
Sampling Algorithms in a Stream Operator

Theodore Johnson S. Muthukrishnan Irina Rozenbaum

AT&T Labs Research Rutgers University Rutgers University
johnsont@research.att.com muthu@cs.rutgers.edu rozenbau@cs.rutgers.edu

ABSTRACT

Complex queries over high speed data streams often need to rely
on approximations to keep up with their input. The research
community has developed a rich literature on approximate
streaming algorithms for this application. Many of these
algorithms produce samples of the input stream, providing better
properties than conventional random sampling. In this paper, we
abstract the stream sampling process and design a new stream
sample operator. We show how it can be used to implement a
wide variety of algorithms that perform sampling and sampling-
based aggregations. Also, we show how to implement the
operator in Gigascope - a high speed stream database specialized
for IP network monitoring applications. As an example study, we
apply the operator within such an enhanced Gigascope to perform
subset-sum sampling which is of great interest for IP network
management. We evaluate this implemention on a live, high
speed internet traffic data stream and find that (a) the operator is a
flexible, versatile addition to Gigascope suitable for tuning and
algorithm engineering, and (b) the operator imposes only a small
evaluation overhead. This is the first operational implementation
we know of, for a wide variety of stream sampling algorithms at
line speed within a data stream management system.

1. INTRODUCTION

Many applications, such as network monitoring, financial
monitoring, sensor networks, and the processing of large scale
scientific data feeds, produce data in the form of high-speed
streams. A query set which analyzes these streams might and
often does resort to approximation algorithms in order to keep up
with the worst case load. The research community has developed
a large body of work to approximate expensive functions on data
streams. Examples include approximation algorithms for
quantiles, heavy hitters, set resemblance, count distinct, and so on.
See [4] for an overview of data stream research.

We focus on sampling methods for data streams. A sample is a
small-sized representative of the data suitable for different
purposes. Sampling has a rich history in statistics with several
variants: sampling with/without replacement, biased sampling,
fixed or variable size sampling etc. There is also extensive use of
sampling in databases with many modified methods such as
stratified, congressional, outliner or distance-based sampling etc.
[6]. Sampling in the context of data streams shares some
common aspects with sampling in statistics and databases, but has
additional constraints. In stream sampling, typically one is
interested in sampling in one pass over a high speed data that can
not be stored at its matching rate. As a result, when an item
repeats on the stream, it is difficult to sample based on whether or
not it has been seen before. So, even uniform sampling of the
distinct items in the data stream is tricky. Further, one may need
to obtain fixed-sized sample when the size of the stream is
unknown. Finally, stream input has many attributes and items are
often ``weighted’’ and it is difficult to ensure that the sample has
desirable properties - such as it captures the heavy hitters or sub-
range aggregates - accurately for various subset combinations of
attributes and cumulative weights on these combinations. The past
few years have seen the design of many effective stream sampling
methods for estimating specific aggregates such as quantiles [18],
heavy hitters [3], distinct counts [19], subset-sums [2], set
resemblance and rarity [10] etc. as well as generic sampling such
as fixed-size reservoir sampling [1], adaptive geometric
sampling [7][8], etc.

The focus of this paper is not to design new stream sampling
methods. Instead, we address the problem of how these widely
varied and quite sophisticated sampling methods can be
implemented within an operational data stream management
system and scale in performance to line speeds in IP network
monitoring applications. The problem we address in this paper is
to incorporate approximate streaming algorithms into a DSMS,
specifically sampling-based algorithms.

Possible Approaches: There are several approaches to doing this
integration, which we discuss here.

The first approach is to incorporate the different sampling
algorithms directly into the DSMS kernel, and make the option of
using them available to the user through several keywords. This
approach is attractive when the special techniques being
incorporated into the database engine are mature, for example data
mining keywords in SQL Server 2005 [11], windowing keywords
in SQL 99 [12], and so on. However, stream sampling algorithms
is an active research area with new techniques being continually

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD 2005, June 14–16, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06 $5.00.

1

developed. Incorporating new techniques into the kernel is
cumbersome and does not promote experimentation. In addition,
the query language is burdened with a keyword explosion. Aurora
incorporates a DROP operator which performs random sampling
to shed load [13]; STREAM also provides operator-level
sampling via a SAMPLE keyword [19].

The second approach is to implement individual stream sampling
algorithms with User Defined Aggregate Functions (UDAF). This
approach was explored in [14] for one of the methods, namely,
approximating heavy hitter frequency counts by sampling [3].
While the UDAF approach is useful for obtaining point values
(e.g., the median packet length), it is cumbersome at best for
obtaining set values. For example, to obtain set of destination IP
addresses responsible for at least 1% of traffic using the UDAF
approach, we could write a query with 100 references to the heavy
hitters UDAF (one for each of the possible 100 heavy hitters) in
the SELECT clause, pivot [15] the result to get the set value, and
filter out invalid values. While set results are not inherently better
than point results, many applications require set results as their
input. In addition, some algorithms, such as subset-sum sampling
[2] are better expressed as a sampling query. ATLaS [22] is a
system in which a UDAF is specified in SQL. Its set-oriented
nature makes set-valued return results possible. As will be
evident later, our operator is in some ways a highly structured
version of an ATLaS UDAF. The structure we impose enables the
simple expression of many algorithms, and a highly efficient
evaluation process.

The third and related approach is to provide for User Defined
Operators (UDOs) which consume input streams and produce
output streams, one for each of the stream sampling methods.
Some DSMSs provide a mechanism to incorporate UDOs,
including Aurora [13] and Gigascope [21]. Aurora is built as a
system of interconnecting operators, and by nature supports
UDOs. Gigascope has special facilities for incorporating UDOs
into a query set. However, writing and supporting a DSMS
operator is a difficult and error-prone task and does not scale with
the number of different stream sampling methods of interest. Our
discussions with the Gigascope implementers indicated that few
ODOs had been written, and only as a last resort.

Our Approach: The approach we take in this paper is to develop
a single operator which can be specialized to implement a wide
variety of stream sampling algorithms. The advantage of this
approach is that it encourages experimentation and development
of new streaming algorithms and their rapid deployment for
practical applications. The functions which support the streaming
algorithm using the operator for different problems can be written
by the algorithmic expert, following a simple API. The developer
is not burdened with the details of kernel integration or stream
operator development. Our contributions are as follows.

• We abstract an operator construct and define its
semantics. We show that this generic operator can be
used to implement wide variety of stream sampling
algorithms including the reservoir sampling [1], subset-
sum sampling [2], min-wise hash sampling [10], heavy
hitter algorithm [3], and many others.

• We show how to implement the generic operator in a
data stream management system (DSMS). The sample
operator is invoked using special keywords in a
grouping and aggregation query. We detail an efficient

templatized implementation of the sample operator.
These constructs, as well as STATEFUL functions we
introduce, may be of independent interest in
conventional data warehouse DBMSs because of their
ability to support approximation queries.

• We perform an experimental study by implementing our
sampling operator in the Gigascope DSMS. We use
this implementation to present a detailed study of one of
the stream sampling algorithms of great interest to IP
network management, namely, subset-sum sampling [2]
that is operationally used for performance monitoring
in AT&T’ s IP backbone and for customer reports. Our
implementation works at line speed and is now part of
the Gigascope release; it shows that the computational
and memory overhead is very small. In addition, our
experience with real data revealed its burstiness and led
to a small fix in the subset-sum stream sampling
algorithm that substantially improved its performance.
The ability to do such easy tuning and engineering is
one of the attractions of our approach.

Our operator is specifically targeted at stream sampling algorithms
and can be used to implement scores of them. In the paper, we
have chosen to focus on four representatives: reservoir sampling
for standard fixed-size sampling on streams, heavy hitter
algorithm from the database community, min-wise hash sampling
from the algorithms community and subset-sum sampling from
the networking community. We believe our work is the first to
operational implementation we know of, for a widely variety of
stream sampling algorithms at line speed within a DSMS.

Map: In Section 2, we discuss related work. In Section 3, we
provide an overview of the Gigascope DSMS. In Section 4, we
present an overview of the four stream sampling methods above
and describe their common framework. In Section 5, we present
our operator and show how it can be used generically to
implement different stream sampling algorithms. In Section 6 we
discuss STATEFUL functions, SUPERGROUPs and show how to
implement our operator in Gigascope. In Section 7, we present
our experimental study. Conclusions are in Section 8.

2. RELATED WORK

Sampling has an extensive history in statistics and relational
databases. We focus on stream sampling. As mentioned earlier, a
number of specific sampling algorithms have been designed for
quantiles [18], heavy hitters [3], distinct counts [19], subset-sums
[2], set resemblance and rarity [10], geometric sampling for range
counting [7] and adaptive sampling for convex hulls [8], etc.
Many of these have been implemented and tested on reasonable
streams, but few, to the best of our knowledge, on IP network line
speeds at which packets are forwarded. In [14], the authors
implemented the heavy hitters’ algorithm [3] as a UDAF in line
speed. In [2] the subset-sum sampling method is implemented at
IP flow speeds and not at packet speeds; flows are several orders
of magnitude aggregated from packet streams.
There are a number of DSMSs being developed: Aurora [13],
STREAM [19], Gigascope [21], TelegraphCQ [17], NiagaraCQ
[16], etc. Many of them support random sampling, including the

2

DROP operator of Aurora, the SAMPLE keyword in STREAM,
and sampling functions in Gigascope. Still, these are uniform
sampling operators. We do not know of prior work on these
systems that systematically implemented a variety of sophisticated
stream sampling methods.

3. GIGASCOPE

In this section, we briefly review some relevant aspects of the
Gigascope DSMS and its architecture. The interested reader is
referred to [21][14] for a more complete description.

A primary requirement of a DSMS is to provide a way to unblock
otherwise blocking operators such as aggregation and join.
Different DSMSs take different approaches, but in general they
provide a way to define a window on the data stream on which the
query evaluation will occur at any moment in time. In Gigascope,
one or more attributes of a data stream are marked as being
ordered. Query evaluation windows are determined by analyzing
how a query references the ordered attributes. For example,
consider the following schema.

PKT(time increasing, srcIP, destIP, len)

The time attribute is marked as being ordered, specifically
increasing. Then the following query computes the sum of the
length of packets between each source and destination IP address
for every minute

Select tb, srcIP, destIP, sum(len)
From PKT
Group by time/60 as tb, srcIP, destIP

In order to obtain high performance in data reduction, Gigascope
has a two level architecture (see Figure 1). Query nodes which
are fed by source data streams (e.g., packets sniffed from a
network interface) are called low level queries, while all other
query nodes are called high level queries. Data from a source
stream is fed to the low level queries from a ring buffer without
copying. Previous work [14][21] has shown that early data
reduction by low level queries is critical for high performance.

• Use early data
reduction to handle
very high speed
data streams.

• Low-level queries
perform initial fast
selection and
aggregation on
high speed stream.

• Fixed-size buffers
at the low level

• Finalize
aggregation in post
processing.

NIC

Ring Buffer

Low Low Low

High High

App

Figure 1. Gigascope architecture.

4. STREAM SAMPLING ALGORITHMS

Recall that while approximate stream algorithms can be
implemented as UDAFs, they return point values rather than set
values. That is, to return samples s1,ss,…,sk associated with group
G, they return data in a schema such as (G, S1, S2, …, Sn) rather
than as (G, S). When we considered the problem of
incorporating stream sampling algorithms which return set results
into a DSMS, we observed that a large class of these algorithms
has a similar control structure. In this section, we survey a
representative selection of stream algorithms to illustrate their
common structure.

4.1 Reservoir Sampling

The reservoir sampling algorithm [1] solves the problem of
selecting a random sample of size n from a pool of N records,
where the value of N is unknown. Let T be a tolerance parameter,
where 10 < T < 40; t denote the number of data records processed
so far. The current set of candidates for the final sample is stored
in the array C. The basic idea of reservoir sampling algorithm can
be described as follows:

Within each time window:

• Make first n data records candidates for the sample by saving
them into reservoir of size Tn.

• Process the rest of the record within the time window in the
following manner:

• At each iteration generate an independent random
variable

�
(n,t).

• Skip over the next
�
 data records.

• Make the next data record a candidate by replacing one
at random. The index of the record being replaced is
(n*random()), where random() is random
number generator that returns a real number in the unit
interval.

• If the current number of candidates exceeds n records,
randomly choose n samples out of the reservoir of
candidates.

 An independent random variable
�
 can be generated in several

ways. The fastest version of the algorithm generates
�
 in constant

time, on the average, by a modification of von Neumann’ s
rejection-acceptance method and runs in average
time ()()()nNnO /log1+ , which is optimal, up to a constant factor.

4.2 Heavy Hitters

The heavy hitters problem is to find the elements in a data stream
which account for at least ε fraction of the all tuples. A fast and
simple heavy hitters algorithm was proposed by Manku and
Motwani [3]. Let

ef be the true frequency of element e in the

stream. The incoming stream is conceptually divided into buckets
of width � �ε/1=w transactions each, where ε is an error bound.

Buckets are labeled with bucket id starting from 1. The current

3

bucket id is calculated as � �wNbcurrent /= , where N is current

length of the stream. The algorithm also uses a parameter s
(support): for all collections of transactions, an itemset IX ⊆ ,
where I is universe of all items, is said to have support s if X
occurs as a subset in at least a fraction s of all transactions. The
data structure D is a set of entries of the form ()∆,, fe where e is
an element in the stream, f is an integer representing its estimated
frequency, and ∆ is the maximum possible error in f . Initially D
is empty. The algorithm works as follows:

• For every new element e check whether it exists in D. If so,
increment its frequency f by 1. Otherwise create a new entry
in D of the form ()1,1, −currentbe .

• At the boundary of every bucket iterate over all elements of
D. An element ()∆,, fe is deleted if

currentbf ≤∆+ .

• When a user requests a list of items with threshold s, we
output those entries where ()Nsf ε−≥

The algorithm is simple and uses at most ()Nε
ε

log
1 space.

Although the output is approximate, the error is guaranteed not to
exceedε , in the sense that if sf e ≥ the algorithm will return

element e, and if ε−< sf e
, the algorithm will not return e.

4.3 Min-Hash Computation

The resemblance, ρ, of two sets A and B is the size of their
intersection divided by the size of their union:

() ||/||, BABABA ��
=ρ

A min-hash signature [24] is a compressed representation of a set
from which one can approximate the resemblance of two sets. Let
hi(a) be a hash function. The signature of set A, S(A), is:

() ()
() ())(),(

|)(min

1 AsAsAS

AaahAs

n

ii �
=

∈=

If S(A) and S(B) are two min-hash signatures, then

∑ =
= n

i ii BsAsIBA
1

))(),((),(ρ�

Where I(x,y) is the indicator function, returning 1 if x=y and 0
otherwise. While any given element si(A) can be easily computed
in an SQL query, a signature typically contains 100 or more
elements, making its expression in SQL quite cumbersome.
However, a substitute for the minimum of N hash functions is the
N minimum values of a single hash function [24].

In [10], the authors use min-hash to sample uniformly from the set
of distinct elements in the stream and use it to estimate rarity (the
ratio of the number of items that appear once in the stream to the
number of distinct items) as well as set similarity between two
windowed streams.

4.4 Subset-Sum Sampling

Estimation of sums of sizes of objects sharing a common set of
properties is of a particular interest for the network management
community. In this context the subset-sum sampling algorithm
provides a better estimate than random sampling. Like Reservoir
sampling, the subset-sum sampling can produce fixed size results.
Unlike reservoir sampling, subset-sum sampling provides
guarantees on sums of a measure attribute.

The subset-sum sampling algorithm [2] collects a sample S of
tuples from R in such a way that we can accurately estimate sums
from the sample. We phrase the algorithm in database language
by assuming that the schema of R is (C,x), where C is an
attribute we use for subset selection (the “color” of a tuple) and x
is the measure attribute. Then

()[] ()∑∑ =∧∈==∧∈ cCtRtxtcCtStxtE .|..|.

Furthermore, the variance of the subset sum over S is within a
factor z (defined below) of the subset sum over R.

In the basic subset-sum sampling algorithm, the user sets a
threshold z, which determines the sample size. Each tuple t is
sampled with probability () { }zxtxp /.,1min= . In particular, the
algorithm uses a counter, initialized to zero, and works in the
following manner:

• For every new tuple t, check whether t.x > z. If yes, sample
the tuple. Otherwise, add value of the t.x to the small flow
counter.

• If tuple was not sampled, check whether counter > z. If yes,
subtract z from counter and sample the tuple, setting t.x to z.
Otherwise discard the tuple.

The idea behind this algorithm is that tuples with large values of
t.x contribute the largest amount to a sum. Therefore all large
tuples are sampled; however small tuples cannot be discarded
without biasing some subset-sum. The algorithm samples one
small tuple every time the combined weight of the small tuples
exceeds z. To estimate the sum, the measure t.x of the sampled
small tuple is adjusted to z, since it represents a weight of
threshold z: }.,.max{. zxtxt =

The result of the algorithm described above is a sample of
arbitrary size, which introduces an element of unpredictability. In
many cases we would like a sample of a particular size, say 1000
samples regardless of the distribution of t.x or the size of R. The
second version of the algorithm (dynamic subset-sum sampling)
will produce a consistent number of sampled tuples. The user
specifies the desired sample size N and an initial value of the
threshold z. In addition to small tuples count (count), the
algorithm tracks the number of tuples sampled so far
(sample_count). The algorithm works in the following manner:

• Collect samples according to the basic subset-sum
sampling algorithm, keeping a count of the number of
sampled tuples in sample_count.

• If sample_count > 	 *N (e.g., 	 =2), estimate a new
value of z which will result in N tuples. Subsample S
using basic subset-sum sampling and the new value of z,
and continue with basic subset-sum sampling.

4

• When all tuples from R have been processed, if
sample_count > N then adjust z and subsample S
using basic subset-sum sampling.

When applied to a data stream, subset-sum sampling occurs in
successive time windows. In this case, an initial threshold can be
estimated for the new time window using the threshold from the
old time window, adjusting its value to obtain an estimated N
samples during the new time window.

The authors of [2] suggest a variety of strategies for adjusting z. In
our implementation, we used the aggressive version of the z
threshold adjustment (z-threshold, |S|-currently maintained
number of samples, M-desired number of samples, B-number of
samples for which sample size > threshold):

If MS <≤ ||0 , then ()MSzz oldnew /||=

If MS ≥|| , then ()() ()()BMBSzz oldnew −−= /1,||max

4.5 Summary

We observe that these stream sampling algorithms are quite
sophisticated, and far from “pick each item with some
probability” that one expects from uniform sampling. They also
solve very different problems and each has found many
applications. Still they follow a common pattern. First a number
of items are collected from the original data stream according to a
certain criteria, and perhaps with aggregation in the case of
duplicates. If a condition on the sample is triggered (e.g., the
sample is too large), a cleaning phase is triggered and the size of
the sample is reduced according to another criteria. This sequence
can be repeated several times until the border of the time window
is reached and the sample is output. This framework fits each of
the summarized algorithms as follows:

• Subset-Sum sampling: Sample records according to the
basic subset-sum sampling algorithm. Trigger the cleaning
phase when count_sample >
 *N. In the cleaning phase,
adjust z and subsample.

• Heavy hitters: Count the frequency of occurrence for every
distinct sample. Trigger the cleaning phase every w input
tuples. In the cleaning phase, delete samples according to the
defined rules.

• Min-hash: Sample a hash value whenever it is within the
smallest N of hash values seen thus far. Trigger the cleaning
phase when the number of samples exceeds
 *N. In the
cleaning phase, remove the hash values larger than the Nth
smallest value seen thus far.

• Reservoir sampling: repeatedly generate � ,, skip that
number of records, and select the next record for the
reservoir. Trigger the cleaning phase when the sample size
exceeds Tn. In the cleaning phase, randomly choose n
records from the reservoir to keep and delete the rest.

Our operator in the next section is inspired by the common
framework above.

5. THE SAMPLING OPERATOR

From the discussion above, we derive a number of common
characteristics for the sampling algorithms in question:

• A “global” state structure.

• A loose predicate for admitting a tuple to the sample.

• A predicate which triggers a sample cleaning phase.

• A predicate for removing samples during the cleaning phase.

• A finishing-off predicate.

The process of sampling is in some ways similar to that of
aggregation, as they both collect and output sets of tuples which
are representative of the input. Accordingly, our textual
representation of the sampling operator is based on the textual
representation of aggregation:
SELECT <select expression list>
FROM <stream>
WHERE <predicate>
GROUP BY <group-by variables definition list>
[SUPERGROUP <group-by variable list>]
[HAVING <predicate>]

 CLEANING WHEN <predicate>
 CLEANING BY <predicate>

The “global” state structure stores the control variables of the
sampling algorithm. For example, in the Manku-Motwani
algorithm [3] the state stores variables such as the count of tuples
processed since the last cleaning phase and the number of
cleaning phases which have been triggered. Since we might wish
to obtain a sample on a group-wise basis (e.g., for each source IP
address, report the destination IP addresses accounting for at least
10% of the total packets sent from the source IP), we associate the
sampling state with supergroups, and samples with the groups in a
supergroup. The variables in the SUPERGROUP clause must be
a subset of group-by variables defined in the GROUP BY clause
(thus, supergroups are a specialization of grouping sets [12]). By
default, the supergroup is ALL. Along with sampling state
variables, the supergroup can compute superaggregates
(aggregates of the supergroup rather than the group). One example
of a useful superaggregate is count_distinct$(), which
returns the number of distinct groups in a supergroup (we use the
$ to denote that an aggregate is associated with the supergroup
rather than the group).

More concretely, the semantics of a sampling query is as follows:

• When a tuple is received, evaluate the WHERE clause. If the
WHERE clause evaluates to false, discard the tuple.

• Else if the condition of the WHERE clause evaluates to
TRUE then

• Create and initialize a new supergroup and a new
superaggregate structure if needed, otherwise update the
existing superaggregates (if any).

• Create and initialize a new group and a new aggregate
structure if needed, otherwise update the existing
aggregates (if any).

• Evaluate the CLEANING_WHEN clause.

• If the CLEANING_WHEN predicate is TRUE

5

• Apply CLEANING_BY clause to every group.

• If the condition of CLEANING_BY clause
evaluates to FALSE

• Remove group from the group table, and
update any superaggregate

• When the sampling window is finished,

• Evaluate the HAVING clause on every group.

• If the condition in the HAVING clause is satisfied, then
the group is sampled, else discard the group.

That completes the description of the operator. The discussion
thus far is independent of any specific DSMS.

6. THE OPERATOR IN GIGASCOPE

In this section, we discuss how sampling operator interacts with a
specific DSMS, namely Gigascope, and is realized in it.

6.1 Sampling operator in Gigascope

The sampling operator in previous section brings up certain
details within Gigascope. For example, in the Gigascope DSMS,
the sampling window ends whenever any ordered group-by
variable changes value, so the sampling operator will produce
output once every time window. As a corollary, all ordered
group-by variables are part of the supergroup. Also, in some
algorithms, e.g., dynamic subset-sum sampling, initial values of a
state in a new time window are derived from the state of the old
time window. Our implementation of the sampling operator
supports this at superaggregate structure initialization time by
checking if a supergroup with the same non-ordered group-by
variables existed in the previous time window. If so, all states in
the new superaggregate are initialized by a function which accepts
the equivalent state from the old time window.

For an example, the following Gigascope query expresses the
dynamic subset-sum sampling algorithm which collects 100
samples:

SELECT uts, srcIP, destIP,
UMAX(sum(len),ssthreshold())

FROM PKTS
WHERE ssample(len,100) = TRUE
GROUP BY time/20 as tb, srcIP, destIP, uts
HAVING ssfinal_clean(sum(len),

count_distinct$(*)) = TRUE
CLEANING WHEN
 ssdo_clean(count_distinct$(*)) = TRUE
CLEANING BY ssclean_with(sum(len)) = TRUE

where UMAX(val1, val2) is a function which returns the
maximum of the two values, and uts is a nanosecond granularity
timestamp (with its timestamp-ness cast away) used to make each
tuple its own group.

The sshthreshold(), ssample(), ssfinal_clean(),

ssdo_clean() and ssclean_with() functions are stateful
functions, which we discuss in the next section.

To complete the description of the sample operator, we need to
discuss some working details, which we do in the context of our
implementation in Gigascope.

6.2 Stateful Functions

To implement some of the algorithms, a number of functions need
to access the same global state throughout the execution. For this
reason, we call those functions stateful. Typically, a collection of
functions will share the same state structure. Stateful functions are
very similar to UDAFs, but with the following differences:

• They can produce output a number of times during the
execution.

• The state can be modified only when the functions which
share the state are referenced.

A state is declared as follows:
STATE <type> <name>;

The declaration of stateful functions ties the function to the state it
shares:

SFUN <type> [modifiers] <state_name>
<function_name> (<param_list>)

In case of subset-sum sampling algorithm:
STATE char[50] subsetsum_sampling_state;
SFUN int subsetsum_sampling_state ssample(int,
CONST int);
SFUN int subsetsum_sampling_state
 ssfinal_clean(int, int);
SFUN int subsetsum_sampling_state
 ssdo_clean(int);
SFUN int subsetsum_sampling_state
 ssclean_with(int);
SFUN int subsetsum_sampling_state
 ssthreshold();

When the query references a new supergroup, the space for the
SFUN state is allocated in the superaggregate structure. The state
is initialized with its associated initialization function. For
example, the prototype of the state initialization function in our
implementation of the sampling operator is:

void _sfun_state_init_<state name>(<pointer to
memory for the state>, <pointer to old state,
or NULL>);

Stateful functions are implicitly passed a pointer to their
associated state. In our implementation, the prototype of the
stateful functions has the following form:

<return type> <name>(void *s, <param_list>);

where s is the pointer to the state.

In the case of our subset-sum sampling implementation, some of
the functions that we added to the Gigascope runtime library are:

void
_sfun_state_init_subsetsum_sampling_state(
void* n, void* o);
int ssample(void*s, int len, int sample_size);

6.3 Groups and Supergroups

As discussed earlier, very often there is a need to reference global
aggregates, or supergroups. For instance, in subset-sum sampling
the cleaning phase is triggered when the number of groups

6

exceeds the threshold (it’ s important to notice that in the subset-
sum sampling implementation every packet needs to be distinctly
unique, thus every group consists of a single packet). Another
example of the query that uses supergroups is the min-hash
problem, when we would like to compute k min-hash destination
IP addresses per source IP address; and hence we need a
superaggregare which returns the kth smallest value.

There is a difference between regular aggregation and global
(super) aggregation. To be able to maintain superaggregate, we
need to maintain group aggregate of the same type. When a new
group is added or deleted (as a result of the cleaning phase), we
need to update the supergroup aggregate by adding or subtracting
the group aggregate value. One of the useful superaggregates is
count_distinct$() which reports the number of groups in the
supergroup.

6.4 Sampling Operator Implementation

Our implementation of the sampling operator maintains three
types of hash tables: one for the groups, one for the supergroups
and an additional table that keeps track of all groups for every
supergroup:

Group table:

key – set of group-by variables

value – structure that maintains group aggregates

Supergroup table:

key - set of supergroup variables not including ordered
variables (when no supergroup is specified, the key is
associated with a single time window).

value – structure that maintains state(s) associated with
the supergroup, and any superaggregates.

Supergroup-Group table:

key - set of supergroup variables (when no supergroup
is specified, the key is associated with a single time
window).

value – list of all groups in this supergroup

Note that the key of the supergroup table is always a subset of
elements that represent the key of the group table.

We actually maintain two supergroup hash tables – “ old” and
“ new” . The “ old” supergroup hash table maintains all the
supergroups that were sampled in the previous window.

The evaluation process can be summarized as follows:

• When a tuple is received, compute the key for the supergroup
table using group-by variables.

• If at the border of the window, call final_init() function
for the states in the new supergroup table (to signal to the
state that the time window is finished) and apply HAVING
clause to every group of the new group hash-table. Clear the
group table, the old supergroup table, and the supergroup-
group table, and move the new supergroup table to the old
supergroup table.

• If the supergroup of the newly arrived tuple exists in the new
supergroup table, then apply WHERE condition to the tuple.

If the condition evaluates to TRUE, update superaggregates
of the supergroup, else start processing next tuple.

• If the supergroup doesn’ t exist in the new supergroup table,
check whether the supergroup with the same key exists in the
old supergroup table. If so, initialize the state of the new
supergroup by using state_init() function, passing a
pointer to the old state as the second argument. If the
supergroup is entirely new, pass a NULL as the second
argument. Create a new supergroup in new hash table.
Apply WHERE condition to the tuple. If the condition
evaluates to TRUE, update superaggregates.

• Compute key for the group table using group-by variables.

• If the group with this key exists in the new group hash-table,
update group aggregates.

• If the group doesn’ t exist, create a new group and new
aggregates of the group. Add the key of the group to the
supergroups’ entry in the supergroup-group table.

• Apply the CLEANING WHEN condition to the supergroup
state. If the condition evaluates to TRUE, trigger the cleaning
phase by applying CLEANING BY clause on every group
that belong to the current supergroup (i.e., using the
supergroup-group hash-table). If the condition evaluates to
FALSE, then delete the group from the group hash-table and
remove its key from the supergroup’ s supergroup-group
table.

• Stateful functions that appear in SELECT clause will be
evaluated last, when the output tuple is created.

6.5 Evaluation Example

Let us consider an example of the subset-sum sampling algorithm.
The global structure of the algorithm uses a number of parameters,
such as the value of the threshold z, the counter of small packets
count, the counter of large packets bcount, value of the cleaning
threshold � , etc. The evaluation process of the query that
expresses the algorithm is as follows:

• When the tuple is received, call ssample() function:

The loose predicate for admitting a tuple to the sample is the
basic subset-sum sampling predicate using the current value
of z. If the function returns false, then the predicate condition
had failed and we start processing next tuple. If the function
returns true, process the tuple by creating (or updating)
appropriate entries for supergroup, group and supergroup-
group hash tables.

• Call ssdo_clean() function:

The cleaning phase is triggered when the current sample size
exceeds the threshold of the number of samples that can be
maintained by currently processed supergroup. If the
function returns false, the condition is not met and we start
processing next tuple. Otherwise, z is adjusted and the
cleaning phase is triggered.

• Call ssclean_with() function on every group of currently
processed supergroup. The current sample is cleaned by
applying the new value of threshold for the size of the data
record and deleting those records which don’ t meet the

7

cleaning condition. The cleaning condition states that if the
size of the data record < value of the threshold before the
most recent adjustment (z_prev), then z_prev will replace
size of the record during the cleaning phase.

• Call ssfinal_clean() at the border of every window. If
the number of samples still exceeds the desired size of the
final sample, do the final subsampling. This function
implements the final cleaning condition which is identical to
the cleaning condition implemented in ssclean_with()
function. If the function call returns false, the group is
evicted from the hash table. Otherwise, the group is sampled
and the output tuple is created.

6.6 Query Examples

Although we have focused on the dynamic subset-sum sampling
implementation, in this section we show how the other three
algorithms from our representative four can be implemented using
the generic sampling operator.

Query for Heavy Hitters Algorithm: This query will report the
100 most common source addresses within a time window of 1
minute. The function current_bucket() returns id of current
bucket. The aggregate first() returns the first value that was
returned by current_bucket() function within current time
window. The function local_count(N) increments
current_bucket and returns true once every N calls.

SELECT tb, srcIP, sum(len), count(*)
FROM TCP
GROUP BY time/60 as tb, srcIP
CLEANING WHEN local_count(100) = TRUE
CLEANING BY count(*) < current_bucket()-

 first(current_bucket())

Query for Min-Hash Computation: This query will report 100
min-hash values of destination IP addresses per source IP address.
This query does not make use of stateful functions but instead
relies on the count_distinct$(*) and the
Kth_smallest_value$(HX,100) superaggregates (Kth-

smallest_value(x,n) returns the nth smallest value of x).

SELECT tb, srcIP, HX
FROM TCP
WHERE HX <= Kth_smallest_value$(HX, 100)
GROUP_BY time/60 as tb, srcIP, H(destIP) as HX
SUPERGROUP BY tb, srcIP
HAVING HX <= Kth_smallest_value$(HX, 100)
CLEANING WHEN count_distinct$(*) >= 100
CLEANING BY HX <= Kth_smallest_value$(HX, 100)

Query for Reservoir Sampling Algorithm: This query will
return 100 random samples per time window of 1 minute. The
function rsample(100) implements the sampling condition by
returning true for those tuples that should be saved in the reservoir
of candidate tuples, and returning false for those that are skipped
over. The function rsdo_clean() returns true when the number
of candidates (count_distinct$()) exceeds the threshold value
of Tn, and returns false otherwise. The functions
rsclean_with() and rsfinal_clean() randomly subsample
n final samples the reservoir of candidates:

SELECT tb, srcIP, destIP
FROM TCP
WHERE rsample(100) = TRUE
GROUP_BY time/60 as tb, srcIP, destIP
HAVING rsfinal_clean() = TRUE
CLEANING WHEN

rsdo_clean(count_distinct$()) = TRUE
CLEANING BY rsclean_with() = TRUE

7. EXPERIMENTS

We implemented the sampling operator in the Gigascope DSMS
in order to experiment with the feasibility and performance of the
operator. The Gigascope implementers also provided us with
access to several network data streams. We implemented not only
the operator, but also amended the parser and query analyzer to
instantiate the sampling operator from a query with the textual
representation described in Section 5.

In our experiments, we focus on the dynamic subset-sum
sampling algorithm. The dynamic subset-sum sampling algorithm
is used extensively in the AT&T network performance monitoring
infrastructure [2], and consequently this algorithm is well
understood by the Gigascope developers. In addition, the
Gigascope developers indicted that dynamic subset-sum sampling
is a good first algorithm because of the demand for its use. Our
implementation of dynamic subset-sum sampling follows the
description given in Section 5.

We had two network feeds available for experiments. The first is
the network connection to our research center. This data stream
produces a moderate 5,000 to 15,000 packets per second, with a
rate that is highly variable. The second network feed is a data
center tap, producing moderately high speed 100,000 packets per
second (about 400 Mbits/sec). This data feed is highly
aggregated, and hence has a much lower variability in its data rate
than the first. When testing accuracy, we generally use the first
data feed because its high variability will tend to emphasize
estimation problems. When testing performance, we generally use
the second data feed because its low variability and high data rate
make measurements much more consistent. For all experiments,
we used an inexpensive dual 2.8 GHz processor server.

7.1 Accuracy

We measured the accuracy of the dynamic subset-sum sampling
algorithm by running two query sets simultaneously. One
computed the sum of packet lengths during successive 20 second
intervals, and the other applied dynamic subset-sum sampling to
collect 1000 samples of packets, then computed the sum of
(subset-sum sample adjusted) packet lengths for each time
interval. We found that on many of the time intervals, the
dynamic subset-sum sampling algorithm is inaccurate. This
property is illustrated in Figure 2, where the aggregate result is
labeled “ actual” and the dynamic subset-sum sampling result is
labeled “ estimated (non-relaxed)” .

The problem lies in the threshold update procedure discussed in
4.4. The load during the next interval is estimated to be the load
during this interval; if the load drops sharply, dynamic subset-sum
sampling collects too few samples and underestimates the sum.

8

Accuracy of summation

0

10

20

30

40

50

60

70

80

90

100

M
il

lio
ns

S
um

 o
f

pa
ck

et
 le

ng
th

s

actual

estimated
(relaxed)
estimated
(nonrelaxed)

Figure 2. 1000 samples per period.

To correct this problem, we made a minor adjustment to the
dynamic subset-sum sampling so that it will estimate that the load
in the next time period is a fraction 1/f of the load during this
interval. We call this the relaxed version. In Figure 2 we use
f=10 and the relaxed estimates match the actual sum very closely
for all time periods. The relaxed algorithm works well because the
cleaning phases readily adapt the threshold upward to the
appropriate value.

Another illustration of the problem with non-relaxed subset-sum
sampling is shown in Figure 3. The relaxed algorithm
occasionally over-samples, while the non-relaxed algorithm
frequently under-samples causing an underestimation.

Samples per period

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

S
am

p
le

s

Relaxed
Nonrelaxed

Figure 3. 1000 samples per period.

The cost of the relaxed algorithm is that the cleaning phase is
invoked more frequently. Figure 4 shows the number of cleaning
phases for the relaxed and non-relaxed dynamic subset-sum
sampling algorithms during the experiment. The first interval was
very short (as can also be seen from the other charts). In the
second interval, both algorithms used a large number of cleaning
phases to identify the appropriate threshold; afterwards the
number of cleaning phases stabilized at a low level. The relaxed
algorithm consistently used about 4 cleaning phases, as compared
to 1 for the non-relaxed algorithm. If the cost of the cleaning
phase is small (which we explore in the next section), using the
relaxed algorithm incurs only a small overhead.

We repeated these experiments to collect 100 and 10,000 samples
per period, and obtained nearly identical results (a user will

collect a larger or smaller number of samples depending on
storage costs and the degree of subsetting during analysis).

Cleaning phases per period

0

2

4

6

8

10

12

14

C
le

an
in

g
ph

as
es

Relaxed
Nonrelaxed

Figure 4. 1000 samples per period.

7.2 Performance

To evaluate the CPU overhead of running adaptive subset-sum
sampling using our sampling operator, we ran both the relaxed
and the non-relaxed dynamic subset-sum sampling algorithms on
the high speed link (100,000 packets/sec), as the CPU utilization
of these queries on the moderate speed link is too low to measure
accurately. For a comparison, we also ran basic subset-sum
sampling using a user-defined function in a selection operator. A
comparison of the CPU usage for each of these algorithms is
shown in Figure 5. Even when processing 100,000+ packets/sec
and producing large outputs, the dynamic subset-sum sampling
algorithm implemented using the sampling operator uses only a
small fraction of a CPU (two CPUs are available at the server).
Compared to the selection query (basic subset-sum sampling), the
sampling operator uses only about 3% to 5% additional CPU
load. The cost of the additional cleaning phases to support
relaxed subset-sum sampling can be seen in this chart. However
the overhead is small, at most about 2% of CPU for this
experiment.

Subset-sum Sampling CPU Usage

0
1
2
3
4
5
6
7
8
9

10

0 5000 10000

Samples per period

%
 C

P
U SS relaxed

SS nonrelaxed
basic SS

Figure 5. CPU usage for sampling.

9

However, there is a problem with this implementation of dynamic
subset-sum sampling. Recall that there are two types of queries
nodes in the Gigascope architecture: low level queries which read
from the network interface, and high level queries which read
from Gigascope-managed query streams. The low-level queries
nodes are simple data reduction operators. Currently only
selection and (partial) aggregation are supported. Therefore we
need to run a low-level selection query to feed the subset-sum
sampling queries. In the run of experiments shown in Figure 5,
evaluating the low-level query required about 60% of a CPU, due
to the cost of memory copies.

Fortunately, it is possible to evaluate part of a subset-sum
sampling query at the low-level query. We modified the low-level
selection query to have it perform basic subset-sum sampling with
a threshold 1/10th the level used by the dynamic subset-sum
sampling algorithm when it returns 10,000 samples per interval.
The low-level query load dropped to about 4% of a CPU. In
addition, the dynamic subset-sum sampling CPU load dropped
significantly, as shown in Figure 6.

Subset-sum Sampling CPU Usage

0

1

2

3

4

5

6

7

8

9

10

0 2000 4000 6000 8000 10000

Samples per period

%
 C

P
U

Selection
subquery

Basic SS
subquery

Figure 6. Effect of low-level query type.

We ran additional experiments regarding the setting of (the
trigger to initiate a cleaning phase). Increasing (decreasing)
decreases (increases) the number of times cleaning is done, but
increases (decreases) its cost. We found little dependence of CPU
load on .

8. CONCLUSION

Query sets which make use of very high speed data streams must
often use approximate data reduction strategies to provide
complex statistics while keeping up with the offered data load. A
useful approximation technique is sampling, which reduces the
data set into a much smaller and yet representative result. Typical
sampling methods are often quite simple: sample each item with
some probability, say p. But in streaming context, even uniform
sampling from distinct elements on the stream is a challenge. Over

the past few years, researchers have proposed very sophisticated
sampling algorithms on streams for a variety of problems. Rather
than propose new stream sampling methods, we have focused on
how to implement the many intricate sampling methods in the
literature. Our approach has been to abstract and propose a new
stream operator for evaluating sophisticated sampling algorithms,
on a data stream. This operator is powerful enough to evaluate
many widely different stream sampling algorithms including
subset-sum sampling (from networking), reservoir sampling (from
databases), min-hash sampling (from theoretical algorithms), etc.,
as well as sampling-based aggregation algorithms such as the
Manku-Motwani heavy hitters’ algorithm, and many more. We
urge the readers to try modeling other stream sampling algorithms
via our stream operator to appreciate its flexibility and generality.
Some of our ongoing work consists of cascading one type of
stream sampling inside a different type of stream sampling group;
we will report on those results in the journal version of this paper.

We implemented the sampling operator in the Gigascope DSMS,
and implemented dynamic subset-sum sampling on top of that.
We made a performance evaluation of dynamic subset-sum
sampling on both highly variable and high speed data streams.
We found that

• The accuracy of the dynamic subset-sum sampling
algorithm can be greatly improved by relaxing the
threshold between time windows. This was re-
engineering that was a result of experience with the real
system.

• The sampling operator imposes only a small CPU
overhead, as compared to a simple selection operator.
We can readily scale subset-sum sampling to much
higher data rates.

• By performing part of the subset-sum sampling at the
low level query, we can collect a 1% subset-sum sample
on a high speed data stream using less than 6% of a
CPU.

Obtaining the best performance from a DSMS such as Gigascope
requires a significant amount of early data reduction at the low-
level queries. The method for doing this will depend on the
approximation algorithm. For example, the Manku-Motwani
heavy hitters algorithm would be best supported by aggregation at
the low-level queries. We have not explored operator transforms
in this paper, but we have gained valuable query optimization tips
during our experimental study.

The significance of our results is that we have developed a simple
way in which sophisticated streaming algorithms that returns set
results can be integrated into a query system. The supporting
UDAFs and functions need only follow a simple API. Once
written, the user has the power of the query language to explore
new combinations. This ease of experimentation allowed us to
find the simple upgrade of subset-sum sampling which so
improved its accuracy. The relaxed version of subset-sum
sampling, along with the sampling operator, has been
incorporated into the release version of Gigascope. This
implementation is the first one that we know of in an operational
DSMS which can handle line speeds.

Our success stems from our observation that a large class of
sampling algorithms have an essentially simple communication
structure, namely between individual samples and a sample

10

summary only. We have focused on this core aspect of sampling
algorithms. We note that it is quite possible to derive sampling-
based algorithms which operate on the samples in more complex
ways and therefore require a far more complex communication
structure. An excellent example is a more-holistic sampling
algorithm such as the Greenwald-Khanna quantile algorithm [18].
The compress phase of this algorithm merges adjacent samples,
and thus requires inter-sample communication. This algorithm
(expressed as a UDAF in [14]) and others which may have such
computations on samples built into them, are best expressed using
a stream UDAF on top of the sampling operator we have
developed here. In contrast, all sampling algorithms that work on
a per-sample tuple basis can be implemented using our sampling
operator.

In addition to capturing capturing a common thread of evaluation
of a large variety of sampling algorithms, our sampling operator is
able to maintain information about groups and supergroups in
terms of aggregates and superaggregates required for
implementation and statistical analysis of a sampling algorithm.
We believe that this, along with stateful functions, gives the user
the level of flexibility required for implementation and
customization of various sampling-related algorithms. Our work
with subset-sum sampling demonstrated this, but we provide
another example.

The following example demonstrates the flexibility of the
sampling operator. In network traffic analysis it is often useful to
perform network measurements using flow statistics rather than
packet statistics, since flows offer a considerable compression of
information over packet headers. The straightforward
implementation of this approach in terms of the stream sampling
operator can be expressed as a set of queries, where flow
aggregation is performed leveling a first query, and the result is
fed to a higher level sampling query. However, this
implementation exhibited difficulties under certain network
conditions, in particular when there is a large number of small
flows consisting of only a few packets (e.g. during DDOS
attacks). Under these conditions, the flow aggregation query
requires an enormous number of groups (corresponding to the
enormous number of flows), exhausts the available memory, and
fails. To overcome this problem we modified the implementation
of the subset-sum sampling algorithm by integrating flow
aggregation with sampling into a single query processing phase.
This implementation of the algorithm allows us to create very
informative flow samples on streams of network data with a
moderate memory overhead. The key trick is that small flows can
be quickly sampled and purged from the group table. The new
sampled flows query is a more stable implementation which is
resistant to rapid network changes. We will report on the details
and our experience elsewhere.

Acknowledgements: We thank Oliver Spatscheck at AT&T
Research.

9. REFERENCES

[1] J. S. Vitter. Random sampling with reservoir. ACM
Transactions on Mathematical Software, 11(1):37-57, 1985.

[2] N. Duffield, C. Lund, M. Thorup. Learn more, sample less:
control of volume and variance in network measurement.
SIGCOMM 2001 Measurement workshop.

[3] G. Manku and R. Motwani. Approximate frequency counts
over data streams. Proc. VLDB, 2002, 346-357.

[4] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom.
Models and Issues in Data Stream Systems, Proceedings of
21st ACM, PODS 2002.

[5] S. Muthukrishnan. Data stream algorithms and applications.
http://www.cs,rutgers.edu/~stream-1-1.ps.

[6] A. Singh. http://www.cs.ucsb.edu/~ambuj/Courses/
multimediaDB/sampling.pdf

[7] A. Bagchi, A. Chaudhary, D. Eppstein, and M. Goodrich.
Deterministic sampling and range counting in geometric
streams. ACM Symp Computational Geometry 2004.

[8] J. Hershberger and S. Suri. Adaptive Sampling for
Geometric Problems over Data Streams. ACM PODS '04
(Symp. on Principles of Database Systems) June 13-18,
Paris, France.

[9] P.J. Haas, J.F. Naughton, S. Seshadri, L. Stokes, "Sampling
Based Estimation of the Number of Distinct Values of an
Attribute” , Proc. VLDB 1995, Zurich, Switzerland.

[10] M. Datar and S. Muthukrishnan. Estmating rarity and
similarity on data stream windows. Proc. ESA, 2002. 323-
334.

[11] SQL Server 2005.
http://www.microsoft.com/technet/prodtechnol/sql/2005/eval
uate/dwsqlsy.mspx

[12] P. Gulutzan and T. Pelzer, SQL-99 Complete, Really, CMP
Books, 1999.

[13] D. Carney, U. Cetinternel, M. Cherniack, C. Coney, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul and S. Zdonik.
Monitoring Streams – A New Class of Data Management
Applications. VLDB 2002.

[14] G. Cormode, T. Johnson, F. Korn, S. Muthukrishnan, O.
Spatscheck, D. Srivastava. Holistic UDAFs at Streaming
Speeds, SIGMOD 2004.

[15] M. Gyssens , L.V.S. Lakshmanan and I.N. Subramanian,
Tables as a Paradigm for Querying and Restructuring, Proc.
ACM PODS 96, pg. 93-103.

[16] J. Chen, D.J. DeWitt, F. Tian and Y. Wang, NiagaraCQ: A
Scalable Continuous Query System for Internet Databases,
SIGMOD 2000 pg. 379-390.

[17] S. Chandrasekaran et al. TelegraphCQ: Continuous Dataflow
Processing for an Uncertain World. Proc. CIDR 2003.

[18] M. Greenwald and S. Khanna, Space-Efficient Online
Computation of Quantile Summaries, Proc. SIGMOD 2001.

[19] P.Gibbons. Distinct Sampling for Highly-Accurate Answers
to Distinct Values Queries and Event Reports. Proc. VLDB
2001: 541-550.

[20] R. Motwani, J. Widom, A. Arasu. B. Babcock, S. Babu, M.
Datar, G. Manku, C. Olston, J. Rosenstein, R. Varma. Query
Processing, Resource Management, and Approximation in a

11

Data Stream management System. In CIDR, pages 245-256,
Jan 2003.

[21] C.Cranor, T. Johnson, O. Spatschnek, V. Shkapenyuk.
Gogascope: A Stream Database for Network Applications. In
Proc. ACM SIGMOD, page 262, 2002.

[22] H. Wang, C. Zaniolo and C. Luo, ATLAS: A Small but
Complete SQL Extension for Data Mining and Data Streams,
Proc. VLDB 2003 pg 5-20.

[23] Y.-N. Law, H. Wang and C. Zaniolo, Query Languages and
Data Models for Database Sequences and Data Streams,
Proc. VLDB 2004 pg 492-503.

[24] A. Broder. On the Resemblance and Containment of
Documents, IEEE Compression and Complexity of
Sequences ’97 pg. 21-29.

12

