
Clustering Data StreamsSudipto Guha � Nina Mishra y Rajeev Motwani z Liadan O'Callaghan xAbstratWe study lustering under the data stream modelof omputation where: given a sequene of points, theobjetive is to maintain a onsistently good lustering ofthe sequene observed so far, using a small amount ofmemory and time. The data stream model is relevantto new lasses of appliations involving massive datasets, suh as web lik stream analysis and multimediadata analysis. We give onstant-fator approximationalgorithms for the k{Median problem in the data streammodel of omputation in a single pass. We also shownegative results implying that our algorithms annot beimproved in a ertain sense.1 IntrodutionA data stream is an ordered sequene of pointsthat an be read only one or a small number oftimes. Formally, a data stream is a sequene of pointsx1; : : : ; xi; : : : ; xn read in inreasing order of the in-dies i. The performane of an algorithm that op-erates on data streams is measured by the numberof passes the algorithm must make over the stream,when onstrained in terms of available memory, in ad-dition to the more onventional measures. The datastream model is motivated by emerging appliation in-volving massive data sets, e.g., ustomer lik streams,telephone reords, large sets of web pages, multime-dia data, and sets of retail hain transations an bemodeled as data streams. These data sets are far too�Department of Computer Siene, Stanford University, CA94305. Email: sudipto�s.stanford.edu. Researh supportedby IBM Researh Fellowship and NSF Grant IIS-9811904.yHewlett Pakard Laboratories, Palo Alto, CA 94304, Email:nmishra�hpl.hp.omzDepartment of Computer Siene, Stanford University, CA94305. Email: rajeev�s.stanford.edu. Researh supportedin part by NSF Grant IIS-9811904.xDepartment of Computer Siene, Stanford University, CA94305. Email: lo�s.stanford.edu. Researh supportedin part by an NSF Graduate Fellowship, ARO MURI GrantDAAH04-96-1-0007, and NSF Grant IIS-9811904.

large to �t in main memory and are typially storedin seondary storage devies, making aess, partiu-larly random aess, very expensive. Data stream al-gorithms aess the input only via linear sans with-out random aess and only require a few (hopefully,one) suh sans over the data. Furthermore, sine theamount of data far exeeds the amount of spae (mainmemory) available to the algorithm, it is not possiblefor the algorithm to \remember" too muh of the datasanned in the past. This sarity of spae neessitatesthe design of a novel kind of algorithm that stores onlya summary of past data, leaving enough memory forthe proessing of future data. We remark that this isnot the same as the model of online algorithms.Clustering has reently been widely studied arossseveral disiplines, but only a few of the tehniques de-veloped sale to support lustering of very large datasets. A ommon formulation of lustering is the k{Median problem: �nd k enters in a set of n points soas to minimize the sum of distanes from data pointsto their losest luster enters. Most algorithms for k{Median have large spae requirements and involve ran-dom aess to the input data. We give onstant-fatorapproximation algorithms for the k{Median problemthat naturally �t into this data stream setting. Ouralgorithms make a single pass over the data and usesmall spae. We �rst give a randomized onstant-fatorapproximation algorithm for k{Median, whih makesone pass over the data using n� memory (for � < 1)and requires only ~O(nk) time. We also prove thatany deterministi k{Median algorithm that ahieves aonstant-fator approximation annot run in time lessthan 
(nk). Finally, we give a deterministi ~O(nk)-time, polylog(n)-approximation single-pass algorithmthat uses n� spae, for � < 1.Related Work on Data Streams One of the �rstresults in data streams was the result of Munro andPaterson [16℄, where they studied the spae require-ment of seletion and sorting as a funtion of the num-ber of passes over the data. The model was formal-ized by Henzinger, Raghavan, and Rajagopalan [7℄,who gave several algorithms and omplexity results re-1



lated to graph-theoreti problems and their applia-tions. Other reent results on data streams an befound in [4, 13, 14, 6℄.Related Work on Clustering In this paper weshall onsider models in whih lusters have a distin-guished point, or \enter." In the k{Median problem,the objetive is to minimize the average distane fromdata points to their losest luster enters. The 1{median problem was �rst posed by Weber [17℄. Inthe k{Center problem, the objetive is to minimizethe maximum radius of a luster. The above problemsare all NP-hard, so we will be onerned with approx-imation algorithms. We will assume that the domainspae of points is disrete, i.e., the luster enters mustbe among the input points. The ontinuous ase isrelated to the disrete problem by small fators (seeTheorem 2.1). Throughout the paper we also assumethat the input points are drawn from a metri spae.In the reent past, several approximation algorithmshave been proposed for the k{Median problem [3, 10,2℄. These algorithms require O(n2) spae to omputethe dual variables or primal onstraints. We will beinterested in algorithms whih use more than k mediansbut run in linear spae [12, 2, 9℄.Charikar, Chekuri, Feder, and Motwani [1℄ gave aonstant-fator algorithm for the inremental k{Centerproblem, whih is also a single-pass algorithm requir-ing O(nk log k) time and O(k) spae. There is a largedi�erene, however, between the k{Center and the k{Median problem sine a set of k + 1 suitably separatepoints provides a lower bound for the k{Center prob-lem. These points an be thought of as a proof of thegoodness of the lustering. For the k{Median problem,allowing weighted points, no suh suint proof existand the optimization problem takes on a more globalharater.Our Results We begin by giving an algorithm thatrequires small spae, and then later address the issueof lustering in one pass. In Setion 2 we give a simplealgorithm based on divide-and-onquer that ahievesa onstant-fator approximation in small spae. Ele-ments of the algorithm and its analysis form the basisfor the onstant-fator algorithm given in Setion 3.This algorithm runs in time O(n1+�), uses O(n�) mem-ory, and makes a single pass over the data. Next, inSetion 4, using randomization, we show how to reduethe running time to O(nk) without requiring more thana single pass. In Setion 5 we show it is not possibleto obtain any bounded approximation ratio in deter-ministi o(nk) time; we also show how to ahieve a

poly-logn approximation ratio in a single pass in de-terministi ~O(nk) time.2 Clustering in Small SpaeOne of the �rst requisites of lustering a data streamis that the omputation be arried out in small spae.Our �rst goal will be to show that lustering an bearried out in small (n� for n data points) spae, with-out being onerned with the number of passes. Sub-sequently we will see how to implement the algorithmin one pass.In order to luster in small spae, we investigate al-gorithms that examine the data in a pieemeal fashion.In partiular, we study the performane of a divide-and-onquer algorithm, alled Small-Spae, that di-vides the data into piees, lusters eah of these piees,and then again lusters the enters obtained (whereeah enter is weighted by the number of points loserto it than to any other enter). We show that this piee-meal approah is good, in that: if we had a onstant-fator approximation algorithm, running it in divide-and-onquer fashion would still yield a (slightly worse)onstant-fator approximation. We then propose an-other algorithm (Smaller-Spae) that is similar to thepieemeal approah exept that instead of reluster-ing only one, it repeatedly relusters weighted en-ters. For this algorithm, we prove that if we relustera onstant number of times, a onstant-fator approxi-mation is still obtained, although, as expeted, the on-stant fator worsens with eah suessive relustering.The advantage of Small(er)-Spae is that we sari�esomewhat the quality of the lustering approximationto obtain an algorithm uses muh less memory.
2.1 Simple Divide-and-Conquer and Separability

TheoremsWe start with the version of the algorithm thatrelusters only one. Elements of the algorithm andits analysis will be used in a blak-box manner in thealgorithms in the rest of the paper.Algorithm Small-Spae(S)1. Divide S into l disjoint piees �1; : : : ; �l.2. For eah i, �nd O(k) enters in �i. Assigneah point in �i to its losest enter.3. Let �0 be the O(lk) enters obtained in (2),where eah enter  is weighted by the num-ber of points assigned to it.4. Cluster �0 to �nd k enters.2



Sine we are interested in lustering in small spae,l will be set so that both S and �0 �t in main memory,if possible. If S is very large, no suh l may exist { wewill address this issue later.Before analyzing algorithm Small-Spae, we de-sribe the relationship between the disrete and on-tinuous lustering problem. The following is folkloreand is inluded for ompleteness.Theorem 2.1 Given an instane of the k-medianproblem with a solution of ost C, where the mediansmay not belong to the set of input points, there existsa solution of ost 2C where all the medians belong tothe set of input points.Proof: Consider the solution of ost C, and let thepoints j1; : : : ; jq be assigned to median i. Sine mediani may not be in the input, onsider the point jl whihis losest to i as the median (instead of i). Thus theassignment distane of every point jr at most doubles,sine jrjl an be bounded by jli + jri (where xydenotes the distane from x to y). Over all n points inthe original set, the assignment distane an at mostdouble, summing to at most 2C. 2The following separability theorem sets the stage fora divide-and-onquer algorithm. This theorem arriesover to other lustering metris suh as the sum ofsquared distanes.Theorem 2.2 Consider any set of n points arbitrarilypartitioned into disjoint sets �1; : : : ; �`. The sum ofthe optimum solution values for the k-median problemon the ` sets of points is at most twie the ost of theoptimum k-median problem solution for all n points. 1Proof: Consider the medians used for the optimumk-median solution. If eah partition uses these medi-ans, the ost of the solution will be exatly the ostof the optimal solution. This follows sine the obje-tive funtion for k-median is the sum of distanes tothe nearest median for every point. However the setof medians hosen by the optimum solution need notbe present in a partition. But in the ase where themedians points an be arbitrary points in the spae,the above theorem is proved.In ase we have to hoose the medians from the givenset of points, the medians used by the optimum solu-tion will not be available to every partition. In thisase use Theorem 2.1 to onstrut a solution whih isat most 2 times the ost of the optimum solution. 21The fator 2 is avoided in the Eulidean ase if we allow thatmedians an be arbitrary points in spae, rather than requiringthat they be points from the original data set.

Next we show that the new instane, where all thepoints i that have median i0 shift their weight to thepoint i0 (i.e., the weighted O(lk) enters S0 in Step 2 ofAlgorithm Small-Spae), has a good feasible lusteringsolution. Notie that the set of points in the new in-stane is muh smaller and may not even ontain themedians of the optimum solution.Theorem 2.3 If the sum of the osts of the l optimumk{median solutions for �1; : : : ; �l is C and if C� is theost of the optimum k{median solution for the entireset S, then there exists a solution of ost at most 2(C+C�) to the new weighted instane �0. 2Proof: As in the proof of the previous theorem, wewill onsider the k medians in the optimum ontinuoussolution.Let the median to whih i0 is assigned to in the op-timum ontinuous solution for �0 be �(i0). Further, letdi0 be the number of points assigned to the median i0.The ost of �0 an be expressed asPi0 i0�(i0)di0 (whereagain xy is the distane from x to y). Eah point i0in the new instane �0 an be viewed as a olletion ofpoints, namely those points i assigned to the median i0.Thus the ost of �0 an also be expressed asPi i0�(i0).Let the median to whih i is assigned to in the op-timum ontinuous solution for S be �(i). The ost ofthe new instane �0 is no more than Pi i0�(i) sine �is optimum for �0. This sum is in turn bounded byPi(i0i+i�(i)). The �rst term summed over all pointsi evaluates to C and the seond term evaluates to C�.Thus we showed an assignment to the medians of theoptimal solution at ost C + C�. Using Theorem 2.1,the theorem follows. (Note that the theorem an alsobe shown to hold when the original points in S areweighted.) 2We now show that if we run a biriteria (a; b)-approximation algorithm (where at most ak mediansare output with ost at most b times the optimum k{Median solution) in Step 2 of Algorithm Small-Spaeand we run a -approximation algorithm in Step 4,then the resulting approximation by Small-Spae anbe suitably bounded.Theorem 2.4 The algorithm Small-Spae has an ap-proximation fator of 2(1 + 2b) + 2b.Proof: Let the optimal k-median solution be of ostC�. Then the ost of the solution C at the end of the�rst stage is at most 2bC�. This is true due to Theo-rem 2.2, sine we are adding the ost of the solutionsto eah partition, eah of whih is a b-approximation2Again, the fator 2 is avoided if we use the Eulidean distaneand allow medians to be arbitrary points.3



for that partition. Now by Theorem 2.3, there ex-ists a solution to the k-median problem on the mod-i�ed instane of ost 2(C + C�). Sine we have a -approximation, we have a solution of ost 2(1+2b)C�to the modi�ed instane. The theorem is obtained bysumming the two osts. 2The blak-box nature of this algorithm will allow usto devise a new divide-and-onquer algorithm.
2.2 Divide-and-Conquer StrategyWe now generalize Small-Spae so that the algo-rithm reursively alls itself on a suessively smallerset of weighted enters.Algorithm Smaller-Spae(S,i)1. Divide S into l disjoint piees �1; : : : ; �l.2. For eah i, �nd O(k) enters in �i. Assigneah point in �i to its losest enter.3. Let �0 be the O(lk) enters obtained in (2),where eah enter  is weighted by the num-ber of points assigned to it.4. Call Algorithm Smaller-Spae(�0; i� 1).We an laim the following.Theorem 2.5 For onstant i, Algorithm Smaller-Spae(S; i) gives a onstant-fator approximation to thek{Median problem.Proof: Assume that the approximation fator for thejth level is Aj . From Theorem 2.2 we know that theost of the solution of the �rst level is 2b times opti-mal. From Theorem 2.4 we get that the approximationfator Aj would satisfy a simple reurrene,Aj = 2Aj�1(2b+ 1) + 2bThe solution of the reurrene is  � (2(2b+ 1))j . Thisis O(1) given j is a onstant. 2Sine the intermediate medians in �0 must be storedin memory, the number of subsets l that we partitionS into is limited. In partiular, if the size of mainmemory is M , then we would need to partition S intol subsets so that eah subset �ts in main memory, i.e.,(n=l) � M and so that the weighted lk enters in �0also �t in main memory, i.e., lk � M . Suh an l maynot always exist.In the next setion we will see a way to get aroundthis problem. In fat we will be able to implement thehierarhial sheme more leverly and obtain a luster-ing algorithm for an interesting model of omputation.

We have two themes to develop this idea. The �rst is todo away with the storage of the intermediate medians,and the seond is to design a more interesting reur-sive algorithm. We take up the former and relegate theseond to a later setion.3 The Data Stream ModelUnder the Data Stream Model, omputation takesplae within bounded spae M and the data an onlybe aessed via linear sans (i.e., a data point an beseen only one in a san, and points must be viewed inorder).In this setion we will modify the multi-level algo-rithm to operate on data streams. We will present aone-pass, O(1)-approximation in this model assumingthat the bounded memory M is not too small, morespei�ally n� where n denotes the size of the stream.This model and the line of analysis have similaritiesto inremental lustering and online models. Howeverour approah will be a bit di�erent. We will maintaina forest of assignments. We will omplete this to ktrees, and all the nodes in a tree will be assigned to themedian denoted by the root of the tree. First we willshow how to solve the problem of storing intermediatemedians. Next we will inspet the spae requirementsand running time.Data Stream Algorithm To ahieve this, we willmodify our multi-level algorithm slightly. The algo-rithm will be the following:1. Input the �rst m points; use a biriterion algo-rithm to redue these to O(k) (say 2k) points.As usual, the weight of eah intermediate medianis the number of points assigned to it in the bi-riterion lustering. (Assume m is a multiple of2k.) This requires O(f(m)) spae, whih for a pri-mal dual algorithm an be O(m2). We will see aO(mk)-spae algorithm later.2. Repeat the above till we have seen m2=(2k) of theoriginal data points. At this point we have m in-termediate medians.3. Cluster these m �rst-level medians into 2k seond-level medians and proeed.4. In general, maintain at most m level-i medians,and, on seeing m, generate 2k level-i+1 medians,with the weight of a new median as the sum ofthe weights of the intermediate medians assignedto it.5. When we have seen all the original data points (orwe want to have a lustering of the points we have4



seen so far) we luster all the intermediate mediansinto k �nal medians.Note that this algorithm is idential to the multi-levelalgorithm desribed before.The number of levels required by this algorithm is atmost O(log(n=m)= log(m=k)). If we have k � m andm = O(n�) for some onstant � < 1, we have an O(1)-approximation. Using linear programming or primaldual algorithms we will have m = pM where M isthe memory size (ignoring fators due to maintainingintermediate medians of di�erent levels). We arguedthat the number of levels would be a onstant whenm = n� and hene when M = n2� for some � < 1=2.Linear Spae Clustering The approximation qual-ity whih we an prove (and intuitively the atual qual-ity of lustering obtained on an instane) will dependheavily on the number of levels we have. From thisperspetive it is pro�table to use a spae-eÆient algo-rithm.We an use the loal searh algorithm in [2℄ to pro-vide a biriterion approximation in spae linear in m,the number of points lustered at a time. The ad-vantage of this algorithm is that it maintains only anassignment and therefore uses linear spae. Howeverthe ompliation is that for this algorithm to ahievea bounded biriterion approximation, we need to set a\ost" to eah median used, so that we penalize if manymore than k medians are used. The algorithm solves afaility loation problem after setting the ost of eahmedian to be used. However this an be done by guess-ing this ost in powers of (1+ ) for some 0 <  < 1=6and hoosing the best solution with at most 2k medi-ans. In the last step, to get k medians we use a twostep proess to redue the number of medians to 2kand then use [10, 2℄ to redue to k. This allows us toluster with m = M points at a time provided k2 �M .The Running Time The running time of this lus-tering is dominated by the ontribution from the �rstlevel. The loal searh algorithm is quadrati and thetotal running time is O(n1+�) where M = n�. We ar-gued before, however, that � will not be very small andhene the approximation quality whih we an provewill remain small.We therefore laim the following theorem,Theorem 3.1 We an solve the k{Median problem ona data stream with time O(n1+�) and spae �(n�) up toa fator 2O( 1� ).We have two avenues to pursue. The running timewill be lower-bounded by the spae we require, and we

improve this bottlenek to get linear spae lustering,but �rst, to ahieve salability, our goal will be to getlustering in time ~O(nk). This will mean an amortizedupdate of O(k polylog(n)). In the next setion we willmotivate how to ahieve this, and provide evidene thatours is a hard bound for the running time of a lusteringalgorithm.The seond issue is to present an algorithm withapproximation guarantee whih is polynomial in 1� . Wewill show how to ahieve this in Setion 5.4 Clustering Data Streams in ~O(nk)TimeLet us reall the algorithm we have developed so far.We have k2 � M , and we are applying an alternateimplementation of a multi-level algorithm.We are lusteringm = O(M) (assumingM = O(n�)for onstant � > 0) points and storing 2k medians to\ompress" the desription of these data points. Weuse the loal searh-based algorithm in [2℄. We keeprepeating this proedure till we see m of these desrip-tors or intermediate medians and ompress them fur-ther into 2k. Finally, when we are required to outputa lustering, we ompress all the intermediate medi-ans (over all the levels there will be at most O(M)of them) and get O(k) penultimate medians whih weluster into exatly k using the primal dual algorithmas in [10, 2℄.
4.1 Earlier Work on Clustering in ~O(nk) TimeWe will use the results in [9℄ on metri spae algo-rithms that are subquadrati. The algorithm as de-�ned will onsist of two passes and will have onstantprobability of suess. For high probability results, thealgorithm will make O(logn) passes. As stated, thealgorithm will only work if the original data points areunweighted. Consider the following algorithm:1. Draw a sample of size s = pnk.2. Find k medians from these s points using the pri-mal dual algorithm in [10℄.3. Assign eah of the n original points to its losestmedian.4. Collet the n=s points with the largest assignmentdistane.5. Find k medians from among these n=s points.6. We have at this point 2k medians.Theorem 4.1 [9℄ The above algorithm gives an O(1)approximation with 2k medians with onstant probabil-ity.5



The above algorithm3 provides a onstant-fator ap-proximation for the k{Median problem (using 2k me-dians) with onstant probability. Repeat the aboveexperiment O(logn) times for high probability. Wewill not run this algorithm by itself, but as a substepin our algorithm. The algorithm requires ~O(nk) timeand spae. Using this algorithm with the loal searhtradeo� results in [2℄ redues the spae requirement toO(pnk).Alternate sampling-based results exist for the k{Median measure that do extend to the weighted ase[15℄, however these results assume Eulidean spae.
4.2 Extension to the Weighted CaseWe need this sampling-based algorithm to work onweighted input. It is neessary to draw a random sam-ple based on the weights of the points; otherwise themedians with respet to the sample do not onvey muhinformation. The simple idea of sampling points withrespet to their weights does not help. The philosophyof the above method is that a random sample will bereasonable for most points, that there will not be manyoutliers (at most n divided by the sample size, up toonstants), and that in the seond phase it is suÆientto aount for these outliers.If the points have weights, however, in the �rst stepwe may only eliminate k points. Therefore samplingaording to weights does not arry through. Contrastthis with the algorithm in [5℄ where the points were inEulidean spae and the measure was sum of squaresof distanes. Both these fats were ruial for theiralgorithm.We suggest the following modi�ation. The basiidea is saling. We an round the weights to the near-est power of (1 + �) for � > 0. In eah group we anignore the weight and lose a (1+�) fator. Sine we havean ~O(nk) algorithm, summing over all groups, the run-ning time is still ~O(nk). The orret way to implementthis is to ompute the exponent values of the weightsand use only those groups whih exist, otherwise therunning time will depend on the largest weight.
4.3 The Full AlgorithmWe will use this sampling-based sheme to develop aone-pass and O(nk)-time algorithm that requires onlyO(n�) spae.3The algorithm presented here, without the last step, is es-sentially the same as in [9℄, however the primal dual algorithmwhih requires O(n2) time to solve k{Median problem was notknown when the result was published. The result proved thereinwas using O(n2k2) loal searh algorithm in [12℄ whih was abiriterion approximation.

� Input the �rst O(M=k) points, and use the ran-domized algorithm above to luster this to 2k in-termediate median points.� Use a loal searh algorithm to luster O(M) in-termediate medians of level i to 2k medians of leveli+ 1.� Use the primal dual algorithm of Jain and Vazirani[10℄ to luster the �nal O(k) medians to k medians.Notie that the algorithm remains one pass, sinethe O(logn) iterations of the randomized subalgorithmjust add to the running time. Thus, over the �rst phase,the ontribution to the running time is ~O(nk). Overthe next level, we have nkM points, and if we lusterO(M) of these at a time taking O(M2) time, the totaltime for the seond phase is O(nk) again. The on-tribution from the rest of the levels dereases geomet-rially, so the running time is ~O(nk). As shown inthe previous setions, the number of levels in this algo-rithm is O(logMk n), and so we have a onstant-fatorapproximation for k �M = �(n�) for some small �. 4Thus we laim the following theorem,Theorem 4.2 The k{Median problem has a onstant-fator approximation algorithm running in timeO(nk logn), in one pass over the data set, using n�memory, for small k.5 Lower Bounds and Deterministi Al-gorithmsIn this setion we explore whether our algorithmsould be speeded up further and whether randomiza-tion is needed. For the former, note that we have alustering algorithm that requires time ~O(nk) and anatural question is ould we have done better? We'llshow that we ouldn't have done muh better sinea deterministi lower bound for k{Median is 
(nk).Thus, modulo randomization, our time bounds prettymuh math the lower bound. For the latter, we showone way to get rid of randomization that yields a sin-gle pass, small memory k{Median algorithm that is apoly-logn approximation. Thus we do also have a de-terministi algorithm, but with more loss of lusteringquality.
5.1 Lower BoundsWe now show that any onstant-fator determinis-ti approximation algorithm requires 
(nk) time. We4We ould have used the sampling-based algorithm in theintermediate steps as well, however suh a reursive, sampling-based algorithm will have greater errors, in theory and very likelyin pratie.6



measure the running time by the number of times thealgorithm queries the distane funtion.We onsider a restrited family of sets of pointswhere there exists a k-lustering with the propertythat the distane between any pair of points in thesame luster is 0 and the distane between any pairof points in di�erent lusters is 1. Sine the optimumk-lustering has value 0 (where the value is the dis-tane from points to nearest enters), any algorithmthat doesn't disover the optimum k-lustering doesnot �nd a onstant-fator approximation.Note that the above problem is equivalent to thefollowing Graph k-Partition Problem: Given a graphG whih is a omplete k-partite graph for some k, �ndthe k-partition of the verties of G into independentsets. The equivalene an be easily realized as follows:The set of points fs1; : : : ; sng to be lustered naturallytranslates to the set of verties fv1; : : : ; vng and there isan edge between vi; vj i� dist(si; sj) > 0. Observe thata onstant-fator k-lustering an be omputed with tqueries to the distane funtion i� a graph k-partitionan be omputed with t queries to the adjaeny matrixof G.Kavraki, Latombe, Motwani, and Raghavan [8℄ showthat any deterministi algorithm that �nds a Graph k-Partition requires 
(nk) queries to the adjaeny ma-trix of G. This result establishes a deterministi lowerbound for k{Median.Theorem 5.1 A deterministi k{Median algorithmmust make 
(nk) queries to the distane funtion toahieve a onstant-fator approximation.
5.2 Deterministic Algorithms Requiring ~O(nk)

TimeOne natural question we an ask is what we anahieve without randomization. We have already seenhow to get an O(n1+�)-time lustering algorithm thatuses n� spae and gives a onstant-fator approxima-tion. However this onstant fator grows as 2 1� , and ifwe were to ask for an ~O(nk)-time algorithm we wouldhave an approximation fator polynomial in (n=k).Modifying our approah slightly, we an show the fol-lowing:Theorem 5.2 In ~O(nk) deterministi time, we havea poly-logn approximation for the k{Median problemin n� spae and a single pass.Proof: First we will have to onstrut an algorithmthat runs in time ~O(nk). Then we an redue the spaerequired in the same way as for the previously desribedrandomized algorithm.

Consider the primal-dual algorithm that gives aonstant-fator (say ) approximation for the k{Median problem. This algorithm takes time (andspae) an2 for some onstant a. Consider the followingalgorithm, whih we will all A1: partition the n origi-nal points into p1 equal-size subsets, apply the primal-dual algorithm to eah of these subsets, and then applyit to the p1k weighted points so obtained, to get k �nalmedians. If we hoose p1 = (n=k) 23 , the running time ofA1 is 2an 43 k 23 , and the spae required is 2an 43 k 23 also.By Theorem 2.4 we have an approximation of 42+4.Now de�ne A2 to split the dataset into p2 partitionsand apply A1 on eah of them and on the resultingintermediate medians (notie we an easily ensure animplementation to get a one-pass algorithm). Solvingto minimize the running time will yield p2 = (n=k)4=5.Therefore the running time and spae required bothbeome 4an 1615 k 1415 .If we ontinue this proess so that Ai alls Ai�1on pi partitions, we an prove without muh diÆultythat the running time and the spae required by thealgorithm will both be a2in�1+ 122i�1�1�k�1� 122i�1�1�.However the approximation fator i grows as i =42i�1 + 4i�1.To get the exponent of n in the running time to be 1,it is suÆient to have i = �(log log logn). This makesthe running time nk (hiding poly log logn fators) andgives approximation O(logp n) sine the approximationfator is 42i . Thus we have a poly-logn approximationin ~O(nk) spae and time. Now we an use this in ourprevious algorithm to get an O(logp n) approximationin n� spae and ~O(nk) time, without using randomiza-tion. 2The above atually shows that we have an O(n1+�)-time lustering with approximation guarantee polyno-mial in 1� . Combining this with Theorem 3.1 we getthe following,Theorem 5.3 The k{Median problem an be approxi-mated in time ~O(n1+�Æ) and spae �(nÆ) up to a fatorof O(poly( 1� )2 1Æ ).AknowledgmentsWe thank Umesh Dayal, Aris Gionis, Meihun Hsu,Piotr Indyk, Dan Oblinger, and Bin Zhang for numer-ous fruitful disussions.Referenes[1℄ M. Charikar, C. Chekuri, T. Feder and R. Mot-wani. Inremental lustering and dynami infor-7
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