
StreaMon: An Adaptive Engine for Stream Query
Processing∗

Shivnath Babu
Stanford University

shivnath@cs.stanford.edu

Jennifer Widom
Stanford University

widom@cs.stanford.edu

ABSTRACT
StreaMon is the adaptive query processing engine of the STREAM
prototype Data Stream Management System (DSMS) [4]. A funda-
mental challenge in many DSMS applications (e.g., network mon-
itoring, financial monitoring over stock tickers, sensor processing)
is that conditions may vary significantly over time. Since queries in
these systems are usually long-running, or continuous [4], it is im-
portant to consider adaptive approaches to query processing. With-
out adaptivity, performance may drop drastically as stream data and
arrival characteristics, query loads, and system conditions change
over time.

StreaMon uses several techniques to support adaptive query pro-
cessing [1, 2, 3]; we demonstrate three of them:

• Reducing run-time memory requirements for continuous quer-
ies by exploiting stream data and arrival patterns.

• Adaptive join ordering for pipelined multiway stream joins,
with strong quality guarantees.

• Placing subresult caches adaptively in pipelined multiway
stream joins to avoid recomputation of intermediate results.

1. INTRODUCTION
STREAM is a relational DSMS that supports continuous queries

specified in a rich declarative language called CQL [4]. Each CQL
query is compiled into a query plan that runs continuously. As the
plan executes, it is optimized adaptively by the StreaMon engine.
Our approach is to generate a straightforward initial query plan,
which then adapts automatically to a better initial plan, and con-
tinues to adapt as conditions change. STREAM supports an inter-
active graphical interface for visualizing run-time plan and system
behavior. Using this interface, users can visualize and control plan
adaptivity.

Consider a sample continuous query from a network monitoring
application for an Internet Service Provider [3]:

Monitor the total traffic from an incoming link L1 that
went through an internal link L2 on to an outgoing link
L3 over the last 10 minutes.

Data collection devices on the links feed three streams, which for
convenience we also denote L1, L2, and L3. Each stream tuple

∗This work was supported by the National Science Foundation un-
der grants IIS-0118173 and IIS-9817799.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2004 June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 . . . $5.00.

W1 W2 W3

W1∆

W1∆

W∆ 2 W3∆and

probe

probe

sum(size)

L1 L2 L3

Windows

Input

Links

Join order
for

Continuous

(Join orders for

result

are not shown)

streams

Figure 1: Plan for example query

contains a packet identifier pid and the packet’s size. Figure 1
shows a multiway join for executing this query. Each stream feeds
a 10-minute sliding window, Wi for Li, with a hash index on pid.
When a tuple t is inserted into W1, the other two windows are
probed with t.pid in some order, e.g., the order W3, W2 is used in
Figure 1. If both windows contain a tuple matching t.pid (pid is
unique), then the joined tuple is sent as an insertion to the aggrega-
tion operator sum(size). Otherwise, processing on t stops at the first
window that does not contain a matching tuple. Similar processing
occurs for deletions from W1, and for insertions and deletions to
the other two windows (not shown in the figure).

Streams L1–L3 exhibit some interesting properties. First, the
monitored packets flow through link L1 to L2 to L3. Thus, a tu-
ple corresponding to a specific pid appears in stream L1 first, then
a joining tuple may appear in stream L2, and lastly in stream L3.
Second, if the current latency of the network between links L1 and
L2 and between links L2 and L3 is bounded by d12 and d23 respec-
tively, then a packet that flows through links L1, L2, and L3 will
appear in stream L2 no later than d12 time units after it appears in
stream L1, and in L3 no later than d23 time units after it appears in
L2. StreaMon can detect and exploit such properties to reduce the
overall memory requirement for windows W1–W3 significantly.

In addition to memory requirements, stream characteristics af-
fect the cost of the join plan used for each stream. If almost none
of the packets on L1 get to L3, but a large fraction of the packets
on L2 pass through L3, then the join order W1, W2 for tuples in
W3 can be up to twice as efficient as the order W2, W1. If the ar-
rival rate of stream L1 is much higher than that of streams L2 and
L3, then it may be best to keep W2 ./ W3 materialized, to avoid
excessive recomputation.

Finally, routing paths in the network may change, e.g., in re-
sponse to congestion and failures, so the characteristics of these
streams, and therefore the efficiency of the join plans, are expected
to vary over time.

Monitors stream and
operator characteristics

Combined for
efficiency

Decisions to
adapt

Combined for
efficiency

Potentially−useful
constraints

Changes in k

Ensures plan efficiency
for current characteristics

Combined for
efficiency

statistics
Estimated

Combined for
efficiency

Joins for which
statistics are required

statistics
Estimated

Changes in
join order

k−Mon

Statistics

Which statistics
are required

Executes operators
in plan

Constraint monitoring

Join, aggregation,
etc.

Profiler Profiler

Executor Executor

ReoptimizerReoptimizer

MJoin

Profiler Reoptimizer

Executor

Ensures that optimal
set of caches are usedand benefits

caches
List of candidate

Add/Remove
caches

join selectivities

MJoin

Profiler Reoptimizer

Executor

A−Greedy A−CachingStreaMon

Add/drop
constraints,
adjust k

(a) (b)

usage
Evaluates constraint Monitors conditional

satisfy greedy rule
Ensures join orders

(c) (d)

Estimates cache costs

Figure 2: Basic structure of StreaMon, k-Mon, A-Greedy, and A-Caching

2. STREAMON
The simple network monitoring example isolates some of the

important challenges in stream processing: Stream and query plan
characteristics can change over the lifetime of a continuous query,
and stream characteristics can be correlated. Exploiting current
stream characteristics during query processing can reduce memory
requirements and improve throughput and response times signifi-
cantly. StreaMon addresses these challenges.

StreaMon has three generic components as shown in Figure 2(a):
an Executor, which runs query plans to produce results, a Profiler,
which collects and maintains statistics about stream and plan char-
acteristics, and a Reoptimizer, which ensures that the plans and
memory usage are the most efficient for current input character-
istics. We demonstrate three features of StreaMon:

Adaptive Memory Minimization: Many stream properties useful
for memory reduction in continuous queries can be captured, ei-
ther individually or in combination, by a set of basic constraints:
many-one joins, stream-based referential integrity, ordering, and
clustering [3]. It is unreasonable to expect streams to satisfy strin-
gent constraints at all times, due to variability in data generation,
network load, scheduling, and other factors, so we developed the
notion of k-constraints: k ≥ 0 is an adherence parameter captur-
ing the degree to which a stream or joining pair of streams adheres
to the strict interpretation of the constraint. (The constraint holds
with its strict interpretation when k = 0.) For example, k-ordering
specifies that out-of-order stream elements are no more that k el-
ements apart. StreaMon can detect useful k-constraints in streams
and exploit them to reduce memory requirements for stateful opera-
tors like aggregation and join. Figure 2(b) shows k-Mon, the part of
StreaMon that handles k-constraints. k-Mon’s Profiler monitors in-
put streams and informs the Reoptimizer of potentially-useful con-
straints, and whenever relevant k values change. The Reoptimizer
tells stateful operators to start or stop using a constraint, or to adjust
the value of k used. k-Mon is described in [3].

Adaptive Join Ordering: The pipelined multiway join algorithm
in Figure 1 is called MJoin [5]. MJoin requires a join order for each
input stream, used to join new tuples in that stream with the win-
dows of the other streams. StreaMon supports an algorithm called
A-Greedy (for Adaptive-Greedy) that maintains join orders adap-
tively for MJoins; see Figure 2(c). A-Greedy’s Profiler monitors
conditional join selectivities and its Reoptimizer (re)orders joins
to minimize overall work in current conditions. In stable condi-
tions, the orderings converged on by A-Greedy are equivalent to
those selected by a static Greedy algorithm that is provably within
a cost factor < 4 of optimal. In practice, the Greedy algorithm,
and therefore A-Greedy, nearly always finds the optimal orderings.

StreaMon also supports three variants of A-Greedy that make dif-
ferent tradeoffs among provable convergence to good join orders,
run-time overhead, and speed of adaptivity. A-Greedy and its vari-
ants are described in [1].

Adaptive Caching for Joins: In conjunction with adaptive join
ordering, StreaMon supports an algorithm called A-Caching (for
Adaptive-Caching) that adds and removes subresult caches adap-
tively in MJoins to avoid recomputing intermediate results, when it
is beneficial to do so [2]. With A-Caching, our pipelined multiway
joins can adapt over the entire spectrum between stateless MJoins
and cache-rich join trees, as stream and system conditions change.
As shown in Figure 2(d), A-Caching’s Profiler monitors cache cost
and benefits, and its Reoptimizer selects caches to use, allocating
memory to caches dynamically. A-Caching is described in [2].

We are now applying the StreaMon approach to make more as-
pects of the DSMS adaptive, e.g., plan sharing and operator schedul-
ing. We are also addressing the problem of balancing query ex-
ecution against profiling and reoptimization overhead for optimal
performance in an adaptive setting.

3. ACKNOWLEDGMENTS
We are grateful to our collaborators in StreaMon: Rajeev Mot-

wani, Kamesh Munagala, and Utkarsh Srivastava.

4. REFERENCES
[1] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and

J. Widom. Adaptive ordering of pipelined stream filters. In
Proc. of the 2004 ACM SIGMOD Intl. Conf. on Management
of Data, June 2004.

[2] S. Babu, K. Munagala, J. Widom, and R. Motwani. Adaptive
caching for continuous queries. Technical report, Stanford
University Database Group, Mar. 2004. Available at
http://dbpubs.stanford.edu/pub/2004-14.

[3] S. Babu, U. Srivastava, and J. Widom. Exploiting
k-constraints to reduce memory overhead in continuous
queries over data streams. Technical report, Stanford
University Database Group, Nov. 2002. Available at
http://dbpubs.stanford.edu/pub/2002-52.

[4] R. Motwani, J. Widom, et al. Query processing,
approximation, and resource management in a data stream
management system. In Proc. First Biennial Conf. on
Innovative Data Systems Research (CIDR), Jan. 2003.

[5] S. Viglas, J. Naughton, and J. Burger. Maximizing the output
rate of multi-join queries over streaming information sources.
In Proc. of the 2003 Intl. Conf. on Very Large Data Bases,
Sept. 2003.

