tive of whether the filters are actually independent or not. Like
Sweep, Independent can be implemented as a variation of A-Greedy.
To maintain the Independent Invariant, profile tuple creation is the
same as in A-Greedy, but since conditional selectivities are not
needed, the drop-profiling probability can be lower than in A-Greedy.
Furthermore, the reoptimizer needs to maintain the entries in the
first row of V only, as shown in Figure 7(b). The original Eddies
algorithm for adaptive ordering [1], ordering algorithms proposed
recently for multiway stream joins [16, 32], and certain ordering al-
gorithms for relational joins [24], all are similar to the Independent
algorithm.

6.1 Convergence Properties, Run-time Over-
head, and Adaptivity

Convergence properties of the Independent algorithm depend on
whether the assumption of filter independence holds or not. If the
filters are all independent, then Independent converges to the opti-
mal ordering (not just the GI ordering) [18], and so does A-Greedy.
However, if the filters are not independent, then the cost of the or-
dering produced by Independent can be O(n) times worse than the
GI ordering, as we show in the following example.

Example 6. Consider the pipelined filters in Example 2, but with
n filters instead of four. Let input characteristics stabilize such that
tuples arriving in I are distributed uniformly in [1, 2, . . ., 100]. Let
F1–Fn−1 contain {1, 2, . . ., 49}, let Fn contain {50, 51, . . ., 100},
and assume uniform processing times (ti = 1, say) for all filters.
Since F1, . . . , Fn−1 all have a higher probability of dropping a tu-
ple than Fn, Independent will converge to an ordering Oi that is a

permutation of F1, . . . , Fn−1 followed by Fn. The expected num-
ber of filters processed per input tuple is 0.49n+0.51. On the other
hand, A-Greedy will converge to an ordering Og starting with one
of F1, . . . , Fn−1, then Fn, then the remaining filters in some order.
The expected number of filters processed per input tuple is 1.49,
which is optimal.

Independent cannot guarantee the good convergence properties of
A-Greedy or Sweep, as we have just seen. However, like A-Greedy
it adapts to changes instantaneously, and with a lower drop-profiling
probability and maintenance of V limited to the first row, it has
lower run-time overhead.

7. THE LOCALSWAPS ALGORITHM
The three algorithms we have seen so far all detect invariant vi-

olations involving filters Fi and Fj that are arbitrarily distant from
one another in the current ordering. An alternative approach is to
monitor “local” violations only. The LocalSwaps algorithm main-
tains the following invariant.

DEFINITION 7.1. (LocalSwaps Invariant) Ff(1), Ff(2), . . .,
Ff(n) satisfies the LocalSwaps Invariant if:

d(i|i − 1)

tf(i)
≥

d(i + 1|i − 1)

tf(i+1)
, 1 ≤ i < n

Intuitively, LocalSwaps detects situations where a swap between
adjacent filters in O would improve performance. To maintain the
LocalSwaps Invariant, the reoptimizer needs to maintain only the
entries in two diagonals of V , as shown in Figure 7(c). This reduces
the cost of profiling: For each profiled tuple dropped by Ff(i), the
LocalSwaps profiler needs to additionally evaluate Ff(i+1) only.
Furthermore, when a profile tuple is inserted into or deleted from
the profile window, only a constant number of V entries need be
updated.

7.1 Convergence Properties, Run-time Over-
head, and Adaptivity

Unlike our other algorithms, the convergence behavior of Local-
Swaps depends on how the stream and filter characteristics change.
In the best cases, LocalSwaps converges to the same ordering as
A-Greedy. However, in some cases the LocalSwaps ordering can
have O(n) times higher cost than the GI ordering, as we show in
the following example.

Example 7. Consider the pipelined filters in Example 2, but with
n filters instead of four. Let input characteristics stabilize such that
tuples arriving in I are distributed uniformly in [1, 2, . . ., 100]. Let
Fi contain {1, 2, . . . , 100}−{(i−1)δ, . . . , iδ}, where δ = 100/n,
and , and assume uniform processing times (ti = 1, say) for all fil-
ters. Suppose initially A-Greedy and LocalSwaps are both using
ordering O = F1, F2, . . . , Fn satisfying their respective invari-
ants. Suppose the tuples in Fn change so that Fn now contains
{(n − 2)δ, . . . , (n − 1)δ} and this is the only change before stabi-
lization. The LocalSwaps Invariant still holds for F1, F2, . . . , Fn,
so LocalSwaps does not modify O. However, A-Greedy will mod-
ify O to O′ = Fn, Fn−1, then the remaining filters in some order,
which is optimal. The expected number of filters processed per
input tuple for O and O′ are 50(n+1) and 1+200/n respectively.

Clearly, LocalSwaps has lower run-time overhead than A-Greedy
because of its lower profiling and view-maintenance cost. How-
ever, as with any algorithm that is restricted to local moves, Lo-
calSwaps may take more time to converge to the new plan when
stream and filter characteristics change, and it may get stuck in a
local optima as shown in Example 7.
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8. ADAPTIVE ORDERING OF MULTIWAY
JOINS OVER STREAMS

In this section we show how pipelined filters and the A-Greedy
algorithm (along with its variants) apply directly to a large class
of multiway stream joins. We focus on the MJoin operator [32]
for joining multiple windowed streams. Previous work [16, 32]
has shown that MJoins have many advantages over alternate exe-
cution strategies in the streams environment. We assume that join
windows are stored in their entirety in memory, which is typical in
stream systems [11, 26].

An MJoin M computes the join σP (S0[W0] × S1[W1] × · · · ×
Sn−1[Wn−1)] of n windowed streams. P is a conjunction of join
predicates. Each windowed stream Si[Wi] itself produces a stream
of inserts and deletes to the window, which drive the MJoin com-
putation. (In fact MJoin can be applied in any situation where a
stream of inserts and deletes to synopses are processed [3].) For
each stream Si, M maintains a join order Oi, which is an ordering
of {S0, S1, . . . , Sn−1}−{Si}, specifying the order in which win-
dow inserts and deletes from Si are joined with the other stream
windows.

Let us consider undirected join graphs, with streams as vertices
and an edge between Si and Sj if and only if there is a join predi-
cate between them. Join graphs can be acyclic as in Figure 8(a), or
cyclic as in 8(b). A specific type of acyclic join seen frequently
in practice is a star join, as shown in Figure 8(c). Note that a
star join can have additional join predicates which can be elimi-
nated because of predicate transitivity; for example, a natural join
of S0[W0], . . . , S4[W4] on an attribute A, which originally has the
fully-connected join graph in Figure 8(d), can be reduced to the star
join in Figure 8(c) because of predicate transitivity.

8.1 Adaptive Ordering of Star Joins
First consider processing window inserts and deletes for the root

(center) stream of the star join. For presentation we will abuse
terminology and refer to these inserts and deletes as “tuples in
stream S.” Let the root be S0 and suppose we have ordering O =
Sf(1), . . . , Sf(n−1). An incoming tuple s ∈ S0 can be processed
along ordering O using one of two common techniques derived
from relational query processing. The first technique treats O as a
binary linear processing tree (BLPT) [24], which materializes the
complete join output for each prefix of O before proceeding to the
next stream. BLPTs are used in [32]. The second technique treats
O as a pipelined processing tree (PPT) [24], which uses a multiway
nested loop to generate the join output without materializing any in-
termediate results. PPTs are used in [16]. Both BLPTs and PPTs
are suboptimal for star joins because they may do more processing
than necessary for O tuples that get dropped eventually and do not
produce any output. Thus, we introduce a more efficient technique
that processes each tuple s0 ∈ S0 in two phases—drop probing and
output generation—applied sequentially. For a given ordering, our
technique does the minimum amount of processing for every tuple.

In the drop-probing phase, each Si window is probed with s0

to find whether s0 joins with a tuple in the window or not. The

probes are done independently but in the order specified by O. If
s0 does not join with any tuple in Sf(i)’s window, i.e., Sf(i) drops
s0, then we do not further process s0. Otherwise, once we know
that Sf(i) does not drop s0, we move on to probe Sf(i+1)’s win-
dow without generating any more matches in Sf(i). In each case
we save enough state so that the join computation performed for
drop-probing need not be redone if we get to the output generation
phase. If none of S1, S2, . . . , Sn−1 drop s0, then we go to the out-
put generation phase, which uses a PPT to output s0 ./ S1[W1] ./
· · · ./ Sn−1[Wn−1].

For a tuple si in a nonroot stream Si, the join with the root
stream S0 will always be done first to avoid Cartesian products.
Then, drop-probing and output generation (if required) will be in-
voked separately for each tuple in si ./ S0[W0]. Because PPTs do
not materialize intermediate results and all processing happens in
memory, we have the following property.

PROPERTY 8.1. Our execution technique for star joins ensures
that the processing required for input tuples that are not dropped is
independent of the order used to process them.

By Property 8.1, only the cost of the drop-probing phase affects
the performance of a given ordering in a star join. Since drop-
probing for star joins is clearly an instance of pipelined filters, the
A-Greedy algorithm can be used to order the joins adaptively, and
Theorem 4.1 applies directly.

8.2 Adaptive Ordering of Acyclic and Cyclic
Joins

Consider the processing of S0 tuples in the acyclic join depicted
in Figure 8(a). We can think of the edges in this join graph as
specifying a set a precedence constraints on ordering costs. For
example, O = S1, S3, S2, S4, S5 will never have a cost lower than
O = S1, S2, S3, S4, S5. Furthermore, S3 will drop an s0 ∈ S0

only if it drops every S2 tuple in s0 ./ S2[W2].
Because of these complications, processing of general acyclic

(as opposed to star) joins is not equivalent to pipelined filters, so
we do not get the same theoretical guarantees. Nevertheless, the
A-Greedy algorithm and its variants, and the two-phase execution
strategy for star joins from the previous subsection, can be extended
to acyclic joins in a relatively straightforward manner. To provide
an ordering of stream joins for S0 tuples, A-Greedy will consider
each of the n − 1 distinct paths from S0 to another Si as a sin-
gle entity, monitoring the probability that this path will drop an
S0 tuple and recording the processing time. Details of profiling
and maintaining a matrix-view extend from Section 4 directly. The
two-phase execution strategy from Section 8.1 can be extended to
acyclic joins so that Property 8.1 holds, provided the ordering sat-
isfies the precedence constraints imposed by the join. Cyclic joins
also can be handled: We choose a spanning tree of the join graph,
then treat the join as the corresponding acyclic join as in [1, 24, 28].

Full details of join handling are omitted due to space constraints,
but as we have seen, most of our techniques and results apply to a
wide class of multiway joins.

9. EXPERIMENTAL EVALUATION
We have implemented the four adaptive ordering algorithms—

A-Greedy, Sweep, Independent, and LocalSwaps—in the STREAM
prototype Data Stream Management System [26]. The algorithms
are used to order pipelined filters over a single stream and for join
ordering in MJoins (Section 8). The experimental results presented
in this section are for n synthetic filters F1, . . . , Fn on a stream
S0, where each Fi probes a hash index on a 10,000-tuple sliding
window over a stream Si for matches, simulating one pipeline of



Parameter Default Value

Drop-profiling probability 0.01 (A-Greedy), 0.005 (Independent)
Profile-window size 500 profile tuples (Sweep),

1000 profile tuples (others)
Thrash-avoidance parameter α = 0.9
Correlation factor Γ = 2
Unconditional filter selectivity 50%
Filter processing cost 1 hash probe on 10,000-entry index

Table 1: Default values used in experiments

an MJoin. Each filter evaluation probes the memory-resident hash
index, then makes a randomized selection decision with the appro-
priate conditional selectivity. All experiments were performed on a
700 MHz Linux machine with 1024 KB processor cache and 2 GB
memory.

9.1 Summary of Experimental Results

1. Under stable stream and filter characteristics, A-Greedy’s or-
dering is usually optimal, while Independent’s ordering al-
most always has higher cost.

2. Sweep always converges on A-Greedy’s ordering under sta-
ble stream and filter characteristics. LocalSwaps usually also
finds this ordering.

3. As expected, Sweep, Independent, and LocalSwaps have low-
er run-time overhead than A-Greedy. As the number of fil-
ters increases, or as some filters become much more expen-
sive than the others, the run-time overhead of both Indepen-
dent and A-Greedy increases, while that of Sweep and Lo-
calSwaps remains stable.

4. As expected, Independent and A-Greedy adapt faster to chan-
ges than Sweep or LocalSwaps. As the frequency of changes
increases, the relative performance of A-Greedy over the other
three algorithms improves because it adapts faster, usually
finding the optimal ordering immediately.

9.2 Convergence Experiments
Our first set of experiments study the convergence behavior of

our algorithms when stream and filter characteristics stabilize. The
factors affecting performance during convergence are the number,
selectivity, and cost of the filters, and the correlation among them.
We use a relatively straightforward model to capture correlation
among filters. The n filters are divided into dn/Γe groups contain-
ing Γ filters each, where Γ is called the correlation factor. Two
filters are independent if they belong to different groups, otherwise
they are positively correlated such that they produce the same re-
sult on 80% of input tuples. The filters are completely independent
when Γ = 1 and are most correlated when Γ = n. For each ex-
periment, we fix Γ and an unconditional selectivity for each filter
group, which implies the conditional selectivities based on Γ and
our 80% rule. The default values of all parameters used in the ex-
periments are shown in Table 1.

Figure 9 shows the performance of A-Greedy and Independent
for different values of n. (Sweep and LocalSwaps are considered
later.) The y-axis shows the average processing rate in tuples per
second, measured over a large interval after convergence. For small
n, Figure 9 also shows the performance of the Optimal algorithm,
which uses the optimal ordering computed from the input statis-
tics by an offline exhaustive search, thereby showing the maxi-
mum attainable performance. A-Greedy is better than Independent
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throughout, and this performance gap widens with n. A-Greedy’s
performance is near-optimal for small n, but it degrades as n in-
creases. As we will see in Section 9.3, this degradation is because
of A-Greedy’s increasing run-time overhead.

Figure 10 shows the performance of A-Greedy and Independent
for different filter selectivities. The relative performance of A-
Greedy with respect to Independent is best for intermediate values
of filter selectivities. For low selectivities, most of the tuples get
dropped by the first filter, which is the same for both algorithms.
For high selectivities, very few tuples get dropped, so costs do not
vary significantly across orderings.

Figure 11 shows the performance of A-Greedy and Independent
for different values of the correlation factor Γ. As expected, the
relative performance of A-Greedy initially improves with respect
to Independent as the filters become more correlated. Because of
our simple model of correlation, when Γ is close to n all the filters
are similar and costs do not vary much across orderings, so the
performance improvement of A-Greedy is less significant.

9.3 Run-time Overhead Experiments
Table 2 breaks down the time spent by A-Greedy for n = 3 and

n = 8 under stable stream and filter characteristics. In each case
we consider two values of the drop-profiling probability p (Sec-
tion 4.1.1): the default p = 0.01 and a higher p = 0.05. The listed
tasks refer to Section 4.4. More than 98% of A-Greedy’s time is
spent either performing useful tuple processing or creating profile
tuples. The overhead of creating profile tuples increases both with
n and with p, going from less than 1% for n = 3 and p = 0.01, to
13.34% for n = 8 and p = 0.05.

Figures 12 and 13 show the processing rate and run-time break-
down of all our adaptive algorithms under convergence, varying n.
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Component n=3, p=0.01 3, 0.05 8, 0.01 8, 0.05

Tuple proc. 98.77 94.17 96.62 84.77
Profile-tuple 0.88 4.17 2.92 13.34
Profile-window 0.20 0.93 0.20 0.91
View update 0.15 0.73 0.22 0.98
View violations 0 0 0.04 0

Table 2: Run-time percentage breakdown for A-Greedy

We use a drop-profiling probability of 0.05 in this experiment to
better illustrate the differences between these algorithms. Now we
see the benefits of the lower run-time overhead of Sweep and Lo-
calSwaps. Figure 12 shows that the gap between A-Greedy and
Sweep and LocalSwaps increases with n. Figure 13 shows that this
widening gap is solely because of A-Greedy’s run-time overhead.
Also note from Figure 13 that the time spent processing tuples is
similar for Optimal, A-Greedy, Sweep, and LocalSwaps, indicating
convergence to a similar ordering.

Figures 14 and 15 show the processing rate and run-time break-
down of our adaptive algorithms for different values of the filter
costs. We used n = 8, with four filters having cost one and the
other four filters having cost c for c ∈ {1, 10, 50, 100}, where a fil-
ter with cost c performs c random probes on the memory-resident
index per input tuple. Figure 15 shows that the percentage run-
time overhead of A-Greedy is much higher than with uniform filter
costs; around 25% for c = 100. Both Sweep and LocalSwaps per-
form better than A-Greedy because of their lower run-time over-
head. Although LocalSwaps has slightly lower run-time overhead
than Sweep, Sweep performs better because LocalSwaps does not
find the optimal ordering for c = 50 and c = 100.

9.4 Adaptivity Experiments
Each of Figures 16–18 shows a timeline from experiments where

we varied the stream and filter characteristics over time for n = 8.
We use filters with different selectivities and periodically permute
the filter selectivities to change filter characteristics. For example,
Figure 16 shows that a change was made after the system had pro-
cessed 600,000 input tuples. The y-axis in Figures 16–18 shows the
number of filters evaluated per 2000 input tuples. As expected, Fig-
ures 16 and 17 show that A-Greedy converges to the new Greedy
ordering much faster than Sweep or LocalSwaps. Also note that the
cost of LocalSwaps’s ordering changes more smoothly compared
to Sweep. Figure 18 shows that Independent also adapts quickly,
but its ordering is worse than A-Greedy’s ordering both before and
after the change.

In general, A-Greedy and Independent have higher run-time over-
head but faster adaptivity to changes than Sweep or LocalSwaps.
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Figure 12: Performance of all algorithms

Figure 13: Run-time breakdown for Figure 12

Figure 19 shows this tradeoff by plotting on the y-axis the total time
to process a workload where filter characteristics are varied period-
ically, with the period shown on the x-axis. The lower this period,
the higher the rate of change. We used n = 8, with four filters hav-
ing cost one and the other four having cost ten. Each change per-
mutes the selectivities randomly. When the rate of change is high,
the faster adaptivity of A-Greedy and Independent enable them to
significantly outperform Sweep (and LocalSwaps also, which is not
shown in Figure 19 to avoid clutter). This advantage diminishes as
we reduce the rate of change, and the overall behavior approaches
the convergence behavior of Figures 12 and 14.

Figures 20 and 21 further explore the tradeoff between run-time
overhead and adaptivity using the same setup as in Figure 19. Fig-
ure 20 fixes the period of change at 100,000 tuples, where A-Greedy
performs better than Sweep (Figure 19), and Figure 21 fixes the
period of change at 1,000,000 tuples, where Sweep performs bet-
ter. In each case we vary on the x-axis the cost of the expensive
filters, which varies the run-time overhead (Figure 15). In Fig-
ure 20 we see that even when the filter costs are high, so A-Greedy
has high run-time overhead, A-Greedy continues to perform better
than (actually improves over) Sweep. The reason is that as filter
costs increase, the performance gaps between different orderings
also increase, so Sweep gets penalized more for its slower adaptiv-
ity. Figure 21 shows that given sufficient time between changes,
Sweep’s performance with respect to A-Greedy improves as A-
Greedy’s percentage run-time overhead increases.

10. CONCLUSION AND FUTURE WORK
We have shown that A-Greedy provides strong guarantees, both

theoretically and experimentally, for ordering pipelined filters adap-
tively. A-Greedy handles correlated filters and joins in environ-
ments where changes may be rapid and unpredictable. We also
identified a three-way tradeoff among provable convergence to good
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Figure 14: Effect of varying filter costs

Figure 15: Run-time breakdown for Figure 14
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Figure 16: Adaptivity of A-Greedy versus Sweep
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Figure 17: Adaptivity of A-Greedy versus LocalSwaps

orderings, run-time overhead, and speed of adaptivity, and we de-
veloped variants of A-Greedy that lie at different points along this
tradeoff spectrum.

A disadvantage of the fully pipelined MJoin algorithm, consid-
ered here as an application of pipelined filters, is that overall per-
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Figure 18: Adaptivity of A-Greedy versus Independent
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Figure 19: Varying the rate of change
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Figure 20: Varying filter cost at x = 105 from Figure 19
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Figure 21: Varying filter cost at x = 106 from Figure 19

formance can suffer due to excessive recomputation of intermedi-
ate results. In follow-up work [3], we have developed an algo-
rithm called A-Caching (for Adaptive-Caching) that places subre-
sult caches adaptively in MJoins to minimize recomputation. With
A-Caching, our pipelined multiway stream joins can adapt over the



entire spectrum between stateless MJoins and cache-rich join trees,
as stream and system conditions change.

An interesting avenue for future work is the problem of balanc-
ing query execution against profiling and reoptimization overhead
for optimal performance in an online adaptive setting. For example,
Sweep overtakes A-Greedy in Figure 19 because A-Greedy incurs
the same profiling overhead, irrespective of the rate of change of
input characteristics. Furthermore, Figure 20 suggests that the cost
structure of the underlying plan space also affects the tradeoff.
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