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target1 target2 resta e joeb f freda e sallyb d sallya e bobc f tomTable 1: Example relation R.FROM RGROUPBY target1, target2, ..., targetkHAVING count(rest) >= TIf we apply the following iceberg query on relationRin Table 1, with T = 3 (and k = 2), the result wouldbe the tuple ha; e; 3i. We call these iceberg queriesbecause relation R and the number of unique targetvalues are typically huge (the iceberg), and the answer,i.e., the number of frequently occurring targets, is verysmall (the tip of the iceberg).Many data mining queries are fundamentally ice-berg queries. For instance, market analysts executemarket basket queries on large data warehouses thatstore customer sales transactions. These queries iden-tify user buying patterns, by �nding item pairs that arebought together by many customers [AS94, BMUT97].Target sets are item-pairs, and T is the minimumnum-ber of transactions required to support the item pair.Since these queries operate on very large datasets,solving such iceberg queries e�ciently is an importantproblem. In fact, Park et al. claim that the time to ex-ecute the above query dominates the cost of producinginteresting association rules [PCY95]. In this paper,we concentrate on executing such iceberg queries e�-ciently using compact in-memory data structures. Wediscuss more examples of iceberg queries in Section 2.The simplest way to answer an iceberg query is tomaintain an array of counters in main memory, onecounter for each unique target set, so we can answerthe query in a single pass over the data. However as wehave already indicated, answering the query in a sin-gle pass is not possible in our applications, since rela-tion R is usually several times larger than the availablememory (even if irrelevant attributes are projected outas early as possible). Another approach to answer aniceberg query is to sort R on disk, then do a passover it, aggregating and selecting the targets abovethe threshold. If the available memory is small rela-tive to the size of R, the sorting can take many passes



over the data on disk. For instance, if we use merge-sorting, we produce jRj=M sorted runs, whereM is thenumber of tuples that �t in memory. Then we needlogM jRj=M merge passes to produce the �nal sortedrun. For each of these passes we need to read andwrite the entire relation R (or at least all the valuesfor the target attribute). We encounter similar prob-lems if we use other popular techniques such as earlyaggregation [BD83], or hashing based aggregation.Until now, we have assumed R is materialized.However, in many cases R may be too large to be ma-terialized, even on disk. For instance, in the marketbasket application, the input data is often not R itself,but a set of transaction records. Each such record de-scribes a collection of items bought by a customer,and corresponds to multiple R records. For example,suppose we are interested in pairs of items that arefrequently bought together in a store, and say a cus-tomer bought items fa; b; cg. Then R would containtuples [a; b], [a; c], [b; c], representing each associationbetween pairs of items. In general, if the average num-ber of items a customer buys is n, then each customerrecord generates C(n; 2) � n22 tuples in R. We cansee that even if the initial data with customer transac-tions is small1, materializingRmay not be feasible dueto the quadratic increase in size over the initial input.The situation may get worse when the analyst wants to�nd popular item triples and quadruples. Thus, whenR is very large, it will be useful to execute the ice-berg query over the virtual relation R without explic-itly materializing R, as traditional techniques basedon sorting or hashing would require.The primary contributions of this paper are three-fold:1. We identify iceberg queries as fundamental datamining queries, and discuss applications whereicebergs appear either directly, or as sub-queriesin more complex queries. Iceberg queries are to-day being processed with techniques that do notscale well to large data sets, so it is crucial todevelop better techniques.2. We propose a variety of novel algorithms for ice-berg query processing. Our algorithms use asbuilding blocks well-known techniques such assampling and multiple hash functions, but com-bine them and extend them to improve perfor-mance and reduce memory requirements. Ourtechniques avoid sorting or hashing R, by keepingcompact, in-memory structures that allow themto identify the above threshold targets. In caseswhere R is not materialized, we show how to per-form the iceberg computation without materializ-ing R.3. We evaluate our algorithms using a \case-study"approach for three di�erent applications (withreal data) and queries. Our results show that the1In many cases, input data for WalMart-like stores runs intohundreds of gigabytes.

new algorithms can e�ciently handle much largericeberg problems than current techniques. Thecase study also serves to illustrate the tradeo�sinvolved in choosing one strategy over another,depending on available system resources (such assize of disk and main memory).The rest of the paper is structured as follows. InSection 2 we discuss a few examples of iceberg queries.In Section 3 we present two simple algorithms thatcan be used to execute iceberg queries. In Section 4we propose three hybrid algorithms that combine theadvantages of the two simple algorithms, in di�erentways. In Section 5 we propose several orthogonal tech-niques to optimize the hybrid strategies. In Section 6we propose some extensions to our algorithms. In Sec-tion 7 we evaluate our techniques on three case studies,using over three gigabytes of data { the size of R forsome of these scenarios, if materialized, will require 50to 100 gigabytes of storage. We conclude in Section 9with some directions for future research.2 Why are iceberg queries important?We now illustrate using a few examples why executingiceberg queries e�ciently is important, and why tradi-tional techniques such as sorting and hashing can leadto very high query times and inordinately large diskrequirements.EXAMPLE 2.1 PopularItem QueryConsider a TPC-D benchmark [TPC] style relationLineItem with attributes partKey, the key for partsbeing sold, price, the price of the corresponding item,and numSales, the number of units sold in a trans-action, in region, the area where the part is beingsold. The following query computes the keys of popu-lar items and regions, where the item's revenues in theregion exceed one million dollars.CREATE VIEW PopularItems asSELECT partKey, region, SUM(numSales * price)FROM LineItemGROUP BY partKey, regionHAVING SUM(numSales * price) >= $ 1,000,000It is easy to see that if we apply current techniquessuch as sorting, to sort the LineItem relation to per-form the aggregation, the response time for the abovequery is large { even if most of the items in LineItemare not very popular, and have very small revenues. Ofcourse, if the criterion for selecting an item were 10$of revenue rather than one million dollars, the sortingapproach may be best since many items will satisfy thequery. We intuitively see that traditional techniquessuch as sorting and hashing are \over kill" solutionsand are not output sensitive, in that they perform thesame amount of work independent of how small thequery's output is. They do not use the given thresholdto execute the query faster. Rather, they �rst performthe aggregation and later apply the thresholding. 2



EXAMPLE 2.2 DocumentOverlap QueryWeb-searching engines such as AltaVista clusterweb documents based on \syntactic similarity" of doc-uments [Bro97, BGM97], The goal of clustering isto develop better web crawlers by identifying doc-uments that are replicated or are near-replicas ofother documents (such as JAVA 1.1.3 manuals andFAQs [SGM98]).The engines break up each web document into aset of signatures, such as hashed 8-byte integers of se-quences of words, or sentences. Then they maintaina relation DocSign with tuples hdi; cii if document dicontains signature ci. Then they identify a documentpair to be a copy if they share more than T2 signaturesin common using the following query.CREATE VIEW DocumentOverlapsSELECT D1.doc, D2.doc, COUNT(D1.chunk)FROM D1 as DocSign, D2 as DocSignWHERE D1. chunk = D2. chunk ANDD1.doc NOT = D2.docGROUP BY D1. doc, D2. docHAVING COUNT(D1.chunk) >= T2Currently, the DEC prototype [Bro97, BGM97] usessorting to execute the above self-join, as follows. They�rst sort DocSign on the signatures so that for a givensignature sk, all tuples hdi; ski such that document dicontains sk will be contiguous. Then for each pair ofthe form hdi; ski and hdj; ski they explicitly materializerelation SignSign of the form hdi; dji, indicating thatdi and dj share a signature in common. Then theysort SignSign, so that all tuples for a given documentpair are contiguous. Finally, they sequentially scanSignSign and count the number of document pairsthat occur more than T2 times in SignSign { thesedocument pairs have more than T2 signatures in com-mon.The above process explicitly materializes SignSign(termed R in our discussions), before it sorts SignSignand thresholds on T2. As we shall see in one ofour case-studies, this materialized relation has verylarge storage requirements. In fact, for a small inputDocSign of size 500 megabytes, this relation grew toabout 40 gigabytes, even though the �nal answer tothe query was only one megabyte worth of documentpairs! 2Iceberg queries also arise in many information re-trieval (IR) problems. For instance, IR systems of-ten compute stop words, the set of frequently occuringwords in a given corpus, to optimize query process-ing and to build inverted indices. Such a query alsohas the \iceberg" property. IR systems also sometimescompute sets of frequently co-occurring words, and usethese to help users construct queries. For instance,the pairs \stock market," \stock price," and \chickenstock" may occur often in a collection of documents. Ifthe user enters the word \stock" in a query, the systemmay suggest \market, \price," and \chicken" as usefulwords to add to the query to distinguish the way inwhich \stock" is used. Computing co-occurring words

again involves an iceberg query, where target-sets arepairs of words. We will study this application again inmore detail in our experimental case-study.From the above illustrative examples, we see thaticeberg queries occur commonly in practice, and needto be executed carefully so that query times and tem-porary storage requirements are output sensitive.3 Techniques for thresholdingFor simplicity, we present our algorithms in the nextfew sections in the context of a materialized relationR, with htarget; resti pairs. We assume for now weare executing a simple iceberg query that groups onthe single target in R, as opposed to a set of targets.As we will discuss later, our algorithms can be easilyextended for unmaterialized R as well as to multipletarget sets.We start by establishing some terminology. Let Vbe an ordered list of targets in R, such that V [r] isthe rth most frequent target in R (rth highest rank).Let n be jV j. Let Freq(r) be the frequency of V [r] inR. Let Area(r) be Pri=1[Freq(i)], the total numberof tuples in R with the r most frequent targets.Our prototypical iceberg query (Section 1) selectsthe target values with frequencies higher than a thresh-old T . That is, if we de�ne rt to be maxfrjFreq(r) �Tg, then the answer to our query is the set H =fV [1]; V [2]; : : : ; V [rt]g. We call the values in H theheavy targets, and we de�ne L to be the remaininglight targets.The algorithms we describe next answer the pro-totypical iceberg query, although they can be easilyadapted to other iceberg queries. In general, these al-gorithms compute a set F of potentially heavy targetsor \candidate set", that contains as many members ofH as possible. In the cases when F �H is non-emptythe algorithm reports false positives (light values arereported as heavy). If H � F is non-empty the al-gorithm generates false negatives (heavy targets aremissed). An algorithm can have none, one, or bothform of errors:1. Eliminating False Positives: After F is com-puted, we can scan R and explicitly count thefrequency of targets in F . Only targets that oc-cur T or more times are output in the �nal an-swer. We call this procedure Count(F ). Thispost-processing is e�cient if the targets in F canbe held in main-memory along with say 2 { 4bytes per target for counting. If F is too large,the e�ciency of counting deteriorates. In fact, asjF j ! n, the post-processing will take about thesame time as running the original iceberg query.2. Eliminating False Negatives: In general, post-processing to \regain" false negatives is very inef-�cient, and may in fact be as bad as the originalproblem. However, we can regain false negativese�ciently in some high skew cases where most R



tuples have target values from a very small set.2In particular, suppose that we have obtained apartial set of heavy targets H 0 = F \ H, suchthat most tuples in R have target values in H 0.Then we can scan R, eliminating tuples with val-ues in H 0. The iceberg query can then be run onthe remaining small set of tuples (either by sort-ing or counting) to obtain any heavy values thatwere missed in H 0.We now present two simple algorithms to computeF , that we use as building blocks for our subsequent,more sophisticated algorithms. Each algorithm usessome simple data structures such as lists, counters,and bitmaps for e�cient counting. For ease of presen-tation, we assume that the number of elements in eachstructure is much smaller than jV j, and that all struc-tures �t in main memory. In Section 7 we evaluate thememory requirements more carefully.3.1 A Sampling-Based Algorithm (SCALED-SAMPLING)Sampling procedures are widely adopted in databases[HNSS96]. (See [Olk93] for a good discussion ofsampling techniques to obtain unbiased samples e�-ciently.) We now consider a simple sampling-basedalgorithm for iceberg queries. The basic idea is asfollows: Take a random sample of size s from R. Ifthe count of each distinct target in the sample, scaledby N=s, exceeds the speci�ed threshold, the target ispart of the candidate set, F . This sampling-based al-gorithm is simple to implement and e�cient to run.However, this algorithm has both false-positives andfalse-negatives, and removing these errors e�ciently isnon trivial, as we discussed above. We will show howto remove these errors using our HYBRID algorithmsin the next section.3.2 Coarse counting by bucketizing elements(COARSE-COUNT)\Coarse counting" or \probabilistic counting" is atechnique often used for query size estimation, forcomputing the number of distinct targets in a re-lation [FM85, WVZT90], for mining associationrules [PCY95], and for other applications. The sim-plest form of coarse counting uses an array A[1::m] ofm counters and a hash function h1, which maps targetvalues from log2 n bits to log2m bits, m << n. TheCoarseCount algorithm works as follows: Initialize allm entries of A to zero. Then perform a linear scan ofR. For each tuple in R with target v, increment thecounter A[h1(v)] by one. After completing this hashingscan of R, compute a bitmap array BITMAP1[1::m] byscanning through array A, and setting BITMAP1[i]if bucket i is heavy, i.e. if A[i] � T . We compute2The 80 { 20 rule is an instance of high skew. When therule applies, a very small fraction of targets account for 80%of tuples in R, while the other targets together account for theother 20% [Zip49].

BITMAP1 since it is much smaller than A, and main-tains all the information required in the next phase.After BITMAP1 is computed, we reclaim the memoryallocated to A. We then compute F by performing acandidate-selection scan ofR, where we scan R, and foreach target v whose BITMAP1[h1(v)] is one, we add vto F . Finally we remove the false-positives by execut-ing Count(F ). Note that there are no false-negativesin our coarse-counting approach.The candidate-selection scan in this simple coarse-counting algorithm may compute a large F (that maybe many times as large as the given memory), sincelight targets may be hashed into heavy buckets. Abucket may be heavy if it has (1) one or more heavyelements, or (2) many light elements whose combinedcounts are above the speci�ed threshold.4 HYBRID techniquesWe now present three di�erent approaches to combinethe sampling and counting approaches we presentedearlier. Each approach �rst samples the data to iden-tify candidates for heavy targets; then it uses coarse-counting principles to remove false-negatives and false-positives. By this two-stage approach, we manage toreduce the number of targets that fall into heavy buck-ets { this leads to fewer light targets becoming falsepositives. We refer to the three approaches as the HY-BRID class of algorithms.4.1 DEFER-COUNT AlgorithmFirst, compute a small sample (size s << n) ofthe data using sampling techniques discussed in Sec-tion 3.1. Then select the f; f < s; most frequent tar-gets in the sample and add them to F . (These targetsare likely to be heavy, although we do not know forsure yet.) Now execute the hashing scan of COARSE-COUNT, but do not increment the counters in A forthe targets already in F . Next perform the candidate-selection scan as before, adding targets to F . Finally,remove false positives from F by executing Count(F ).We see an example of this approach in Figure 1 (a).Consider the case when p and q are heavy targets, andtargets a and b are light targets. In this case, p andq were identi�ed in the sampling phase to be poten-tially heavy, and are maintained explicitly in memory(denote by `p' and `q') so they are not counted in thebuckets (as are a and b).The intuition behind the DEFER-COUNT algo-rithm is as follows. Sampling is very good for iden-tifying some of the heaviest targets, even though itis not good for �nding all the heavy targets. Thus,we select f so that we only place in F targets thathave a very high probability of being heavy. Then, foreach of these targets v that is identi�ed in advance ofthe hashing scan, we avoid pushing A[h1(v)] over thethreshold, at least on account of v. This leads to fewerheavy buckets, and therefore fewer false positives.The disadvantage of DEFER-COUNT is that itsplits up valuable main memory between the sample
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Figure 1: AlternativeHYBRID techniques to combinesampling and coarse-counting.set, and the buckets for counting. Even if f is small,we maintain the explicit target. For instance, if weuseDEFER-COUNT to count heavy-item pairs (two-�eld target set), we need eight bytes to store the itempair. The storage requirement gets progressively worseif we start counting heavy-item triples, or heavy-itemquadruples, and so on. Another problem with imple-mentingDEFER-COUNT is that it is hard to choosegood values for s and f that are useful for a vari-ety of data sets. Yet another problem with DEFER-COUNT is that for each target, we incur the overheadof checking if the target exists in f during the hashingscan.4.2 MULTI-LEVEL AlgorithmWe now propose an algorithm that does not ex-plicitly maintain the list of potentially heavy tar-gets in main memory like DEFER-COUNT. InsteadMULTI-LEVEL uses the sampling phase to identifypotentially heavy buckets as follows.First, perform a sampling scan of the data: For eachtarget v chosen during this sampling scan, incrementA[h(v)], for hash function h. After sampling s targets,consider each of the A buckets. If A[i] > T � s=n,we mark the ith bucket to be potentially heavy. Foreach such bucket allocatem2 auxiliary buckets in mainmemory. (We will sometimes refer to the A buckets asprimary buckets, to maintain the distinction.)Next, reset all counters in the A array to zero. Thenperform a hashing scan of all the data. For each targetv in the data, increment A[h(v)] if the bucket corre-sponding to h(v) is not marked as potentially heavy.If the bucket is so marked, apply a second hash func-tion h2(v) and increment the corresponding auxiliarybucket.We show an example of this procedure in Figure 1(b). In the sampling phase, two buckets (marked withdotted X's) are identi�ed to be potentially heavy, andare each allocated m2 = 2 auxiliary buckets. Duringthe subsequent scan, when targets fa; b; p; qg fall intothe heavy buckets, they are rehashed using h2 to theircorresponding auxiliary buckets. Note that we do notexplicitly store the targets in the auxiliary buckets asindicated in the �gure; we continue to maintain only

counters in the buckets.The idea behind the MULTI-LEVEL algorithm isvery similar to the concept of extensible indices com-monly used in databases [Ull88] { these indices growover populated buckets by adding auxiliary bucketsdynamically. However, the di�erence is that in thecase of extensible indices the entire key that is be-ing indexed, is stored. Hence when buckets are over-populated, we can dynamically add auxiliary bucketse�ciently. Recall that we cannot a�ord to store thetargets explicitly in main memory, and can only main-tain counters. Hence we perform the prescan to pre-allocate auxiliary buckets for potentially heavy buck-ets. Also notice that MULTI-LEVEL does not storethe sample set explicitly like DEFER-COUNT does{ this is useful especially when the size of targets isvery large.One problem withMULTI-LEVEL is that it splitsa given amount of main memory between the primaryand auxiliary buckets. Deciding how to split memoryacross these two structures is not a simple problem{ we can only empirically determine good splits fordatasets. Also, the cost of rehashing into the auxiliarybuckets could be expensive, if a second hash functionis employed. In practice, however, we can avoid thisby using one hash function: we can use fewer bits forthe �rst hashing, and use the residual bits to \hash"the target into the auxiliary buckets.We now discuss one important detail for implement-ing the above scheme. In Figure 1, we maintain point-ers to auxiliary buckets. In some cases, maintainingeight bytes per pointer may be expensive especiallyif the number of potentially heavy buckets is high.In such cases, we can allocate all the auxiliary buck-ets for all potentially-heavy buckets contiguously inmain memory starting at base address B. For the ithpotentially-heavy bucket, we can store in A the o�setinto the auxiliary buckets. We can then compute theauxiliary buckets for potentially heavy bucket A[i], tobe in locations [B + (A[i]� 1) �m2; B + A[i]�m2).4.3 MULTI-STAGE AlgorithmWe now propose a new technique that uses availablememorymore e�ciently than theMULTI-LEVEL al-gorithm. MULTI-STAGE has the same prescan sam-pling phase as MULTI-LEVEL, where it identi�espotentially heavy buckets. However,MULTI-STAGEdoes not allocate auxiliary buckets for each potentiallyheavy bucket. Rather it allocates a common pool ofauxiliary buckets B[1; 2; : : : ;m3]. Then it performs ahashing scan of the data as follows. For each target vin the data, it increments A[h(v)] if the bucket corre-sponding to h(v) is not marked as potentially heavy. Ifthe bucket is so marked, apply a second hash functionh2 and increment B[h2(v)].We present an example of this procedure in Figure 1(c). We mark the common pool of B arrays arraysusing dotted lines. Note that the targets fa; b; p; qg areremapped into the auxiliary buckets, using a secondhash function that uniformly distributes the targets



across the common pool of auxiliary buckets. It iseasy to see that in this example there is a 50% chancethat both the heavy targets p and q will fall into thesame bucket. In such cases, targets a and b are nolonger false-positives due to p and q. Indeed in the�gure, we present the case when p and q do fall intothe same bucket. We have analysed MULTI-LEVELbased on the above intuition, in the full version of thepaper [FSGM+97].The main intuition behind sharing a common poolof auxiliary buckets across potentially heavy bucketsis that several heavy targets when rehashed into Bcould fall into the same bucket as other heavy targets(as illustrated in the example). MULTI-LEVEL doesnot have this characteristic, since the heavy targets arerehashed into their local auxiliary structures. Hencewe can expect MULTI-STAGE to have fewer false-positives that MULTI-LEVEL, for a given amountof memory.MULTI-STAGE shares a disadvantage withMULTI-LEVEL in that determining how to split thememory across the primary buckets and the auxiliarybuckets can only be determined empirically.5 Optimizing HYBRID using MULTI-BUCKET algorithmsThe HYBRID algorithms discussed in the last sectionmay still su�er from many false-positives if many lightvalues fall into buckets with (1) one or more heavy tar-gets, or (2) many light targets. The sampling strate-gies we outlined in the last section alleviate the �rstproblem to a certain extent. However the heavy tar-gets not identi�ed by sampling could still lead to sev-eral light values falling into heavy buckets. Also, HY-BRID cannot avoid the second problem. We now pro-pose how to improve the HYBRID techniques of thelast section, using multiple sets of primary and auxil-iary buckets, to reduce the number of false positivessigni�cantly. We analyze the same idea in two di�er-ent contexts, in the following subsections based on thenumber of passes required over the data.For clarity, we describe the techniques of this sec-tion, in the context of the simple DEFER-COUNTalgorithm, even though the techniques are also applica-ble to theMULTI-LEVEL, andMULTI-STAGE al-gorithms. Furthermore, for the techniques we presentbelow we continue to perform the sampling scan toidentify potentially heavy targets, and store them inF . We do not count these targets during the hash-ing scans, but count them explicitly in the candidate-selection phase. After the candidate-selection phase,we continue to execute Count(F ) to remove false-positives. Since these steps are common to all thefollowing techniques, we do not repeat these steps inthe following discussion.

5.1 Single scan DEFER-COUNTwith multiplehash functions (UNISCAN)We illustrate UNISCAN using two hash functions h1and h2 that map target values from log2 n bits tolog2(m=2) bits,m << n. The memory allocated is �rstdivided into two parts for the two counting and bitmaparrays. That is, we now have A1[1::m=2], A2[1::m=2],BITMAP1[1::m=2] and BITMAP2[1::m=2]. We thenexecute the prescan sampling phase in DEFER-COUNT, identify f potentially heavy candidates, andstore them in F . Next, we do one pass over theinput data, and for each tuple in R with value v,v =2 F , we increment both A1[h1(v)] and A2[h2(v)]by one. Finally we set BITMAP1[i] to 1 if A1[i] � T ,1 � i � m=2. We handle BITMAP2 similarly, andthen deallocate A1 and A2.In the candidate-selection phase, we do one pass ofthe data and for each tuple with value v, we add v to Fonly if both BITMAP1[h1(v)] and BITMAP2[h2(v)]are set to one. We can easily generalize the aboveprocedure for k di�erent hash functions h1; h2; : : : ; hk.As mentioned earlier, for now we assume that A, thek bitmaps, and F all �t in main memory. We willdiscuss our model for memory usage in Section 7.Choosing the right value of k is an interesting prob-lem, for a given amount of mainmemory. As we choosea larger value of k, we have many hash tables, buteach hash table is smaller. While the former helps inreducing the number of false positives, the latter in-creases the number of false positives. Hence there isa natural trade-o� point for choosing k. We discussin [FSGM+97] how to choose a good value of k forUNISCAN.5.2 Multiple scan DEFER-COUNT with mul-tiple hash functions (MULTISCAN)Rather than use multiple hash functions within onehashing scan and su�er an increased number of falsepositives due to smaller hash tables, we can usethe same idea across multiple hashing scans as fol-lows. After the sampling prescan, execute one hashingscan with hash function h1. Store the correspondingBITMAP1 array on disk. Now perform another hash-ing scan with a di�erent hash function h2. Store thecorresponding BITMAP2 array on disk. After per-forming k hashing scans, leave the last BITMAP inmemory and retrieve the k� 1 BITMAP arrays fromdisk. Then execute the candidate-selection scan andadd value v to F if BITMAPi[hi(v)] = 1, 8i; 1 � i �k.5.3 Improving MULTISCAN with sharedbitmaps (MULTISCAN-SHARED)In MULTISCAN we performed each hashing scanindependent of the previous scans, even though theBITMAP information from previous scans was avail-able. In MULTISCAN-SHARED we assume that inthe (i+ 1)st hashing scan, bitmaps from all i previous
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A:Figure 3: Hashing in MULTISCAN-SHARED.hashing scans are retained in memory. This optimiza-tion works as follows: During the (i + 1)st hashingscan, for target v, increment A[hi+1(v)] by one, onlyif BITMAPj [hj(v)] = 1, for all j, 1 � j � i.The following example illustrates howMULTISCAN-SHARED reduces the number offalse-positives over MULTISCAN. Consider the casewhen we have the following htarget : frequencyi pairsin R: ha : 10i, hb : 20i, hc : 40i, hd : 20i, he : 20i,i.e., target a occurs in ten tuples in R, b occurs in 20tuples in R, and so on. Let T = 30 and m = 4. Leth1 map the targets to the following buckets, set of tar-gets pairs: [0 : fag; 1 : fb; dg; 2 : fcg; 3 : feg] as shownin Figure 2, i.e., h1(a) = 0, h1(b) = h1(d) = 1, etc.Similarly h2 maps the targets to the following buck-ets [0 : fe; dg; 1 : fa; bg; 2 : fg; 3 : fcg]. In Figure 2we show the counts in array A and the correspond-ing BITMAP after the �rst hashing scan when weexecute MULTISCAN. Similarly we compute A andBITMAP2 after the second hashing scan. Now in thecandidate selection scan of MULTISCAN, we wouldchoose fb; c; dg to be part of F , since targets b; c; d fallinto heavy buckets under both hash functions.Now consider the execution of MULTISCAN-SHARED in Figure 3. The �rst hashing scan re-

mains the same as before. The second scan howevercomputes a di�erent bitmap, since the second hashingscan uses the information in BITMAP1 before incre-menting A. To illustrate, consider how e is countedby each algorithm in the second hashing scan. InMULTISCAN, A[h2(e)] is incremented for each ofthe 20 occurrences of e. However in MULTISCAN-SHARED, A[h2(e)] is not incremented for the 20 oc-curences of e, since we already know that e is light (be-cause BITMAP1[3] = 0). Since e does not incrementA[0] in the second hashing scan, d is no longer a partof the candidate set. In fact in the candidate-selectionscan, the only target chosen by the MULTISCAN-SHARED will be fcg, as opposed to the fb; c; dg cho-sen by MULTISCAN.5.4 Variant of MULTISCAN-SHARED(MULTISCAN-SHARED2)We now propose a variant of MULTISCAN-SHARED that uses less memory for BITMAP s. Inthis variant, we maintain the BITMAP 's only fromthe last q hashing scans while performing the (i+ 1)st(q � i) hashing scan, rather than maintaining all iprior BITMAP s. The conjecture is that the q lat-est BITMAP s from hashing scans i � q + 1 throughi have fewer and fewer bits set to one. Thereforethese BITMAP s have more pruning power than ear-lier, while using the same storage space. We useMULTISCAN-SHARED2 to denote this algorithm.6 Extending HYBRID and MULTI-BUCKET algorithmsIn this section we briey describe some variations tothe schemes we presented earlier.1. Collapsing candidate-selection scan with �-nal counting-scan: The MULTISCAN algo-rithm (and its extensions that were proposedin Sections 5.3 and 5.4) performs k hashingscans, one candidate-selection scan, and �nallyone counting scan where false positives were elim-inated. In cases where the size of F is expected tobe small, we can collapse the last two scans intoone as follows. When executing the candidate-selection scan, we add an in-memory counter foreach element of F . In that scan, as we add eachtarget to F (because it appeared in heavy buck-ets for all k-hash functions), we check if the targetwas already in F . If so, we increment its counter;if not, we add it to F with its counter initialized to1. We can dispense with the �nal counting-scanbecause we already have a count of how manytimes each F target appears in R. Targets whosecount exceed the threshold are in the �nal answer.2. Parallelizing hashing scans for MULTI-SCAN: We can parallelize the hashing scans ofMULTISCAN across multiple processes. In sucha case, the time for the hashing scans drops fromthe time for k sequential scans, to the time for



a single scan. Of course, we cannot use thesame optimization for MULTISCAN-SHAREDand MULTISCAN-SHARED2 since they usebitmaps from previous iterations.3. SUM queries: As we mentioned in Section 1, wecan extend our techniques to iceberg queries con-taining HAVING SUM(attrib). To illustrate, con-sider query PopularItem from Section 2. We canperform this query by performing a hashing scanon the LineItem relation. In this pass, we com-pute h1(partKey; region), and increment the cor-responding counter in A by numSales�price. Atthe end of the hashing scan, compress the A arrayinto BITMAP1, with the de�nition that bucketi is heavy if A[i] is greater than or equal to thegiven threshold value of one million. Then per-form subsequent hashing scans if necessary and�nally produce partKeys's whose total revenuesexceed the speci�ed threshold.7 Case studiesGiven the relatively large number of techniques wepresent in this paper, each of which is parameterizedin di�erent ways (such as how much of data we shouldsample, s, how many values to retain to be poten-tially heavy, f , and memory allocations), it is di�cultto draw concrete conclusions without looking at par-ticular application scenarios. We chose three distinctapplication scenarios and designed our experiments toanswer the following questions: (1) How does eachscheme perform as we vary the amount of memoryallocated? We report the performance both in termsof the size of the candidate set (jF j) produced, andthe total time each scheme takes to produce F , as wellas to remove the false positives using Count(F ). (2)How does each scheme perform as we vary the thresh-old? As above, we report both jF j and the total time.(3) How do schemes perform for di�erent data distri-butions? That is, if the input data follows a skeweddistribution as opposed to less skewed distributions,how are the schemes a�ected by sampling?Before we present our results, we discuss how we al-locate memory in our experiments. We experimentedwith a variety of ways to split the available memorybetween the sample set of size f (in case of DEFER-COUNT based algorithms), the primary and the aux-iliary buckets. We found the following approach towork best for our data.1. Allocate f : For algorithms based on DEFER-COUNT, choose a small f for the sampling scanand allocate memory for that set. We discuss laterwhat should be the value of f , for each applica-tion.2. Allocate auxiliary buckets: Allocate paux per-cent of the remaining memory after the �rst stepto auxiliary buckets. As the algorithm executeswe may discover that this amount of allocated
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Figure 4: jF j as memory varies (T = 500).memory was insu�cient for the auxiliary buck-ets. If that happens, we greedily select the bucketswith highest A counter values, and assign as manyof these as possible to the auxiliary area. Theremaining potentially heavy buckets, that couldnot be assigned to the limited auxiliary area, aretreated as any other primary bucket during thehashing scan.3. Allocate primary buckets and bitmaps: Al-locate the balance of the memory to the primarybuckets and their bitmaps. In case of UNISCANwe need to this memory among the k primarybuckets and their bitmaps (based on the value ofk chosen by the analysis in the Appendix).In our experiments, we found paux between 15� 20%to be good values for splitting up our memory. Beforethe candidate-selection scan, we reclaim the memoryallocated to the primary buckets and allocate that tostore F .In the following experiments, if the �nal F (input toCount(F )) does not �t in mainmemory,we stream thetuples in F onto disk, and we execute Count(F ) usinga disk-based sorting algorithm. Our implementationis enhanced with early aggregation [BD83] so that itintegrates counting into the sorting and merging pro-cesses, for e�cient execution. As we discussed earlier,this is merely one way to execute Count(F ). Hencethe reader should not interpret the results of this sec-tion as absolute predictions, but rather as illustrationsof performance trends. For the following experiments,we used a SUN ULTRA/II running SunOS 5.6, with256 MBs of RAM and 18 GBs of local disk space.Case 1: Market basket queryWe use the market basket query to �nd commonly oc-curing word pairs. For this we use 100; 000 web doc-uments crawled and stored by the Stanford Googlewebcrawler [BP]. The average length of each doc-ument is 118 words. From this data we computedthe DocWord relation to be hdocID, wordIDi, if doc-ument with identi�er docID had a word with identi�erwordID. This relation was about 80 MBs, when we
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Figure 5: Total time as memory varies (T = 500).used 4-byte integers for docIDs and wordIDs. Notethat we removed entries corresponding to 500 pre-de�ned stop words from this relation [SB88]. Recallthat the R over which the iceberg query is to be ex-ecuted has all pairs of words that occur in the samedocument. If R were to be materialized on disk, itwould require about 29:4 GBs to store R; in addition,we may require temporary storage while performingthe aggregation. Since the storage requirements maybe impractical, we do not discuss this technique anymore in this section.To avoid explicitly materializing R we use the fol-lowing technique that we can use in general to executeiceberg queries, when R is not materialized. Typically,tuples that refer to the same document are contiguousin DocWord. (This is because DocWord is producedby reading and parsing documents one at a time. Ifentries are not contiguous, we can sort the relation.)Because of this property, we can simply scan DocWordand produce hwi; wji for each wi, wj pair that occursin the same document. Rather than explicitly storingsuch tuples, stream the tuples directly to the algorithmwe use to execute the iceberg query. For instance, ifwe use DEFER-COUNT to execute the iceberg query(assume s = 0), increment A[h(wi; wj)] as soon as tu-ple hwi; wji is produced. Notice that we cannot applya similar optimization for sorting or hybrid hashingbased schemes, since the tuples are materialized ex-plicitly (for sorting), or will need to be stored in thehash table (for hybrid hashing). We can in general useour technique to execute a query over any join of sortedrelations. In fact, R can be any expression of sortedrelations, as long as we can generate R in one-pass.We now discuss a few representative schemes forspeci�c values of K to illustrate some of the trade-o�s involved. (We study the performance of allschemes in greater detail, in the full version of thispaper [FSGM+97].) Speci�cally, we present resultsfor MULTISCAN/D, MULTISCAN-SHARED/Dand UNISCAN/D, the corresponding multi-bucketoptimization of DEFER-COUNT. We also evaluateMULTI-STAGE for K = 1. We found a 1% sampleof n (s = 1%) and f = 1000 to work well in practice

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

300 400 500 600 700 800 900 1000

N
um

be
r 

of
 c

an
di

da
te

 p
ai

rs

Threshold

UNISCAN/D [K = 1]
MULTI-STAGE [K = 1]
MULTISCAN/D [K = 2]

MULTISCAN-SHARED/D [K = 2]
UNISCAN/D [K = 2]

Figure 6: jF j as threshold varies (M = 20 MB).for this data.In Figure 4 we show how jF j, the number of candi-date pairs, varies as the amount of memory allocatedincreases. We see that jF j drops as more memoryis allocated, as expected. Also we see that MULTI-SCAN/D [K = 2] and MULTISCAN-SHARED/D[K = 2] perform best, in terms of choosing the small-est jF j. This is because when the amount of mem-ory is small, doing multiple passes over the data us-ing most of the available memory for the A array,helps prune the number of false positives signi�cantly.UNISCAN/D [K = 2] performs poorly initially sincethe amount of main memory is very small, but thedi�erence between UNISCAN/D [K = 1] and UNIS-CAN/D [K = 2] drops with larger memory. For mem-ory more than about 34 MBs, we see that UNIS-CAN/D [K = 2] performs better than its K = 1 coun-terpart.In Figure 5 we see the total time to answerthe iceberg query as the amount of memory varies.We see that MULTISCAN/D and MULTISCAN-SHARED/D perform steadily across the di�erentmemory sizes, since they do not produce too manyfalse positives. On the other hand, MULTI-STAGE[K = 1] performs badly when memory is limited; be-yond about 14 MBs it performs best. This is because(1) the number of false positives is relatively smalland hence counting can be done in main memory, (2)MULTI-STAGE scans the data one less time, anduses less CPU time in computing fewer hash functionsthan the other multi-bucket algorithms (such asMUL-TISCAN/D).In Figure 6 we study how jF j, the number of can-didates, varies as the threshold is varied. We seethat MULTISCAN/D [K = 2] and MULTISCAN-SHARED/D [K = 2] tend to have the smallest jF j.Again, we see that performing multiple passes overthe data using multiple hashing functions helps pruneaway many false-positives. In Figure 7 we see the cor-responding total time to answer the iceberg query. Wesee thatMULTI-STAGE performs the best in this in-terval, again because (1) F is relatively small, and (2)it performs one fewer scan over the data, and needs to
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Figure 8: Frequency-rank curves for di�erent chunk-ings.compute fewer hash functions thanMULTISCAN/Dand MULTISCAN-SHARED/D.In summary, we see that MULTI-STAGE worksbest since this application had very little data.Case 2: Computing StopChunksWe now consider how sensitive our schemes are toskews in data distribution, using an IR example. Wediscussed in Section 2 how IR systems compute aset of stop words for e�ciency. In general, IR sys-tems also compute \stop chunks," which are syntac-tic units of text that occur frequently. By identifyingthese popular chunks, we can improve phrase searchingand indexing. For instance, chunks such as \NetscapeMozilla/1.0" occur frequently in web documents andmay not even be indexed in certain implementationsof IR systems (such as in [SGM96]), to reduce storagerequirements.For this set of experiments, we used 300; 000 docu-ments we obtained from the Stanford Google crawler(as above). We de�ned chunks based on sliding win-dows of words as in [SGM96]. We say we use \C = i"chunking, if the jth chunk of a given document is the
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Figure 9: Result sizes for di�erent thresholds.sequence of words from j through j+i�1. For a corpusof documents, we can compute the DocSign (C = i)relation which contains hdh; sji, if document dh con-tains sj , the 8-byte hashed version of the jth chunk.For our experiments we computed four di�erent Doc-Sign tables for C = 1; 2; 5; 10. (Note that the DocSignrelation for C = 1 is the relation used to compute stopwords in IR systems.)Our �rst two graphs illustrate the nature of thedata, and not a speci�c algorithm. In Figure 8 weshow, on a log-log plot, the frequency-rank curves ofthe four di�erent chunkings. As expected, the smallerthe C used to construct a chunk, the fewer the num-ber of distinct target values, and the larger the dataskew. For instance, with C = 1, the number of dis-tinct chunks, n, is over 1:5 million, and the heaviesttarget occurs about 4:5 million times in DocChunk.For C = 10, n = 27:7 million, while the heaviest tar-get occurs only 0:21 million times. The size of eachDocSign relation was about 4:2 gigabytes (Note thatwe did not remove precomputed stop words from theserelations as we did in the market-basket query.)In Figure 9 we show (again on a log-log plot) whatpercentage of the n unique terms are actually heavy,for di�erent thresholds. We see in the �gure that, asexpected, the number of heavy targets (the tip of theiceberg) drops signi�cantly as T increases.In the following two graphs, Figure 10 and 11, westudy how the number of hashing scans K, and thenumber of hash buckets m a�ect false-positive errors.Due to lack of space, we present the results only in thecontext of MULTISCAN-SHARED2/D, with q = 2(the number of previous bitmaps cached in memory).The vertical axis in both �gures is the percentage offalse positives (100 � FPn , where FP is the numberof false positives). As we expected, the percentageof false positives drops dramatically with increasingk. For instance for C = 1, the percentage drops fromabout 70% for k = 1 to less than 10% for k = 4. Also itis interesting to note that the number of false positivesdrops as the data is less skewed (from C = 1 throughC = 10), especially as the number of hashing scansincreases. We attribute this drop to three factors: (1)
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n Figure 11: Performance of MULTISCAN-SHARED2/D with m (T = 1000; k = 2).there are fewer heavy targets (Figure 9), (2) since datais not very skewed, fewer light targets fall into bucketsthat are heavy due to heavy targets, and (3) as morehashing scans are performed, fewer light targets fallinto heavy buckets across each of the hashing scans.In summary, these experiments quantify the im-pact of skew, and provide guidelines for selecting thenumber of hashing scans needed by MULTISCAN-SHARED2/D, as the \tip of the iceberg" changes insize. Analogous behavior can be observed for the otherschemes.Case 3: DocumentOverlap QueryIn Figure 12 we present the total time to execute theDocumentOverlap query (discussed in Section 2) usingMULTISCAN and MULTISCAN-SHARED tech-niques as the amount of memory (M ) changes. Weexecuted the query on the DocSign relation from Case2, when C = 1. Since the data was unskewed for thisquery, we avoid the sampling scan, i.e., s = 0%.In Figure 12 we see that MULTISCAN-SHARED2 [q = 1] performs best, when the amountof memory is small, but progressively becomes infe-rior to MULTISCAN andMULTISCAN-SHAREDas memory increases. MULTISCAN-SHARED [q= 2] is in between MULTISCAN-SHARED [q =1] and MULTISCAN-SHARED, for small valuesof memory. The above behavior of MULTISCAN-
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Figure 12: Performance of algorithms withM for Doc-umentOverlap query for C = 1.SHARED2 compared to MULTISCAN-SHAREDis due to the following competing factors: (1)MULTISCAN-SHARED2 uses fewer bitmaps thanMULTISCAN-SHARED, thereby allocating morememory for primary buckets. (2) For a givenamount of memory,MULTISCAN-SHARED prunesmore light targets than MULTISCAN-SHARED2,as we discussed earlier. For small values of mem-ory,MULTISCAN-SHARED2 performs better thanMULTISCAN-SHARED, since the �rst factor domi-nates. For larger values of memory, the extra space al-located to the additional bitmaps for MULTISCAN-SHARED still leaves enough memory for the primarybuckets. Hence the second factor dominates. We alsosee that MULTISCAN does not perform too well forsmall memory, since it does not use bitmaps to pruneaway light targets, as we discussed earlier. Hence wesee that choosing q = 1 or 2 may be useful for smallsized memory while still leaving su�cient main mem-ory for primary buckets.The size of R, if materialized, is 52 GBs. If we as-sume disks can execute sequential scans at the rate of10 MB/sec, it would take 52 � 1024=10 � 5300 sec-onds each to read and write R. However, notice thatMULTISCAN-SHARED2 [q = 1] would �nish exe-cuting even before R is written once and read once! Ofcourse, since R has to be sorted to execute the icebergquery, it is easy to see that sorting-based executionwould require too much disk space to materialize andsort R, and will take much longer than our schemes.7.1 SummaryBased on our case studies (and from experiments wedo not report here due to lack of space [FSGM+97]),we propose the following informal \rules of thumb"to combine schemes from the HYBRID andMULTI-BUCKET algorithms:1. HYBRID algorithms: MULTI-LEVEL rarelyperforms well in our experiments, while DEFER-COUNT and MULTI-STAGE tend to do very



well under di�erent circumstances. If you expectthe data distribution to be very skewed where veryfew targets are heavy, but constitute most of therelation), use DEFER-COUNT with a small fset. If you expect the data not to be too skewed,use MULTI-STAGE since it does not incur theoverhead of looking up the values in f . If youexpect the data distribution to be at, do not usethe sampling scan.2. MULTIBUCKET algorithms: In generalwe recommend usingMULTISCAN-SHARED2with q = 1 or q = 2. For relatively large values ofmemory, we recommend UNISCAN with multi-ple hash functions, since we can choose K > 1 andapply multiple hash functions within one hashingscan, as we discuss in the full version of this pa-per [FSGM+97].8 Related WorkFlajolet and Martin [FM85], and Whang etal. [WVZT90] proposed a simple form of coarse count-ing for estimating the number of distinct elements in amultiset. Park et al. [PCY95] proposed coarse count-ing in the context of mining association rules. All theabove approaches use a single hash function for theircoarse counting, and hence tend to have many falsepositives. We extend the above techniques using ourHYBRID and MULTIBUCKET algorithms, and per-form a comprehensive study of these techniques usinga case study approach.9 ConclusionIn this paper we studied e�cient execution tech-niques for iceberg queries, an important class of querieswith widespread application in data-warehousing, datamining, information retrieval and copy detection. Weproposed algorithms that compute the result, the \tipof the iceberg," much more e�ciently than conven-tional schemes. We evaluated our algorithms usinga case study approach in three real applications, andobserved that the savings are indeed very signi�cant.Some algorithms in the suite we have provided are bet-ter suited to some scenarios, depending on the dataskew, available memory, and other factors. We haveprovided some empirical \rules of thumb" for select-ing a scheme and for allocating memory to its datastructures.References[AS94] R. Agrawal and R. Srikant. Fast algo-rithms for mining association rules in largedatabases. In Proceedings of InternationalConference on Very Large Databases (VLDB'94), pages 487 { 499, September 1994.[BD83] D. Bitton and D. J. DeWitt. Duplicate recordelimination in large data �les. ACM Transac-tions in Database Systems (TODS), 8(2):255{ 265, 1983.
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