
Holistic UDAFs at Streaming Speeds

Graham Cormode⁄

Rutgers University
graham@dimacs.rutgers.edu

Theodore Johnson
AT&T Labs–Research

johnsont@research.att.com

Flip Korn
AT&T Labs–Research
flip@research.att.com

S. Muthukrishnany

Rutgers University
muthu@cs.rutgers.edu

Oliver Spatscheck
AT&T Labs–Research

spatsch@research.att.com

Divesh Srivastava
AT&T Labs–Research

divesh@research.att.com

ABSTRACT
Many algorithms have been proposed to approximate holistic ag-
gregates, such as quantiles and heavy hitters, over data streams.
However, little work has been done to explore what techniques are
required to incorporate these algorithms in a data stream query pro-
cessor, and to make them useful in practice.

In this paper, we study the performance implications of using
user-defined aggregate functions (UDAFs) to incorporate selection-
based and sketch-based algorithms for holistic aggregates into a
data stream management system’s query processing architecture.
We identify key performance bottlenecks and tradeoffs, and pro-
pose novel techniques to make these holistic UDAFs fast and space-
efficient for use in high-speed data stream applications. We evalu-
ate performance using generated and actual IP packet data, focus-
ing on approximating quantiles and heavy hitters. The best of our
current implementations can process streaming queries at OC48
speeds (2x 2.4Gbps).

1. INTRODUCTION
The phenomenon of data streams research is evident. This has

been led by two research directions in the database community.
First, powerful algorithms have been developed for processing

data in a stream. They work in an abstracted model of data streams
where items are presented one after another; they use small amount
of storage, compute various holistic1aggregates on the stream and
provide accuracy guarantees. At the high level, these algorithms
can be divided into two categories:data-drivenanduniverse-driven.
The data-driven algorithms select one or more data items that ap-
pear in the stream and maintain statistics about their distribution in
the stream. They typically have space and accuracy bounds a func-

⁄Supported by NSF ITR 0220280 and NSF EIA 02-05116.
ySupported by NSF EIA 0087022, NSF ITR 0220280 and NSF
EIA 02-05116.
1The term “holistic” was used in [23] to describe functions such as
Median() and Mode() for which there is no constant bound on the
size of the storage needed to exactly compute them.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2004June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 . . .$5.00.

tion of n, the number of data items in the stream. Examples of such
algorithms are in [32, 24, 33]. We refer to them asselection-based
algorithms. Typically, the order in which the data is presented in-
fluences the performance of these algorithms. The universe-driven
algorithms work on a virtual “array” of the attribute values and
maintain various inner-products or “sketches” over the data stream.
They typically have space and accuracy bounds a function ofU ,
the size of the universe from which the attribute values are drawn.
Examples of such algorithms are in [25, 9, 21]. We refer to them
assketch-basedalgorithms. Typically, the order in which the data
is presented does not affect the sketch these algorithms maintain,
but identical data values over different universe sizes may have dif-
ferent sketches. Selection and sketch based algorithms are known
for a range of holistic aggregates including quantiles, heavy hitters,
count distinct, rare counts, correlated aggregates, etc.

Second, there is a concerted effort to build data stream manage-
ment systems (DSMSs) either for general purpose or for a stream-
ing application. Traditional database systems store data, maintain
them under transactions and support query processing on a con-
sistent view of the data evolving under transactions. Emerging
applications in data streams shift the emphasis of a database sys-
tem. In data stream applications, data arrives very fast and the
rate is so high that one may not wish to (or be able to) store all
the data. These DSMSs devise methods to pipeline tuples through
query processing mechanisms, and schedule operations to maxi-
mize throughput, etc. Many of the DSMSs are motivated by moni-
toring applications. Example DSMSs are in [6, 35, 36, 7, 12].

The quintessential application seems to be the processing of IP
traffic data in the network. Routers forward IP packets at great
speed, spending typically a few hundred nanoseconds per packet.
Processing the IP packet data for a variety of monitoring tasks —
keeping track of statistics, provisioning, billing and detecting net-
work attacks — at the speed at which packets are forwarded is an
illustrative example of data stream processing. One can see the
need for holistic aggregates in this scenario: quantiles provide sim-
ple statistical summary of the traffic carried by a link, heavy hitters
nicely describe significant portion of the traffic on a link, and count
distinct and count rare are indicators for normal activity vs activity
under denial of service attack. Thus, monitoring holistic aggregates
on IP traffic data streams is a compelling application.

Besides the straightforward use of holistic aggregates, our inter-
actions with Gigascope users reveals the need for composition and
grouping based on holistic aggregates. For example, a common
network analysis query is one such as, “for every source IP and
1 hour interval, report the median, 95th percentile, and 99th per-
centile of the TCP round trip time”. Similar grouping queries but
with different holistic aggregates (such asCOUNT DISTINCT) in

military monitoring applications can be found in [38, 4].
Despite the convergence of a compelling application like IP traf-

fic data analysis and development of the principles of DSMSs, there
has been little attention paid to the task of computing holistic ag-
gregates in a DSMS for a real application such as network moni-
toring. Engineering holistic aggregation in a DSMS for real, very
high speed data streams is a challenge. Query optimization even
for simple holistic aggregate computation in a data stream is not
well understood.

In this paper, we address this gap between principles and meth-
ods versus real needs in a practical application. We study the per-
formance implications of using user-defined aggregate functions
(UDAFs) for incorporating both selection-based and sketch-based
algorithms for holistic aggregates into a data stream management
system’s query processing architecture. We use our streaming database,
Gigascope [11, 12, 13], as a testbed and network traffic as our data
source. Our contributions are as follows.

1. We identify key performance bottlenecks and tradeoffs, and
propose novel techniques to make holistic UDAFs–selection-
based as well as sketch-based ones—fast and space-efficient
for use in high-speed data stream applications. Our tech-
niques rely on judicious combination of low level aggrega-
tion on IP traffic data streams at the network router level with
higher level composition, and adapting to the data character-
istics.

2. We evaluate performance using generated and actual IP packet
data on a “live” DSMS — Gigascope running at an IP router
— focusing on approximating quantiles and heavy hitters.
We derive more than half a dozen different implementation
strategies for these holistic aggregates and test them with real
as well as simulated data. The best of our current implemen-
tations can process streaming queries at up to OC48 speeds
(2x 2.4Gbps), and is practical as an IP network data stream
analysis engine in large ISPs.

Our implementation work is by necessity closely tied to the Gi-
gascope architecture. However there are some general lessons to
be learned:

1. Early data reduction is critical for complex querying of very
high speed data streams. So we believe that a two-level archi-
tecture of query processing is highly suitable in the general
context of a DSMS.

2. There is often a range of early data reduction strategies to
choose from for processing approximate complex aggregates,
including use of appropriatepartial or subaggregation.

3. The most appropriate strategy depends on the streaming rate
as well as the available processing resources; choosing the
best strategy is a complex query optimization problem.

4. Approximate complex aggregates are quite effective, provid-
ing accuracy guarantees while vastly reducing the processing
load.

5. Adaptive implementations of “heavy-weight” approximations
such as sketches make them practical even in the presence of
highly skewed data, so there is a potential in general purpose
DSMSs too.

Our work sheds light on the broader intricacies of query opti-
mization in a DSMS. Even for simple holistic UDAFs, the query
optimizer has a large number of choices.

2. RELATED WORK
In the area of data stream algorithms, solutions are known for

computing specific holistic aggregates. As we described earlier, the
known algorithms can be divided into two categories: data-driven
and universe-driven, with selection-based and sketch-based algo-
rithms respectively. Many selection-based and sketch-based algo-
rithms are known for holistic aggregates of our interest, i.e., finding
quantiles [33, 24, 22] and heavy hitters [28, 32, 8]. These results are
the most relevant to our work here. Selection- and sketch-based al-
gorithms are known for other holistic aggregates such as correlated
aggregates [18], and distinct counting [16, 19, 9]. But more gener-
ally, data stream algorithms are known for a variety of problems in-
cluding wavelets [21], histograms [20, 25, 37], set expressions [17],
complex queries [14], clustering [26], decision trees [15], etc. An
overview of this area relevant to our study can be found at [5, 34],
and in tutorials [17]. Many of these algorithms have typically been
tested on synthetic datasets, or in some cases, on real IP network
traces. We are not aware of any of these methods that have been
directly incorporated into a “live” DSMS.

The area of DSMSs has seen extensive activity as well. A num-
ber of DSMSs have been proposed and built into prototypes in-
cluding Aurora [6], Telegraph [7], Stream [35], Tribeca [36], and
Gigascope [12]. Some of these DSMSs provide methods to do (ran-
dom) sampling (e.g., [35]), and the collection of continuous queries
for the military application that has been accumulated at Stanford
presents examples using holistic aggregates. However, we do not
know of any detailed study of the performance of holistic aggre-
gates within these DSMSs. There has also been work on DSMSs
for specific applications like streaming data from sensors [31] and
financial applications [30]; again, no detailed performance study of
holistic aggregates is known in these application at streaming data
speeds we consider in this paper. The recently proposed ATLaS
UDAF specification [38] supports, among other interesting fea-
tures, streaming UDAFs. See Section 3.2 for more discussion.

3. INTEGRATING UDAFS IN GIGASCOPE
Gigascope [11, 12, 13] has a special architecture for handling

very high speed data streams. In this section, we discuss some
relevant aspects of the Gigascope architecture and how we integrate
UDAFs into Gigascope.

3.1 Gigascope Architecture
Gigascope is designed for monitoring very high speed data streams

using inexpensive processors. To accomplish this goal, Gigascope
uses an architecture which is optimized for its particular applica-
tions.

First, Gigascope is a stream-only database — it does not support
stored relations or continuous queries. This restriction greatly sim-
plifies and streamlines the implementation. However, since there
are no continuous queries (as implemented in, e.g., [35]) there are
no explicit query evaluation windows, which are necessary to un-
block operators such as aggregation and join. Instead, attributes
in streams can be labeled with a “timestampness”, such as mono-
tone increasing. The query planner uses this information to deter-
mine how (and whether) a blocking operator can be unblocked. In
an aggregation query, at least one of the group-by attributes must
have a timestampness, say monotone increasing. When this at-
tribute changes in value, all existing groups and their aggregates
are flushed to the operator’s output (similar to thetumbleoperator
[6]). The values of the group-by attributes with timestampness thus
defineepochsin which aggregation occurs, with a flush at the end
of each epoch.

Second, Gigascope has a two-level query architecture, where the
low level is used for data reduction and the high level performs
more complex processing. This approach is employed for keeping
up with high streaming rates in acontrolledway (i.e., guaranteed
accuracy) in contrast to some existing DSMSs which employ load
shedding [6, 4]. High speed data streams from a Network Interface
Card (NIC), are placed in a large ring buffer. These streams are
calledsource streamsto distinguish them from data streams created
by queries. The data volume of these source streams are far too
large to provide a copy to each query on the stream. Instead, the
queries are shipped to the streams. If a queryQ is to be executed
over source streamS, then Gigascope creates a subqueryq which
directly accessesS, and transformsQ into Q0 which is executed
over the output fromq. In general, one subquery is created for every
table variable which aliases a source stream, for every query in the
current query set. The subqueries read directly from the ring buffer.
Since their output streams are much smaller than the source stream,
the two-level architecture greatly reduces the amount of copying
(simple queries can be evaluated directly on a source stream).

The subqueries (which are called “LFTAs”, or low-level queries,
in Gigascope) are intended to be fast, lightweight data reduction
queries. By deferring expensive processing (expensive functions
and predicates, joins, large scale aggregation), the high volume
source stream is quickly processed, minimizing buffer requirements.
The expensive processing is performed on the output of the low
level queries, but this data volume is smaller and easily buffered.
Depending on the capabilities of the NIC, we can push some or all
of the subquery processing into the NIC itself. In the testbed de-
scribed in Section 5, the NIC used for the synthetic data is capable
of processing a type of projection operator, while the NIC used for
the live data has no special processing capabilities. In general, the
most appropriate strategy depends on the streaming rate as well as
the available processing resources. Choosing the best strategy is a
complex query optimization problem, the goal of which is to max-
imize the amount of data reduction without overburdening the low
level processor and thus causing packet drops.

To ensure that aggregation is fast, the low-level aggregation oper-
ator uses a fixed-size hash table for maintaining the different groups
of aGROUP BY. If a hash table collision occurs, the existing group
and its aggregate are ejected (as a tuple), and the new group uses
the old group’s slot. That is, Gigascope computes a partial aggre-
gate at the low level which is completed at a higher level. The
query decomposition of an aggregate queryQ is similar to that of
subaggregates and superaggregates in data cube computations [23].

Third, Gigascope creates queries by generating C and C++ code,
which is compiled and linked into executable queries. To integrate
a UDAF into Gigascope, we add the UDAF functions to the Gigas-
cope library and augment Gigascope query generation to properly
handle references to UDAFs (Section 3.2).

3.2 UDAF specification
As discussed in Section 3.1, incorporating a UDAF into Gigas-

cope is a matter of incorporating the UDAF calls into the Gigas-
cope library, and providing the query planner with the specification
of the UDAF. We modified Gigascope so that it can understand
UDAF specifications and make calls to the UDAF functions at the
appropriate places.

A UDAF is commonly composed of three functions [27]: an
INITIALIZE function, which initializes the state of ascratchpad
space, an ITERATE function, which adds a value to the state of
the UDAF, and a TERMINATE function, which releases UDAF re-
sources and returns a value. In order to support multiple return
values from the same UDAF computation (discussed below), we

split the TERMINATE function into an OUTPUT function and a
DESTROY function. Low-level Gigascope queries require an addi-
tional function, FLUSHME. Recall that low-level queries are sim-
ple, fast queries for data reduction. Holistic aggregate data struc-
tures might be large and/or require occasional expensive restructur-
ing. The FLUSHME call is used by a low-level UDAF to indicate
that it is “full” and should be flushed to a high-level query to com-
plete its processing. Therefore we can use a small and fast data
structure at the low-level; partial processing will be completed at a
higher level.

We inform Gigascope of the UDAFs that might occur in a query
by providing UDAF declarations. A UDAF declaration must in-
clude the UDAF name, its return type, the types of its parameters,
and its scratchpad type. For example,

int UDAF char(36) approx median(int)

declares that approxmedian is a UDAF which accepts an integer,
uses 36 bytes of scratchpad storage, and returns an integer.

In order to apply approxmedian to values derived from a source
data stream, we must also specify the subaggregate (used in the
low-level query) and the superaggregate (used in the high-level
query). For example,

int UDAF char(36) [low approx med, high approx med]
approx median(int)

vstring UDAF char(2800) low approx med(int)
int UDAF char(36) high approx med(vstring)

declares that lowapproxmed is the subaggregate and that
high approxmed is the superaggregate of approxmedian. If a
queryQ references approxmedian on a value derived from a source
stream, it is transformed intoq1 which references lowapproxmed
andQ0 which references highapproxmed on the lowapproxmed
of q1. Note that the return value of lowapproxmed, a variable-
length string which represents the UDAFs state, is the value ac-
cepted by highapproxmed.

In many queries, we want the UDAF to return many values. For
example, a query might ask for the median, the 95th percentile, and
the 99th percentile values of packet round trip times. Computing
the UDAF three times is inefficient, instead we useextractor func-
tions to declare that the UDAF needs to be computed only once.
An extractor function is just a macro for specifying that a function
is to be called on a UDAF. For example,

int EXTR percentile fcn approx quantile percentile(int; int)

is a macro which transformspercentile(len,95) into
percentile fcn(approx quantile(len),95). The duplicate references
to approxquantile are now easily recognized. The approxquantile
aggregate returns a searchable data structure when the OUTPUT
function is called. The percentilefcn function performs a search
on this structure. The aggregate’s DESTOY call will release the
resources used by the return value, if necessary.

We designed our UDAF specification to be an easily implemented
extension to the conventional UDAF specification, but which would
support aggregate query decomposition and multiple return values.
A more sophisticated specification, ATLaS has been recently pro-
posed [38]. One of the benefits of the ATLaS specification is that
the UDAF functions are defined in SQL within the declaration.
While this property is highly desirable for general purpose DBMS
extensibility, for several reasons we felt that the traditional method
of C-language UDAF function definitions was more appropriate for
our purposes. For one, it is easier to implement and makes fewer
demands on the query optimizer. For another, Gigascope is a spe-
cialized system. The UDAFs are likely to be written by experts

for whom the highest possible performance is the critical issue and
who are more familiar with C than with SQL. The easy extensibility
described in [38] is a lesser concern.

In the following query, which is similar to those used for the ex-
periments, the median packet length is computed for every source
IP address and every one minute interval:

SELECT tb, sourceIP, median(length) FROM UDP
GROUP BY time/60 as tb, sourceIP

Since UDP is a source data stream, this query will be broken into
a subaggregate and a superaggregate query by the query planner.

4. STREAMING ALGORITHMS

4.1 Selection-based Quantiles
Greenwald and Khanna [24] proposed a novel data structure,

thequantile summary, that effectively maintains lower- and upper-
bounds on the ranks (rmin(v) andrmax(v), respectively) for each
valuev from the input stream. Aftern input values, the data struc-
ture S(n) consists of an ordered sequence of tuples which corre-
spond to a subset of the observations from the input stream; ini-
tially, S(n) is empty. Each tupleti = (vi; gi;∆i) consists of three
components: (i) a valuevi that corresponds to an element in the
data stream; (ii) the valuegi equalsrmin(vi) ¡ rmin(vi¡1); and
(iii) ∆i equalsrmax(vi)¡rmin(vi). By ensuring that the summary
structureS(n) satisfies the propertymaxi(gi +∆i) • b2†nc, any
`-quantile query can be answered to within†n precision in rank.
To achieve this, the input stream is conceptually divided into buck-
ets of widthw = d 1

†
e. Each valuev from the current bucket is

inserted intoS between tuplesti¡1 andti, wherevi¡1 < v • vi,
with valuesg = 1 and∆ = gi +∆i ¡ 1. Periodically, the space is
compressed by merging adjacent pairs of tuplesti andti+1 when-
ever(gi+gi+1+∆i+1) • b2†nc. Their analysis of this algorithm
showed a space bound ofO(1

†
log(†n)).

Implementation in Gigascope. We implemented three quantile
UDAF variants based on quantile summaries, which make use of
the Gigascope processing hierarchy. These algorithms span a range
from simple to complex preprocessing at the low level query, and
divide up the work between the low level query (LLQ) and high
level query (HLQ) in different amounts as follows.

Algorithm 1 (LLQ-lite). This algorithm does minimal work at the
LLQ, which is used for buffering the incoming tuples in an array
(ordered by arrival time) before being sent to the HLQ for batch
processing.

Algorithm 2 (LLQ-heavy). This algorithm maintains a linked list
of samples ordered by item values. After insertion, it reduces the
size by sweeping through it in a full compress phase. If the storage
space at the LLQ becomes full, it outputs the data structure (to be
sent to the HLQ using a FLUSHME call), discards the space, and
starts over with a new data structure.

Algorithm 3 (LLQ-medium). This algorithm attempts to find a
“happy medium” between Algorithms 1 and 2. It trades off pro-
cessing at the LLQ for more at the HLQ but, whereas the processing
time for Algorithm 2 is linear in the number of tuples, this strat-
egy does updates in logarithmic expected time by maintaining a
skiplist directory of the tuples ordered by item values. Also, itpar-
tially compresses after each insertion by performing a local probe
at where the new element is inserted as well as a probe at a random
location in the list; this is done in constant time.

Merge(S‘, Sh)
/* S‘(m) = h(vi; gi;∆i)i is summary at LLQ of size M */
/* Sh(n) = h(vj ; gj ;∆j)i is summary at HLQ of size N */
/* The result is S(m+ n) of size M +N */
01 i := j := 1; S := ;;
02 S‘[M + 1] := Sh[N + 1] = (1; 1; 0);
03 for k := 1 to (M +N) do
04 if (vi < vj)
05 S[k] := (vi; gi;∆i + gj +∆j ¡ 1);
06 i+ = 1;
07 else if (vj < vi)
08 S[k] := (vj ; gj ;∆j + gi +∆i ¡ 1);
09 j+ = 1;
10 else if (vi = vj)
11 S[k] := (vi; gi + gj ;∆i +∆j);
12 i+ = 1; j+ = 1;
13 Sh := S;

Figure 1: Merge Algorithm

We now describe how the outputS‘(n) from the LLQ is pro-
cessed at the HLQ, which maintains a quantile summarySh =
Sh(n) of N tuples. For Algorithm 1, the output is a simple ar-
ray of values, each of which is inserted intoSh. For Algorithms 2
and 3, the LLQ output is a quantile summaryS‘ = S‘(m), of M
tuples, and the update procedure is more involved. First, the algo-
rithm compresses tuples inS‘ that could have been compressed at
the LLQ, if any. ThenS‘ andSh are merged into a single summary
S = S(m+ n), of sizeM +N , during which their∆-values (and
thus maximum ranks) are adjusted; the pseudocode for this is given
in Figure 1. After the merge, adjacent pairs of tuplestk andtk+1 in
S for which (gk+ gk+1+∆k+1) • b2†(m+ n)c are compressed
to reduce space. The resulting quantile summaryS is guaranteed
to report quantiles with at most†(m + n) rank error. Although
it cannot guarantee a space bound ofO(1

†
log †(m+ n)), due to

worst-case scenarios when merging at the HLQ, our experiments
indicate that this bound tends to hold in practice.

4.2 Sketch-based Heavy Hitters
Many different sketch methods have been proposed, for comput-

ing frequency moments [3], count distinct queries [16], join size
estimation [2, 14] and heavy hitters [8, 10]. We will focus on com-
puting the heavy hitters on streams of values and updated counts,
e.g., finding large flows grouped by source IP address with counts
coming from packet sizes. The “count-min sketch” method de-
scribed in [10] gives a probabilistic approach to approximating the
count of any item, with an error proportional to the sum of the
counts of items. This can easily be incorporated into a scheme to
find the heavy hitters (all items whose count exceed a threshold
fraction of the total count) with a simple top-down search proce-
dure. For implementation in Gigascope, we will fix the parameters
of the sketch, which determine the size of the data structure, and
test how to divide the processing work between the low-level and
the high-level.

Implementation in Gigascope. Each sketch is implemented as
an array of counts,sk[1 : : : d; 1 : : : w]. There ared different hash
functionsh1 : : : hd which map item ids ontof1 : : : wg. Each new
packet will be interpreted as an update to the sketch, in a way de-
termined by the user query: for example, a query on Heavy Hit-
ters for source IP addresses based on packet size means that each
packet will be interpreted as an update withid =Source IP, and
val =packet size (in bytes). With each update,(id; val), the sketch
is updated bysk[i; hi(id)]+=val for i = 1 : : : d. To estimate the
sum of all values for oneid, we takemini sk[i; hi(id)]. The error
in the estimate is proportional to

P
val=w, and the probability of

higher error is proportional to2¡d. Two sketches with the same
hi; w, andd can be summed, entry-wise, to make the sketch of the
sum of the streams. This property is needed by some of our imple-
mentations.

To find items with the highest counts, we keepg sketchessk(1);
: : : ; sk(g) of items atg different levels of granularity (e.g., a sketch
for ids, sketch forbid=2c, for bid=4c etc). Then the search for val-
ues greater than

P
val=100 proceeds in a similar way to a binary

search. The space cost is proportional tog ⁄ w ⁄ d and the up-
date cost scales withg ⁄ d. There are tradeoffs between settings
of the sketch parameters: increasingw gives better accuracy, but
uses more space; increasingd gives fewer errors, but at the cost of
both update time and space; smallerg gives faster updates but can
cause more errors and take more time to extract the results. We set
w = 256 giving an expected error factor of less than 1% in estimat-
ing counts (choosing a power of two also makes the hash functions
more efficient to compute), and setd = 2. We fixg = 3 by keeping
sketches of the full 32-bit items as well as 24- and 16-bit prefixes of
items. We also kept exact counts for the 256 8-bit prefixes, giving
a total sketch size of 7KB. These parameter settings were made on
the basis of experimentation. In future work we plan to investigate
the impact of other parameter settings, but such a comparison is
beyond the scope of this paper.

Low-level Query Strategies
At the low level, we considered four methods, in order of increasing
complexity.

1. Buffer. The Buffer strategy simply keeps a 1KB arraya of
(id; val) pairs as they arrive and flushes the buffer after 128 val-
ues. If the buffer is flushed when it is partially full, then only the
occupied prefix of the array is passed up to the high-level.

2. Hash.The Hash strategy also uses an arraya of (id; val) pairs,
but uses it as a hash table. When an update(id; val) arrives, we
test if a[hash(id)] = id, and if so addval to the current count.
If the slot is empty, then we putid in the slot, else we search
a[hash(id) + 1]; a[hash(id) + 2] : : : for id or an empty slot.2

This can aggregate counts, and is expected to show improvement
over buffering for skewed data sources: by aggregating all inser-
tions of a particular item, a single update is required at the high
level, instead of many.

3. Compress. A disadvantage of the Hash strategy is that if it
is flushed while being sparsely populated, then the whole table is
copied up to the high-level, whereas only a small amount needs
to be sent. Compress augments the hashing approach: when the
structure is flushed, if the count of non-zero entries is low then the
table is compacted by moving each entry to the first available free
slot, and only the populated prefix ofa is copied up to the high
level. This does not affect the high level processing, and reduces
the memory transfer.

4. Low Sketch. The most intensive low-level strategy computes a
sketchsk0 at the low level. This requires the 7KB of space being
allocated for each group, which may be a high overhead in terms of
space for large numbers of groups, and a bottleneck for transfers,
especially on epoch boundaries.

A design feature for these experiments is that the output of the
first three strategies above are interchangeable, so we can compare
the effect of different choices at the low level with different choices
at the high level.
2If the search exceeds 8 consecutive locations, then the routine re-
quests a flush.

High Level Strategies
At the high level, we considered three different ways to use the
sketch routines.

A. Low Sketch. This strategy is the partner routine for the Low
Sketch at the low-level, and keeps a sketch,sk at the high-level.
When the low-level is flushed and a sketch,sk0 is received from
the low-level, we setsk(i)[j; k]+=sk0(i)[j; k] for all i; j; k: this
uses the property of summability of sketches.

B. Direct Sketch. The Direct Sketch strategy accepts an array
a[1 : : : p] from the low-level, and updates each sketch with each
(id; val) pair as described above.

C. Adaptive Sketch.For skewed or sparse data, the previous meth-
ods automatically allocate the space for sketching and return ap-
proximate results when it would be more space efficient to keep the
exact data and return exact answers for some groups. The adap-
tive approach is designed to smoothly adapt to the input distribu-
tion. Initially, it keeps exact results as a listl of (id; val) pairs, and
when new updates(id0; val0) are received from the low level, the
list is searched for(id0; val). If found, we updateval+=val0; if
not found, we append(id0; val0) to the list. If the length of the list
exceeds a set length, then a sketch is allocated, and the list is used
to populate the sketch. The default for this threshold was set to 64
distinct values, and in experiments we compared to values of 128
and 256. For the skewed distributions seen in real data streams, we
may observe many thousands or even millions of observed pack-
ets before this manydistinct values are seen (see next section for
quantitative results).

5. EXPERIMENTAL ENVIRONMENT
To evaluate the performance of the approximate quantile and

heavy hitter algorithms, we modified Gigascope to accept UDAFs,
as described in Section 3.2, and incorporated the algorithms for the
streaming algorithms into the Gigascope library. For performance
testing, we used two data sources.

The first data source is an Agilent Technologies RouterTester
5.0 Gigeth traffic generator [1]. Using it, we can generate about
1Gbit/sec of traffic on each of two Gigeth links. The traffic gen-
erator is not a sophisticated source of randomness. We could only
vary the source IP address of the packet and the packet length, both
independently and uniformly random. The average packet length is
always 782 bytes, and when both Gigeth channels are driven at the
maximum rate they produce 310,000 packets/second.

We monitored the generated stream using a modern but inex-
pensive server comprised of two 2.8 Ghz pentium processors and
4 Gbytes of memory. In this system, we configured Gigascope to
report the number of packets dropped before they could be pre-
sented to the low-level queries. In addition, we are alerted when
packets sent from the low-level queries to the high-level queries are
dropped, but we could not collect precise statistics. For these ex-
periments, aggregates are collected over 10 second intervals. When
measuring the CPU load, we collect the CPU time used by the pro-
cesses over a 100 second interval.

The traffic generator provides a controlled environment for mea-
suring CPU overhead, but it does not represent a realistic data source.
For an alternative data source, we monitor thespan portof the
router which connects our institution to the internet, via a 100 Mbit/sec
link (a span port mirrors all traffic for monitoring purposes). We
monitored this stream using an older single-cpu 733 Mhz pentium
with 128 Mbytes of RAM, which had been previously set up by the
network administrators. The experiments used the query in Sec-
tion 3.2 (varying the UDAF and using 5 minute intervals for the

accuracy experiments). Each experiment ran for 1 hour.
Even though all experiments ran during normal business hours,

the traffic on the link varied considerably from experiment to ex-
periment, and even during experiments. Figure 2 shows the per-
minute traffic volumes and number of groups for a high-volume
run. A typical low-volume run averaged about 400,000 packets per
minute (about 7,000 per second), while the high-volume run av-
eraged about 1,110,000 packets per minute (about 18,000 per sec-
ond). However the average number of groups per minute was 640
and 1260, respectively, exhibiting considerably less variation than
the number of packets. As is evident from these statistics and from
the chart, the nature of the traffic changes very rapidly.

Packets and Groups per Minute

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

time

pa
ck

et
s

0

200

400

600

800

1000

1200

1400

1600

gr
ou

ps packets
groups

Figure 2: High traffic volume.

The distribution of tuples to groups is extremely skewed. A sam-
ple distribution of packets per group plotted on a log-log scale
shows a straight line, indicating a power law distribution. This
property is present in all of our data samples. These skewed distri-
butions have important implications for implementing fast UDAFs.
Most of the groups have only a few tuples, and can be represented
exactly by small, simple, and fast data structures. However, most
of the packets are processed in groups with a very large number of
packets. This property can be clearly seen in Figure 3, which shows
the cumulative distribution of the number of groups and the num-
ber of packets against the packets per group. Using 1000 packets
per group as the boundary between “small” and “large”, only 3%
of the groups are large, but they process 92% of the packets. Other
boundaries produce similar results.

6. LOW-LEVEL QUERY PERFORMANCE
A critical optimization in Gigascope is the splitting of aggrega-

tion queries into low-level subaggregation and high-level superag-
gregation queries. Since the operation of the subaggregate query
has a very large impact on performance, in this section we examine
the subaggregation algorithms and their performance in detail.

Subaggregation queries are evaluated using a fixed-size buffer
to store groups and aggregate data (UDAFs for subaggregation use
fixed size scratchpad space in the group tuple, as malloc is depre-
cated for low-level queries). Because there are a limited number of
groups which can be in memory, the subaggregate query acts as an
“aggregation cache”.

One mechanism that we examined is the aggregate cache re-
placement policy. Early versions of Gigascope had used an LRU

Cumulative Distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000 100000
0

packets per group

packets
groups

Figure 3: Cumulative distribution of packets and groups.

replacement policy. We found that using LRU caused too much
overhead, so we changed the replacement policy to direct mapped.
In this policy, groups are mapped to a hash table without chaining.
If there is a collision in the hash table, the old group is flushed to
make space for the new group.

We were not able to recover the LRU replacement policy to em-
pirically determine the actual overhead of LRU. However we did
notice that the direct mapped policy is likely to cause an excessive
number of cache invalidations due to hash table collisions. We im-
plemented a simple modification to the direct mapped policy, which
we term “second chance”. If on the first try there is a hash collision,
the replacement policy will rehash. If the second try also results in
a collision, the group in the first hash position is ejected.

We ran the following experiment using the traffic generator. We
created a simple aggregation query (collecting a COUNT, MIN and
MAX). We varied the number of groups (source IP addresses) in the
packet stream and decreased the number of cache slots in the low-
level query until we found the minimum cache size before packet
loss occurred. The results are in Table 1.

active groups direct mapped second chance
2000 1900 1300
5000 4300 3300
10000 7300 7300
20000 64000 19000
40000 410000 44000

Table 1: Minimum cache size before packet loss.

The second chance policy is much more effective than the di-
rect mapped policy, especially when the working set of the source
stream becomes large. As the policy is simple, fast, and effective,
it is a good substitute for LRU. All of the remaining experiments
in this paper were run using the second chance replacement pol-
icy, and second chance replaced direct mapped in the production
version of Gigascope.

As discussed in Section 3.1, aggregation in Gigascope divides
time into a sequence of epochs. At the end of each epoch, all groups
are closed, converted to tuples (subject to a HAVING clause) and
flushed to the output. This point tends to be a performance bottle-
neck, as a potentially large number of tuples are created and flushed

to an output stream (involving a lot of memory copies). For holistic
UDAFs, the bottleneck becomes worse because of the processing to
finalize the aggregate (in the OUTPUT function) can be expensive.

We had noticed this earlier, and implemented a lazy cache flush
policy for low-level queries (a similar policy was implemented for
high level queries, but an examination of it is beyond our scope).
When the epoch changes, all full hash table entries are labeled old.
When a tuple arrives in the new epoch, an old full hash table entry
is flushed (if any). If the new group collides with an old hash table
entry, the old group is flushed. If the new group collides with a new
hash table entry, all of the old entries must be flushed immediately,
to preserve attribute timestampness in the output stream.

We were able to evaluate the effectiveness of the lazy flush policy
because it is a simple matter to disable it (enforce eager flush). We
reused the aggregation query from the replacement policy experi-
ment. We then subscribed to an increasing number of these queries
(ensuring that the common subqueries were not shared) and mea-
sured the packet loss rate at the low-level queries. We varied the
number of groups, measured the loss rate and CPU utilization, and
report these values for the smallest number of groups for which
packets were dropped. The results are in Table 2.

loss loss cpu
groups queries (eager) (lazy) util
50000 2 1.8 .1 37
25000 3 .4 0 51
12000 5 .5 .3 80

Table 2: Packet loss rate for eager and lazy flush

The lazy flush policy provides a small but significant reduction
in the packet loss rate, especially when the number of groups is
large. The improvement can make the difference between an unac-
ceptable and an acceptable packet loss rate. Since holistic UDAFs
tend to have large state and expensive OUTPUT functions, these
effects are likely to occur with a smaller number of groups.

We note that the CPU utilization might be low (as low as 37%)
when packet drops occur. This fact indicates that the group flush
at the end of the epoch is a bottleneck. The solution lies more in
scheduling and buffering than in reducing CPU costs. The schedu-
lability of the queries improves significantly as the number of groups
decreases. If we wish to perform controlled load shedding to re-
spond to handle overload conditions, it is better to sample groups
rather than packets.

7. HOLISTIC UDAF PERFORMANCE
We evaluated different UDAF implementations of quantiles and

heavy hitters with respect to performance, space usage and accu-
racy. The synthetic traffic generator was used for many experiments
to allow better control over the data characteristics. This generator
created uniformly distributed values for the grouping attribute (into
either 100, 1K, or 10K groups) and, within each group, the number
of distinct values for the attribute to be aggregated was varied (10,
120 or 1436). For the remainder of the experiments, we used the
live TCP traffic data.

The goal is to run as many queries as possible on as high a data
rate as possible without dropping packets. Our evaluation of the
algorithms is based on their schedulability with varying data char-
acteristics and server architectures.

7.1 Selection-based Quantiles

Here we report experimental results using the three algorithms
described in Section 4.1. We considered several parameters such as
the scratchpad size at the low-level query (LLQ) (small, medium or
large).

Performance Results. Using data from the traffic generator, the
performance differences between the methods are most pronounced
in the case of 100 groups (which is when the number of tuples
per group is largest). Here the default high-level query algorithm
(HLQ-only) drops too many packets to yield meaningful numbers.
This was true in all our experiments. Hence, we do not report their
results in this section. The performance of the remaining algo-
rithms, including the “null” UDAF as a baseline, are summarized
in Figure 4(a).

At the LLQ, Algorithm 1 was clearly the fastest in all cases, re-
gardless of the scratchpad size, and was only marginally slower
than the “null” UDAF. Algorithm 2 was the slowest, almost twice
as slow as Algorithm 3, for all scratchpad sizes. Recall from Sec-
tion 4.1 that Algorithm 1 is the most lightweight at the low level,
followed by Algorithm 3, then Algorithm 2. Hence, this ranking in
performance is to be expected. This ordering was reversed at the
HLQ in all cases, with Algorithm 1 giving the slowest performance
followed by Algorithm 3, then Algorithm 2. Hence, we observe
that the choice of strategy at the low level (inversely) impacts the
performance at the high level. This negative correlation is due to
the data reduction from the quantile summaries employed at the
LLQ by Algorithms 2 and 3: the more reduction, the fewer (and
smaller) the transfers from the low to the high level.

However, this trade-off may not be desirable when a large in-
crease in processing cost at the LLQ buys only a modest decrease
at the HLQ. In a shared-processor system (which was the environ-
ment for this experiment), the low-level queries are executed by
the same processor(s) as the high-level queries, and are therefore a
bottleneck. Hence, Figure 4(a) shows that the additional cost at the
LLQ could only be justified for Algorithm 3 with the large scratch-
pad size; in all the other cases, the savings at the HLQ was more
than offset by the extra work at the LLQ.

Figure 4(b) summarizes the performance of the three algorithms
using the traffic generator with 10K groups. Once again, we ob-
serve the same ordering among the algorithms with respect to per-
formance at the LLQ, to varying degrees. In this instance, we see
the payoffs of extra processing at the LLQ for the medium scratch-
pad size. Due to the larger number of groups (10K here versus 100
in the previous experiment), there are more transfers, so data re-
duction can have a more significant impact. However, with a large
scratchpad size, the extra work at the LLQ for Algorithms 2 and
3 caused the processor to drop packets. In fact, for Algorithm 2
there was so much loss that measurements could not be computed.
While Algorithm 2 can be the best choice under certain conditions,
it is also the riskiest. Algorithm 3 can provide benefits, with large
scratchpad size and relatively small number of groups. Algorithm 1
was the safest choice overall with respect to packet loss at the low
level, but achieves the least amount of data reduction and is thus
the least scalable at the high level.

The traffic characteristics using the live TCP data varied so much
between experiments that comparisons are difficult. The algorithms
exhibited similar behavior to that with the synthetic data. Algo-
rithm 1 had the best performance at the LLQ (followed by Alg 3,
then Alg 2) and the worst performance at the HLQ; the per-tuple
processing time is summarized in Table 3. Interestingly, the trade-
off for extra LLQ processing was beneficial here for Algorithm 2 as
it had the lowest total per-packet cost, making it the most scalable
in a single-CPU system. This data is highly skewed, even more

Quantile UDAF Performance (100 groups)

0
5

10
15
20
25
30
35
40
45
50

si
m

pl
e

al
g1

al
g2

al
g3

al
g1

al
g2

al
g3

al
g1

al
g2

al
g3

small med large

C
P

U
 U

til
iz

at
io

n
(%

)

high
low

Quantile UDAF Performance (10K groups)

0

20

40

60

80

100

120

140

si
m

pl
e

al
g1

al
g2

al
g3

al
g1

al
g2

al
g3

al
g1

al
g2

al
g3

small med large

C
P

U
 U

til
iz

at
io

n
(%

)

high
low

Figure 4: Performance of quantile UDAF algorithms on data from traffic generator.

LLQ HLQ LLQ+HLQ

Alg1 1.70 13.9 15.6
Alg2 11.8 .129 11.9
Alg3 6.67 9.87 16.5

Table 3: Average processing time per tuple („sec) using TCP
data. Four UDAFs in query.

so than the data from the traffic generator. Therefore, a very small
fraction of the groups dominate the transfer costs. For these groups,
it pays to expend the effort to aggregate using quantile summaries
so as to delay transfers because these groups are active and unlikely
to be flushed before becoming full.

Space Usage.As we mentioned in Section 4.2, Algorithms 2 and 3
do not provide as tight a worst-case space bound for the HLQ quan-
tile summary as Algorithm 1 does, due to merging. However, in all
our experiments the space usage was comparable for the three al-
gorithms and far less pessimistic than the worst case. In fact, when
we looked at this ratio on a per-group basis, the size of the quan-
tile summary appeared to be independent of the number of stream
tuples in the group. This is consistent with the observation in [24]
that, for values arriving in a random order, the space depends only
on† and not on the number of stream tuples, despite the logarithmic
dependence in the worst-case bound.

7.2 Sketch-based Heavy Hitters

We ran a series of experiments to determine the cost of using
sketches, under the same experimental setups as for the selection
based methods. We looked at the effect of combinations of the
different strategies proposed above, and the effect of higher system
load, modeled by varying the number of active groups. We also
looked at the cost in terms of space, and the accuracy attainable
using these approaches. These experiments also show that sketches
can be practical on network streams at network line speeds.

Performance Results. The first set of results are shown in Fig-
ure 5, which shows an experiment on traffic generated by the traffic
generator described above. We looked at all the combinations of
low-level and high-level strategies possible on the dual processor

System load, 10,000 groups, many distinct
values, uniform distribution

0
30
60
90

120
150
180

nu
ll

bu
f/d

ire
ct

bu
f/a

da
pt

ha
sh

/di
re

ct

ha
sh

/ad
ap

t

cm
pr

/di
re

ct

cm
pr

/ad
ap

t

hft
a/a

da
pt

low
 sk

etc
h

%
 C

P
U

 U
sa

ge high-level usage
low-level usage

Figure 5: Sketch performance on uniform generated traffic

testbed. The experiment shown in Figure 5 show the effect of a
large number of groups, and a large number of values. We compare
to the cost of the “null” UDAF, which merely computes the sum of
values seen, to show that most strategies at the low-level do not add
much to the cost of using Gigascope.

The first conclusion of these experiments is that the two extremes
both give bad results: the default approach of running the query
solely at the high level or solely at the low level is a bad solution.
We observed that trying to run the query completely in the high
level, or using the low sketch strategy both caused a significant
number of packet drops, whereas the intermediate approaches have
no drops at all. Because the high-level approach is so costly at both
the high and low level (causing 100% CPU usage for the processor
at the low-level) and causes so many packet drops, we do not ex-
plore it further. The low sketch strategy also caused many packet
drops and put the heaviest strain on the low level system, in this
and all other experiments. Since the low-level query system tends
to be a bottleneck, this behavior is undesirable.

This leads us to conclude that the best performance will come
from picking a combination of buffer, hash, or compress at the low
level, and direct or adaptive sketching on the high level. We con-
centrate on these methods for the remainder of the analysis. The

data generated for the plot in Figure 5 had a large number of unique
values, meaning that it would likely cause the adaptive sketching
approach to create a sketch very quickly, and indeed it can be seen
that the high-level costs of all strategies are similar, with a slight
disadvantage to the adaptive approach, since it must create and pop-
ulate a sketch part-way through the test. There is also little differ-
ence between the low level strategies, since all keep a 1KB buffer,
which on this traffic distribution will all fill at approximately the
same rate: the buffer approach has a slight advantage here since it
has lower processing costs to get the same effect as the compress
and hash methods.

System load for sketching, 10,000 Groups, few
distinct values, uniform traffic

0

20

40

60

nu
ll

bu
f/d

ire
ct

bu
f/a

da
pt

ha
sh

/di
re

ct

ha
sh

/ad
ap

t

cm
pr

/di
re

ct

cm
pr

/ad
ap

t

low
 sk

etc
h

%
 C

P
U

 U
sa

ge

low-level usage high-level usage

Figure 6: Sketch performance on skewed generated traffic

In practice, we have already noted that network data displays a
strongly skewed distribution, and it is on such data (see Figure 6),
that one can distinguish between the high level methods. Although
there is little difference at the low level for the different strategies,
the choice of strategy at the low level does have an impact on the
cost at the high level: buffering causes more work than hashing,
which is more expensive than compressing the hash table. Interest-
ingly, the best performance is achieved by the adaptive approach
combined with compressing the hash table, where the cost at the
high level is negligible. For other strategies, the adaptive approach
is a little more expensive than the direct approach, but this is to be
weighed against the potential space savings and accuracy improve-
ments from the adaptive approach.

Processing time for real data
(10,000 block LFTA buffer)

0.0
1.0
2.0
3.0
4.0
5.0

bu
f/d

ire
ct

bu
f/a

da
pt

ha
sh

/di
re

ct

ha
sh

/ad
ap

t

cm
pr

/di
re

ct

cm
pr

/ad
ap

tT
im

e
pe

r p
ac

ke
t (

us
ec

)

low-level time high-level time

Figure 7: Average processing time on real traffic stream (four
UDAFs)

This experience leads us to focus in on these six strategies (pair-
ing the three low-level strategies with the two high-level strate-
gies), and experiment on real data. The timing results shown in
Figure 7 show again that the hash and compress strategies are to
be preferred. Note that it is harder to cross-compare between re-
sults in these experiments, since we cannot “record and replay”
real traffic streams. On the same data, the cost of hash/direct and
hash/adaptive should be the same at the low level, but fluctuations
in the stream we were monitoring affected the distributions. Nev-
ertheless, we can conclude that there are apparent benefits to the
adaptive strategy, where the total cost is less than the correspond-
ing direct version, and that trying to do aggregation work at the
low level can bring significant reductions in cost at the high level.
Overall, the combination of strategies that works best at both levels
is when the right balance is struck between amount of work done,
and the cost of doing that work. We recorded no packet drops with
these methods, even though they were running on a less powerful
system. On a more modern processor, the times scale to a cost of
around a hundred nanoseconds per packet.

System Load with increasing number of groups
(few distinct values, uniform distribution)

0

20

40

60

10
0

10
00

10
00

0

10
0

10
00

10
00

0

10
0

10
00

10
00

0

10
0

10
00

10
00

0

buf/adapt hash/adapt cmpr/adapt low sketch
Number of groups

%
 C

P
U

 U
sa

ge high-level usage
low-level usage

Figure 8: CPU usage with number of groups

Effect of Number of Groups. Figure 8 shows how the cost of the
methods scale as the number of groups increases. We show only
the low sketch and adaptive strategy: on this data set, we found that
for a given low-level strategy, the same cost was virtually identi-
cal for the direct and adaptive strategies, so we plot only the latter
for clarity. We see that the buffering and hashing approach seem
to scale logarithmically with the number of groups. The compress
strategy is almost the same as the similar hash strategy until the
number of groups becomes large, at which point there are clear ad-
vantages to compressing. Once again, attempting to push too much
computation down to the low level, in the form of the low sketch
approach, is uniformly the most costly, by a significant margin. But
doing some processing at the low level, by hashing, or hashing and
compressing, shows moderate but noticeable improvements.

Parameters of the Adaptive Sketch Method.We experimented
with when to switch from keeping exact counts of items to making
a sketch in the adaptive strategy. In Figure 9, we again see a clear
correlation with log of the number of groups for sketching after 64
(the default) and 128 distinct values. For 256 values, the cost seems
to grow more quickly, reflecting the additional cost of converting
the list of exact values to a sketch once the threshold of 256 values
is exceeded. On the other hand, there are definite space advantages
of choosing a larger value, since the size of a sketch (7KB) is much
higher than the cost of each item (8 bytes for each (item, count)

System load, adaptive sketch strategies

0

20

40

60

80

10
0

10
00

10
00

0

10
0

10
00

10
00

0

10
0

10
00

10
00

0

Sketch after 64
distinct values

Sketch after 128
distinct values

Sketch after 256
distinct values

Number of groups

%
 C

P
U

 U
sa

ge
high level
low level

Figure 9: Varying when to sketch for adaptive strategy

Space usage on different data types

0

2

4

6

0 64 128 192 256

Distinct values before sketch

A
ve

ra
ge

 b
yt

es
 /

pa
ck

et

Small Range Large Range

Figure 10: Space cost for adaptive strategy

pair). This is shown in Figure 10, where increasing the threshold
before sketching reduces the average number of bytes per packet
processed. This is especially clear when the data being analyzed
is drawn from a larger range (say, IP addresses rather than port
numbers): here, there is more chance of creating a sketch given
a lower threshold, and hence the average cost is higher the more
quickly a sketch is made.

Accuracy Results.We must also ensure that the results of keeping
sketches actually answer the queries with reasonable accuracy. For
our heavy hitters queries, we were able to compute the exact an-
swers to the queries when using the traffic generator, and compared
them to the output of the sketching strategies. We queried the sys-
tem to find the top five heavy hitters in various distributions, and
compared the exact top five with the top five found using sketch-
ing. Then we computed the proportion of approximate answers
that were (a) correct, e.g., the top approximate heavy hitter was
the true top heavy hitter; (b) off by one, e.g., the third heavy hit-
ter was ranked second or fourth by the sketch method; (c) off by
more than one, so a heavy hitter was returned by the sketch method
but its rank was further off; or (d) missed, e.g., the fifth heavy hit-
ter was not returned by the sketch method. The results are shown
for the adaptive strategy and direct strategy in Figure 11 (note that
the low-level strategy is irrelevant here, since the sketch computed
is the same whichever low-level strategy is employed). Here we
see another advantage of the adaptive strategy: in cases where the

Accuracy of Sketching Strategies

0%

20%

40%

60%

80%

Correct Off by one Off more
than one

Missed

Adaptive Sketch
Direct Sketch

Figure 11: Accuracy for sketches on uniform traffic

threshold is not exceeded and so no sketch is made then exact re-
sults are kept and so the results there will be correct. This reduces
the fraction of misses from 18% to 14%. Further improvements
to the accuracy can be made by increasing the size of the sketch.
We would also expect the results to be much more accurate on real
data: the synthetic data here is generated uniformly, which is the
most challenging case for approximate methods, since all values
have counts which are similar, making finding the heavy hitters
harder than on a more realistic skewed distribution.

8. CONCLUSIONS
In this paper, we examined the problem of integrating stream-

ing algorithms for holistic aggregates into a DSMS. We modified
the Gigascope system to recognize UDAFs, and incorporated al-
gorithms for computing approximate quantiles and heavy hitters.
When we tested these algorithms, the best versions ran comfortably
on a 2 Gbit/sec input stream under challenging conditions, leading
us to conclude that the algorithms can be used to monitor OC48
links. Our UDAFs for quantiles and heavy hitters have been incor-
porated into the Gigascope library and are being used in production
systems.

Achieving high performance required a significant amount of de-
sign, testing, and research. The default implementation, in which
the UDAF is fed tuples derived from the source stream, had un-
acceptably bad performance. Another complicating factor is the
extreme skew in network data. Most groups are small, containing
only a few tuples, but most tuples are contained in large groups.
Large-space UDAFs (such as sketches) will have unacceptably large
space overheads due to the small groups, while exact algorithms
will have unacceptably large space overheads due to the large groups.

We applied a set of techniques to achieve practical implementa-
tions, which may be summarized as:

1. Break the UDAF processing into a simple, fast low-level sub-
aggregate which runs close to the data stream, and a high-
level superaggregate which computes the desired result. The
subaggregation/superaggregation approach allows us to write
fast code that does not deal with the complexities of han-
dling large data (integer arithmetic, compact and therefore
cacheable data structures, no mallocs, etc.). We also found
that running a data reduction query close to the data source
to be critical for performance. In many situations, such as
code running in routers or in NICs, the low-level query sys-
tem might not have the resources to do more than compute
simple subaggregates.

2. The subaggregate/superaggregate split gives us considerable
flexibility in devising UDAF algorithms. We found that we
need to experiment to find the best combination of algorithms
for a particular architecture. Factors include the streaming
rate, data skew, and characteristics of the architecture (e.g.,
whether the sub and superaggregates run on shared or sepa-
rate processors).

3. The properties of the data stream might dictate the choice of
best algorithm, requiring adaptivity for good performance.
Our live IP data stream showed large variations in its be-
havior, particularly in the extremely skewed distribution of
tuples to groups. By writing an adaptive sketch algorithm for
the heavy hitters UDAF, we overcame space use problems as-
sociated with sketch-based algorithms. When properly used,
sketches are a very effective technique in practice.

4. The performance-limiting bottleneck for aggregation in Gi-
gascope occurs when aggregates are flushed at epoch bound-
aries. This problem is significant even with simple aggre-
gates, and holistic UDAFs can require expensive OUTPUT
functions and large data copies to transfer state. While Gi-
gascope ameliorates this problem to some degree by using a
lazy flush at epoch boundaries, it is still the point at which
a lot of work is required in a short amount of time. We can
improve the schedulability of UDAFs by keeping the state
small, especially at the low-level queries, and by taking steps,
possibly proactive ones, to ensure that the OUTPUT function
is fast.

We observe that it is crucial for UDAFs to adapt their resource
consumption to the stream they encounter. Selection-based meth-
ods have this behavior inherent in their operation, but for sketch-
based methods, we had to engineer this property. It was also nec-
essary to find the right division of work between the low level and
the high level. For the quantile UDAF, the best approach was usu-
ally, but not always, to do a small amount of aggregation at the
low level. For the heavy hitters UDAF, trying to do all the work
at either one of the high level or low level alone caused unaccept-
able packet drops. The skewed nature of real data meant that doing
some simple hash-table aggregation of data was sufficiently power-
ful to reduce the cost of computing the sketch at the high level, but
sufficiently inexpensive not to strain the low level system. Com-
bining these techniques has given the first successful application of
sketching methods to real-time high speed network data.

Computing approximations to holistic aggregates by incorporat-
ing UDAFs into a data stream management system provides us with
great amount of flexibility in writing and expressing queries. We
can write ad-hoc queries, and the output streams can be used for
many purposes. For example, it is a simple matter to write a query
which computes the heavy hitters among the median packet lengths
in packets from all source IP addresses, by chaining together two
queries. The UDAF specification language that we developed al-
lows us additional flexibility, because the return value of an aggre-
gate can be the UDAF state itself. For example, we can compute
sketches on two data streams, join them, and compute a change
detection function on the joined stream.

Future Directions. A curious aspect of our approach is that we
break holistic aggregates, which are supposed to be indecompos-
able, into sub and superaggregates. This approach is effective be-
cause we are computingapproximationsto the holistic aggregates
— and these approximations are “algebraic”.

The decomposition of approximate holistic aggregates opens a
new direction in query optimization. One direction is that of choos-

ing the evaluation plan. For example, computing heavy hitters is
much faster on a pre-aggregated data stream. Our best heavy hit-
ters UDAF in fact does limited pre-aggregation. Depending on the
data characteristics, there might be a collection of possible algo-
rithms. Choosing the evaluation algorithm then becomes part of
query optimization.

We note that its also possible to decompose holistic aggregates
into more than two levels. For example, we might want to com-
pute heavy hitters from the traffic flowing through a collection of
routers. We need to combine the aggregate data from each router,
which itself is computed using a subaggregate/superaggregate UDAF.
The query planner needs to set up and optimize this query in a way
that is transparent to the user.

9. REFERENCES
[1] Agilent Technologies. RouterTester.

http://advanced.comms.agilent.com/RouterTester/.
[2] N. Alon, P. Gibbons, Y. Matias, and M. Szegedy. Tracking

join and self-join sizes in limited storage. InProc. ACM
PODS Conf., pages 10–20, 1999.

[3] N. Alon, Y. Matias, and M. Szegedy. The space complexity
of approximating the frequency moments. InProc. ACM
STOC, pages 20–29, 1996. Journal version inJournal of
Computer and System Sciences, 58:137–147, 1999.

[4] A. Arasu and et al. STREAM: The Stanford stream data
manager.IEEE Data Engineering Bulletin, 26(1):19–26,
2003.

[5] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. InProc. ACM
PODS, pages 1–16, 2002.

[6] D. Carney and et al. Monitoring streams - a new class of data
management applications. InProc VLDB, pages 215–226,
2002.

[7] S. Chandrasekaran and et al. TelegraphCQ: Continuous
dataflow procesing for an uncertain world. InProc. CIDR,
2003.

[8] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. InProc. ICALP, pages
693–703, 2002.

[9] G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan.
Comparing data streams using Hamming norms. InProc.
Intl. Conf. VLDB, pages 335–345, 2002.

[10] G. Cormode and S. Muthukrishnan. Improved data stream
summary: The count-min sketch and its applications. In
Proc. Latin American Informatics (LATIN), 2003. Journal
version to appear in Journal of Algorithms.

[11] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk.
Gigascope: high performance network monitoring with an
SQL interface. InProc. ACM SIGMOD, page 262, 2002.

[12] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk.
Gigascope: A stream database for network applications. In
Proc. ACM SIGMOD, pages 647–651, 2003.

[13] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk.
The Gigascope stream database.IEEE Data Engineering
Bulletin, 26(1): pages 27–32, 2003.

[14] A. Dobra, M. Garofalakis, J. E. Gehrke, and R. Rastogi.
Processing complex aggregate queries over data streams. In
Proc. ACM SIGMOD, pages 61–72, 2002.

[15] P. Domingos and G. Hulten. Mining high-speed data streams.
In Proc. KDD, 2000.

[16] P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for database applications.JCSS, 31:182–209,

1985.
[17] M. Garofalakis, J. Gehrke, and R. Rastogi. Querying and

mining data streams: You only get one look. InProc. ACM
SIGMOD, 2002.

[18] J. Gehrke, F. Korn, and D. Srivastava. On computing
correlated aggregates over continual data streams. InProc.
ACM SIGMOD Conf., pages 13–24, 2001.

[19] P. Gibbons. Distinct sampling for highly-accurate answers to
distinct value queries and event reports. InProc. VLDB,
pages 541–550, 2001.

[20] P. B. Gibbons, Y. Matias, and V. Poosala. Fast incremental
maintenance of approximate histograms. InProc. Intl. Conf.
VLDB, pages 466–475, 1998.

[21] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss.
Surfing wavelets on streams: One-pass summaries for
approximate aggregate queries. InProc. Intl. Conf. VLDB,
pages 79–88, 2001.

[22] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss.
How to summarize the universe: Dynamic maintenance of
quantiles. InProc. Intl. Conf. VLDB, pages 454–465, 2002.

[23] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data
cube: a relational aggregation operator generalizing
group-by, cross-tab, and sub-totals. InProc. of the 12th Intl.
Conf. on Data Engineering, pages 152–159, 1996.

[24] M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries.ACM SIGMOD Record,
30(2):58–66, 2001.

[25] S. Guha, N. Koudas, and K. Shim. Data-streams and
histograms. InProc. ACM Symp. on Theory of Computing,
pages 471–475, 2001.

[26] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan.
Clustering data streams. InProc. FOCS, pages 359–366,
2000.

[27] ISO DBL LHR-004 and ANSI X3H2-95-364. (ISO/ANSI
Working Draft) Database Language SQL3.

[28] R. Karp, C. Papadimitriou, and S. Shenker. A simple
algorithm for finding frequent elements in sets and bags.
ACM TODS, 2003.

[29] N. Koudas and D. Srivastava. Data stream query processing:
A tutorial. In Proc. VLDB, page 1149, 2003.

[30] A. Lerner and D. Shasha. The virtues and challenges of ad
hoc + streams querying in finance.Data Engineering
Bulletin, 26(1):49–56, 2003.

[31] S. Madden and M. Franklin. Fjording the stream: An
architecture for queries over streaming sensor data. InProc.
IEEE ICDE Conf., 2002.

[32] G. Manku and R. Motwani. Approximate frequency counts
over data streams. InProc. VLDB, pages 346–357, 2002.

[33] G. Manku, S. Rajagopalan, and B. Lindsay. Approximate
medians and other quantiles in one pass and with limited
memory. InProceedings ACM SIGMOD, pages 426–435,
1998.

[34] S. Muthukrishnan. Data streams: Algorithms and
applications. InACM-SIAM Symp. Discrete Algorithms,
http://athos.rutgers.edu/
»muthu/stream-1-1.ps , 2003.

[35] Stanford stream data manager.
http://www-db.stanford.edu/stream/sqr ,
2003. J. Widom andet al.

[36] M. Sullivan and A. Heybey. Tribeca: A system for managing
large databases of network traffic. InProc. USENIX

Technical Conf., 1998.
[37] N. Thaper, P. Indyk, S. Guha, and N. Koudas. Dynamic

multidimensional histograms. InProc. ACM SIGMOD, pages
359–366, 2002.

[38] H. Wang and C. Zaniolo. ATLaS: A native extension of SQL
for data mining. InSIAM Intl. Conf. Data Mining, 2003.

