
Fast Incremental Maintenance of
Approximate Histograms

PHILLIP B. GIBBONS
Intel Research Pittsburgh
YOSSI MATIAS
Tel Aviv University
and
VISWANATH POOSALA
Bell Laboratories

Many commercial database systems maintain histograms to summarize the contents of large re-
lations and permit efficient estimation of query result sizes for use in query optimizers. Delaying
the propagation of database updates to the histogram often introduces errors into the estima-
tion. This article presents new sampling-based approaches for incremental maintenance of ap-
proximate histograms. By scheduling updates to the histogram based on the updates to the
database, our techniques are the first to maintain histograms effectively up to date at all times and
avoid computing overheads when unnecessary. Our techniques provide highly accurate approxi-
mate histograms belonging to the equidepth and Compressed classes. Experimental results show
that our new approaches provide orders of magnitude more accurate estimation than previous
approaches.

An important aspect employed by these new approaches is a backing sample, an up-to-date
random sample of the tuples currently in a relation. We provide efficient solutions for maintaining
a uniformly random sample of a relation in the presence of updates to the relation. The backing
sample techniques can be used for any other application that relies on random samples of data.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—query processing

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Approximation, histograms, incremental maintenance, sam-
pling, query optimization

This work was performed while all three authors were with the Information Sciences Research
Center, Bell Laboratories.
A preliminary version of this article appeared in Proceedings of the 23rd International Conference
on Very Large Data Bases (Athens, August), 1997, pp. 466–475.
Authors’ addresses: P. B. Gibbons, Intel Research Pittsburgh, 417 South Craig Street, Suite 300,
Pittsburgh, PA 15213; email: phillip.b.gibbons@intel.com; Y. Matias, Department of Computer Sci-
ence, Tel Aviv University, Tel Aviv 69978, Israel; email: matias@math.tau.ac.il; V. Poosala, Bell Lab-
oratories, Room 2A-212, 600 Mountain Avenue, Murray Hill, NJ 07974; email: poosala@lucent.com.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2002 ACM 0362-5915/02/0900-0261 $5.00

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002, Pages 261–298.

262 • P. B. Gibbons et al.

1. INTRODUCTION

Most database management systems (DBMSs) maintain a variety of statistics
on the contents of the database relations in order to estimate various quanti-
ties, such as selectivities within cost-based query optimizers. These statistics
are typically used to approximate the distribution of data in the attributes
of various database relations. It has been established that the validity of the
optimizer’s decisions may be critically affected by the quality of these approx-
imations [Christodoulakis 1984; Ioannidis and Christodoulakis 1991]. This is
becoming particularly evident in the context of increasingly complex queries
(e.g., data analysis queries).

The most common technique used in practice for selectivity estimation is
maintaining histograms on the frequency distribution of an attribute. A his-
togram groups attribute values into “buckets” (subsets) and approximates true
attribute values and their frequencies based on summary statistics maintained
in each bucket [Kooi 1980]. For most real-world databases, there exist his-
tograms that produce low error estimates while occupying reasonably small
space (of the order of 1 K bytes in a catalogue) [Poosala 1997]. Histograms are
used in IBM DB2, Informix, Ingres, Oracle, Microsoft SQL Server, Sybase, and
Teradata. They are also being used in other areas, for example, parallel join
load balancing [Poosala and Ioannidis 1996] to provide various estimates.

Histograms are usually precomputed on the underlying data and used with-
out much additional overhead inside the query optimizer. A drawback of using
precomputed histograms is that they may become outdated when the data in the
database are modified, and hence introduce significant errors in estimations.
On the other hand, it is clearly impractical to compute a new histogram after
every update to the database. Fortunately, it is not necessary to keep the his-
tograms perfectly up to date at all times, because they are used only to provide
reasonably accurate estimates (typically within 1 to 10%). Instead, one needs
appropriate schedules and algorithms for propagating updates to histograms,
so that the database performance is not affected.

Despite the popularity of histograms, issues related to their maintenance
have only recently started receiving attention. Most of the work on histograms
so far has focused on proper bucketizations of values in order to enhance the
accuracy of histograms, and assumed that the database is not being modified.
In our earlier work, we have introduced several classes of histograms that of-
fer high accuracy for various estimation problems [Poosala et al. 1996]. We
have also provided efficient sampling-based methods to construct various his-
tograms, but ignored the problem of maintaining histograms. In a more general
context, we can view histograms as materialized views, but they are different
in certain aspects. First, during utilization, they are typically maintained in
main memory, which implies more constraints on space. Second, they need to
be maintained only approximately, and can therefore be considered as cached
approximate materialized views. We are not aware of any prior work on approx-
imate materialized views.

The most common approach used to date for histogram updates, which is fol-
lowed in nearly all commercial systems, is to recompute histograms periodically

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

Maintenance of Approximate Histograms • 263

(e.g., every night or on demand). This approach has two disadvantages: any
significant updates to the data between two recomputations could cause poor
estimations in the optimizer, and recomputing a histogram from scratch by
scanning the entire relation is computationally expensive for large relations.

In this article, we present fast and effective procedures for maintaining
two histogram classes used extensively in database management systems:
equidepth histograms (which are used in most DBMSs) and Compressed his-
tograms (used in DB2). There are several key novel components to our approach.

(1) We introduce the notion of an approximate histogram that is maintained
in the presence of database updates, and which provides bounds on its
maximum deviation from the true histogram.

(2) We develop a split and merge technique for quickly adjusting histogram
buckets in response to data updates.

(3) We introduce the notion of a “backing sample,” a random sample of the data
that is kept up to date in the presence of database updates. We demonstrate
important advantages gained by using a backing sample when updating
histograms, and present algorithms for its maintenance. We observe that
the backing sample can be used in any application that requires uniform
random samples of the current data in the database. For example, instead
of dynamically computing samples at usage-time (which is a drawback of
several sampling-based techniques), one can precompute the samples and
use our techniques to maintain them efficiently.1

The main advantages of our techniques are as follows.

— Our approach leads to approximate histograms that are close to the actual
histogram belonging to the same class, with high probability, regardless of
the data distribution.

— Our algorithms handle all forms of updates to the database (insert, delete, and
modify operations). They are most efficient in insert-intensive environments
or in data warehousing environments that house transactional information
for sliding time windows.

— Our algorithms process the sequence of database updates; they almost never
access the relation on disk (the only exception is when the size of the relation
has shrunk dramatically due to deleting, say, half the tuples). For most insert
operations, our algorithms do not access the backing sample. The sample
nevertheless remains up to date at all times.

We conducted an extensive set of experiments studying our techniques
and comparing them with the traditional approaches based on recomputation.
The experiments confirm the theoretical findings and show that with a small
amount of additional storage and CPU resources, our techniques maintain his-
tograms nearly up to date at all times.

1If a sampling-based algorithm requires a sample that may be larger than what is maintained,
as can be the case for adaptive sampling [Lipton et al. 1990], then some ad hoc sampling may be
unavoidable.

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

264 • P. B. Gibbons et al.

Recent Work. Since the completion of our work discussed in this article,
there have been a number of important developments in the area of histogram
maintenance and related topics. First, there has been some commercial ac-
ceptance of using sampling to speed up histogram recomputation. For exam-
ple, when SQL Server recomputes a histogram, it first extracts a random
sample from the relation and then computes the histogram from the sample
(see Chaudhuri et al. [1998]). Thus the extracted random sample serves the
same function as a backing sample, for the restricted purpose of computing a
new histogram from scratch. Sampling during recomputation has the advan-
tage that there are no overheads at database update time (versus the minimal
overheads with backing samples). On the other hand, as discussed in Section 3
and elsewhere in this article, there are a number of advantages to having a pre-
computed and maintained backing sample, and we exploit these advantages in
our algorithms.

Second, a split and merge approach has been used to incrementally main-
tain histograms in response to feedback from the query execution engine about
the actual selectivities of range queries [Aboulnaga and Chaudhuri 1999]. Such
histograms are called self-tuning histograms, because they automatically adapt
to changes in the database without looking at the updates and without re-
computing from the database. Instead, the actual selectivity of the executed
range query is compared with the histogram estimate of that selectivity, and
the histogram bucket counts are adjusted by spreading any discrepancy over
the buckets that lie within the query range. Buckets with large counts are split.
Buckets of near-equal frequencies are merged. Since a backing sample (or any
equivalent means) is not used, there are no bounds proved for the maximum de-
viation of a self-tuning histogram from the true histogram. On the other hand,
experimental results reported by Aboulnaga and Chaudhuri [1999] showed the
technique performs well for multidimensional data distributions with low to
moderate skew. More recently, Bruno et al. [2001] applied a similar feedback-
based technique to multidimensional histograms. A key feature of their ap-
proach is its flexible partitioning of the multidimensional space into buckets.
Unlike the techniques presented in our article, neither of these approaches uses
the contents of the data in a direct manner.

Finally, there have been a number of recent papers on approximate his-
tograms, their maintenance, and their use in query result size estimation and
in providing fast approximate answers to queries (e.g., Blohsfeld et al. [1999],
Deshpande et al. [2001], Gilbert et al. [2002a,b], Greenwald and Khanna [2001],
Gunopulos et al. [2001], Guha et al. [2001], Ioannidis and Poosala [1999],
Jagdish et al. [1998], Konig and Weikum [1999], Matia et al. [1998, 2000], and
Poosala and Ioannidis [1997]). Moreover, the notion of a backing sample has
been extended to the general notion of precomputed (and maintained) sampling-
based data synopses, which have been shown to be effective for providing fast ap-
proximate answers to queries (c.f. Acharya et al. [2000, 1999], Chaudhuri et al.
[2001], Ganti et al. [2000], Gibbons [2001], and Gibbons and Matias [1998]).

Outline of the Article. In Section 2, we discuss histograms, approximate his-
tograms, and histogram maintenance. Backing samples and their maintenance

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

Maintenance of Approximate Histograms • 265

are described in Section 3. Sections 4 and 5 present our algorithms for incre-
mental maintenance of approximate equidepth histograms and Compressed
histograms, respectively. Our experimental evaluation is in Section 6, followed
by conclusions in Section 7. A number of the proofs are left to the appendix.

2. HISTOGRAMS AND THEIR MAINTENANCE

The domain D of an attribute X is the set of all possible values of X and the
value set V (⊆ D) for a relation R is the set of values of X that are present
in R. Let V ={vi : 1≤ i≤ |V|}, where vi < vj when i< j and |V| is the cardinal-
ity of the set V. The frequency fi of vi is the number of tuples in R whose
value for attribute X is vi. The data distribution of X (in R) is the set of pairs
T ={(v1, f1), (v2, f2), . . . , (v|V|, f |V|)}.

A histogram on attribute X is constructed by partitioning the data distribu-
tion T into β (≥1) mutually disjoint subsets called buckets and approximating
the values and frequencies in each bucket in some common fashion. Typically,
a bucket is assumed to contain either all m values in D between the smallest
and largest values in that bucket (the bucket’s range), or just k≤m equidistant
values in the range, where k is the number of distinct values in the bucket. The
former is known as the continuous value assumption [Selinger et al. 1979], and
the latter is known as the uniform spread assumption [Poosala et al. 1996]. Let
the bucket frequency f B be the number of tuples in R whose value for attribute
X is in bucket B.2 The frequencies for values in a bucket B are approximated
by their averages, that is, by either f B/m or f B/k.

Different classes of histograms can be obtained by using different rules
for partitioning values into buckets. In this article, we focus on two impor-
tant classes of histograms, namely, the equidepth and Compressed(V, F) (sim-
ply called Compressed in this article) classes. In an equidepth (or equiheight)
histogram, contiguous ranges of attribute values are grouped into buckets
such that the number of tuples f B in each bucket B is the same. In a Com-
pressed(V, F) histogram [Poosala et al. 1996], the n highest frequencies are
stored separately in n singleton buckets; the rest are partitioned as in an
equidepth histogram. In our target Compressed histogram, the value of n
adapts to the data distribution to ensure that no singleton bucket can fit within
an equidepth bucket and yet no single value spans an equidepth bucket. We
have shown in our earlier work [Poosala et al. 1996] that Compressed his-
tograms are very effective in approximating distributions of low or high skew.

Equidepth histograms are used in one form or another in nearly all commer-
cial systems, except DB2 which uses the more accurate Compressed histograms.

Histogram Storage and Usage. For both equidepth and Compressed his-
tograms, we store for each bucket B the largest value in the bucket, B.maxval,

2For any value v that is the right endpoint of ranges for k ≥ 1 buckets, Bi , Bi+1, . . . , Bi+k−1, there is
ambiguity as to how to divide its frequency fv in the entire relation among f Bi , f Bi+1 , . . . , f Bi+k . In
this article, we select the following resolution to this ambiguity. If fv > (k− 1)N/β, we assign N/β
of fv to each bucket Bj , j = i + 1, . . . , i + k − 1, with v for both endpoints, so that f Bj =N/β. The
remainder of fv is assigned to f Bi ; none is assigned to f Bi+k . If fv ≤ (k− 1)N/β, we assign f Bi = 1,
f Bi+k = 0, and, for j = i + 1, . . . , i + k− 1, f Bj = (fv − 1)/(k− 1).

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

266 • P. B. Gibbons et al.

and a count, B.count, that equals or approximates f B. If B is a singleton bucket,
then its range is the single value B.maxval. Otherwise, its range is from the
B′.maxval of its preceding bucket (or the minimum value in the domain D, if
B is the first bucket) to B.maxval, excluding the value of each singleton bucket
within this range (if any).

When using the histograms to estimate range selectivities, we use the ex-
act range information provided by singleton buckets and apply the continuous
value assumption for equidepth buckets. For equidepth buckets, the uniform-
spread assumption could be used instead, but it requires knowing the number
of distinct values in each bucket, which is challenging to maintain (even ap-
proximately) under updates both to the database and to the histogram bucket
boundaries.

2.1 Approximate Histograms

An approximate class C histogram H∗ on an attribute X for a relation R is
a histogram that may deviate from the actual class C histogram H as R is
updated. This deviation occurs because we cannot afford to recompute H each
time R is updated. As R is modified, H∗ may deviate from H in the following
ways.

(1) Class Error: H∗ may no longer be the correct class C histogram for R; for
example, it may not have the same bucket boundaries as H.

(2) Distribution Error: H∗ may contain inaccurate information about X ; for
example, it may not have the same bucket counts as H.

The quality of an approximate histogram can be evaluated according to various
error metrics defined based on the class and distribution errors.

The µcount Error Metric. As an example, consider the following distribution
error metric, relevant to many histogram classes, which reflects the accuracy of
the counts associated with each bucket. When R is modified, but the histogram
is not, then there may be buckets B with B.count 6= f B; the difference between
f B and B.count is the approximation error for B. We consider the error metric
µcount defined as:

µcount= β

N

√√√√1
β

β∑
i=1

(f Bi − Bi.count)2 , (1)

where N is the number of tuples in R and β is the number of buckets. This is
the standard deviation of the bucket counts from the actual number of elements
in each bucket, normalized with respect to the mean bucket count (N/β).

2.2 Incremental Histogram Maintenance

The approach followed for maintenance in nearly all commercial systems is to
recompute histograms periodically (e.g., every night), regardless of the number
of updates performed on the database. This approach has two disadvantages:
any significant updates to the data since the last recomputation could result in

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

Maintenance of Approximate Histograms • 267

Fig. 1. Typical sizes of various entities.

poor estimations by the optimizer, and because the histograms are recomputed
from scratch by discarding the old histograms, the recomputation phase for
the entire database can be computationally very intensive and may have to be
performed when the system is lightly loaded or offline.3

Instead, we propose an incremental technique, which maintains approxi-
mate histograms within specified error bounds at all times with high proba-
bility and never accesses the underlying relations for this purpose. There are
two components to our incremental approach: maintaining a backing sample;
and a framework for maintaining an approximate histogram that performs a
few program instructions in response to each update to the database,4 and de-
tects when the histogram is in need of an adjustment of one or more of its
bucket boundaries. Such adjustments make use of the backing sample. There
is a fundamental distinction between the backing sample and the histogram it
supports: the histogram is accessed far more frequently than the sample and
uses less memory, and hence it can be stored in main memory whereas the
sample is likely stored on disk. Figure 1 shows typical sizes of various entities
relevant to our discussion.

Incremental histogram maintenance was previously studied in Gibbons and
Matias [1998] for the important case of a high-biased histogram, which is a
Compressed histogram with β − 1 buckets devoted to the β − 1 most frequent
values, and 1 bucket devoted to all the remaining values. This algorithm did
not use the approach described above—for example, no backing sample was
maintained or used.

In the next section, we describe how the backing sample is maintained in
the context of our approach.

3. BACKING SAMPLE

A backing sample is a uniform random sample of the tuples in a relation that
is kept up to date in the presence of updates to the relation. For each tuple, the
sample contains the unique row id and one or more attribute values.

3To help alleviate this latter problem, some commercial systems such as SQL Server recompute (ap-
proximate) histograms by first sampling the data and then computing a histogram on the sampled
data (as discussed in Section 1).
4To further reduce the overhead of our approach, the few program instructions can be performed
only for a random sample of the database updates (as discussed in Section 6.2).

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

268 • P. B. Gibbons et al.

We argue that maintaining a backing sample is useful for histogram com-
putation, selectivity estimation, and so on. In most sampling-based estimation
techniques, whenever a sample of size n is needed, either the entire relation
is scanned to extract the sample, or several random disk blocks are read. In
the latter case, the tuples in a disk block may be highly correlated, and hence
to obtain a truly random sample, n disk blocks must be read. In contrast, a
backing sample can be stored in consecutive disk blocks, and can therefore be
scanned by reading sequential disk blocks. Moreover, for each tuple in the sam-
ple, only the unique row id and the attribute(s) of interest are retained. Thus
the entire sample can be stored in only a small number of disk blocks, for even
faster retrieval. Finally, an indexing structure for the sample can be created,
maintained, and stored; the index enables quick access to sample values within
any desired range.

At any given time, the backing sample for a relation R needs to be equivalent
to a random sample of the same size that would be extracted from R at that
time. Thus the sample must be updated to reflect any updates to R, but without
the overheads of such costly extractions. In this section, we present techniques
for maintaining a provably random backing sample of R based on the sequence
of updates to R, while accessing R very infrequently (R is accessed only when
an update sequence deletes about half the tuples in R).

Let S be a backing sample maintained for a relation R. We first consider
insertions to R. Our technique for maintaining S as a simple random sample
in the presence of inserts is based on the Reservoir Sampling techniques due
to Vitter [1985]. Typically, in DBMSs, the reservoir sampling algorithm is used
to obtain a sample of the data during a single scan of the relation without a
priori knowledge about the number of tuples in the relation. The particular
version described here (called Algorithm X in Vitter’s paper), is as follows. The
algorithm proceeds by inserting the first n tuples into a “reservoir.” Then a
random number of records are skipped, and the next tuple replaces a randomly
selected tuple in the reservoir. Another random number of records are then
skipped, and so forth, until the last record has been scanned. The distribution
function of the length of each random skip depends explicitly on the number
of tuples scanned so far, and is chosen such that each tuple in the relation is
equally likely to be in the reservoir after the last tuple has been scanned. By
treating the tuple being inserted in the relation as the next tuple in the scan
of the relation, we essentially obtain a sample of the data in the presence of
insertions.

Extensions to Handle Modify and Delete Operations. We extend Vitter’s al-
gorithm to handle modify and delete operations, as follows. Modify operations
are handled by updating the value field, if the tuple is in the sample. Delete
operations are handled by removing the tuple from the sample, if it is in the
sample. However, such deletions decrease the size of the sample from the target
size n and, moreover, it is not known how to use subsequent insertions to obtain
a provably random sample of size n once the sample has dropped below n. In-
stead, we maintain a sample whose size is initially a prespecified upper bound
U , and allow for it to decrease as a result of deletions of sample items down

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

Maintenance of Approximate Histograms • 269

MaintainBackingSample()

// S is the backing sample, R is the relation, X is the attribute of interest.
// L and U are prespecified lower and upper bounds for the size of the sample.

After an insert of a tuple τ with τ.I D= id and τ.X = v into R:
if |S| + 1= |R| ≤U then

S := S + {(id , v)};
else with probability |S|/|R| do begin

select a tuple (id ′, v′) in S uniformly at random;
S := S + {(id , v)}− {(id ′, v′)};

end;

After a modify to a tuple τ with τ.I D= id in R:
if the modify changes τ.X then do begin

if id is in S then
update the value field for tuple id in S;

end;

After a delete of a tuple τ with τ.I D= id from R:
if id is in S then do begin

remove the tuple id from S;

// This next conditional is expected to be true only when a constant
// fraction of the database updates are delete operations.
if |S| < min(|R|, L) then do begin

// Discard S and rescan R to compute a new S.
S := ∅;
rescan R, and for each tuple, apply the above procedure for inserts into R;

end;
end;

Fig. 2. An algorithm for maintaining a backing sample of a relation under updates to the database.

to a prespecified lower bound L. If the sample size drops below L, we rescan
the relation to repopulate the random sample. In the appendix, we show that
such rescans are expected to be infrequent for large relations and, moreover,
for databases with infrequent deletions, no such rescans are expected. Even
in the worst case where deletions are frequent, the cost of any rescans can be
amortized against the cost of the (expected) large number of deletions required
before a rescan becomes necessary.

Our algorithm, denoted MaintainBackingSample, is depicted in Figure 2.
For each tuple selected for the backing sample S, we store its (unique) row id
and the value(s) of all attribute(s) of interest to any applications that will use
the backing sample (e.g., for histograms, we store the value of the attribute
on which the histogram is to be computed). For simplicity, we have shown in
this figure only the case of a single attribute, X , of interest, and we have not
shown any of the performance optimizations described below. The algorithm
maintains the property that S is a uniform random sample of a relation R such
that min(|R|, L)≤ |S| ≤U .

THEOREM 3.1. Algorithm MaintainBackingSample maintains a uniform
random sample of relation R.

The proof appears in the appendix.

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

270 • P. B. Gibbons et al.

Optimizations. There are several techniques that can be applied to lower
the overheads of the algorithm. First, a hash table of the row ids of the tuples
in S can be used to speed up the test of whether an id is in S. Second, if the pri-
mary source of delete operations is to delete from R all tuples before a certain
date, as in the case of many data warehousing environments that maintain a
sliding window of the most recent transactional data on disk, then such deletes
can be processed in one step by simply removing all tuples in S that are before
the target date. Third, and perhaps most importantly, we observe that the al-
gorithm maintains a random sample independent of the order of the updates
to the database. Thus we can “rearrange” the order to suit our needs, until an
up-to-date sample is required by the application using the sample. We can use
lazy processing of modify and delete operations, whereby such operations are
simply placed in a buffer to be processed as a batch whenever the buffer becomes
full or an up-to-date sample is needed. Likewise, we can postpone the process-
ing of modify and delete operations until the next insert that is selected for S.
Specifically, instead of flipping a biased coin for each insert, we select a ran-
dom number of inserts to skip, according to the criterion of Vitter’s Algorithm
X (this criterion is statistically equivalent to flipping the biased coin each in-
sert). At that insert, we first process all modify and delete operations that have
occurred since the last selected insert; then we have the new insert replace
a randomly selected tuple in S. Another random number of inserts are then
skipped, and so forth. Note that postponing the modify and delete operations
is important, since it reduces the problem to the insert-only case, and hence
the criterion of Algorithm X can be applied to determine how many inserts to
skip.

With these optimizations, insert and modify operations to attributes not of
interest are processed with minimal overhead, whereas delete and modify op-
erations to attributes of interest may require larger overhead (due to the batch
processing of testing whether the id is in the sample). Thus the algorithm is best
suited for insert-mostly databases or for the data warehousing environments
discussed above.

4. FAST MAINTENANCE OF APPROXIMATE EQUIDEPTH HISTOGRAMS

In this section, we demonstrate our approach for incremental histogram main-
tenance by considering a specific important histogram: the equidepth his-
togram. First, we present an algorithm for maintaining an approximate equi-
depth histogram in the presence of insertions to the database; this algorithm
has provable guarantees on its accuracy. Next, we show how heuristics can be
used to modify the algorithm in order to minimize the overheads. Finally, we
show how to extend both algorithms to handle modify and delete operations to
the database. We assume throughout that a backing sample S is being main-
tained using the algorithm of Figure 2.

The standard algorithm for constructing an (exact) equidepth histogram
first sorts the tuples in the relation by attribute value, and then selects tu-
ples bi · N/βc, for i= 1, . . . , β. However, for large relations, this algorithm is
quite slow because the sorting may involve multiple I/O scans of the relation.

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

Maintenance of Approximate Histograms • 271

EquiDepthSampleCompute();

// S is the sample to be used to compute the histogram, sorted on the attribute value X .
// N is the total number of tuples in R.
// β is the desired number of buckets.

For i := 1 to β do begin
τ := the bi · |S|/βc’th tuple in S;
Bi .maxval := τ.X ;
Bi .count := bi · N/βc − b(i − 1) · N/βc;

end;

return ({B1, B2, . . . , Bβ })
Fig. 3. Procedure for computing an approximate equidepth histogram from a random sample.

An approximate equidepth histogram approximates the exact histogram by
relaxing the requirement on the number of tuples in a bucket and/or the accu-
racy of the counts. Such histograms can be evaluated based on how close the
buckets are to N/β tuples and how close the counts are to the actual number
of tuples in their respective buckets.

A Class Error Metric for Equidepth Histograms. Consider an approximate
equidepth histogram with β buckets for a relation of N tuples. We consider
an error metric µed that reflects the extent to which the histogram’s bucket
boundaries succeed in evenly dividing the tuples in the relation:

µed = β

N

√√√√1
β

β∑
i=1

(
f Bi −

N
β

)2

. (2)

This is the standard deviation of the buckets’ sizes from the mean bucket size,
normalized with respect to the mean bucket size.

Computing Approximate Equidepth Histograms from a Random Sample.
Given a random sample, an approximate equidepth histogram can be computed
by constructing an equidepth histogram on the sample but setting the bucket
counts to be N/β [Poosala et al. 1996]. This algorithm, denoted EquiDepth-
SampleCompute, is depicted in Figure 3.

Section 4.1 presents an incremental algorithm that occasionally uses
EquiDepthSampleCompute. The accuracy of the approximate histogram main-
tained by the incremental algorithm depends on the accuracy resulting from
this procedure, which is stated in the following theorem.5 The statement of the
theorem is in terms of a sample size m. To ensure such a sample size for the back-
ing sample we maintain, we set L to be at least m in MaintainBackingSample.

THEOREM 4.1. Let β ≥ 3. Let m= (c ln2
β)β, for some c ≥ 4. Let S be a random

sample of size m of values drawn uniformly from a set of size N ≥ m3, either with
or without replacement. Let α= (c ln2

β)−1/6. Then EquiDepthSampleCompute

5Even though the computation of approximate histograms from a random sample of a fixed relation
R has been considered in the past, we are not aware of a similar analysis.

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

272 • P. B. Gibbons et al.

EquiDepthSimple()

// R is the relation, X is the attribute of interest.
// H is the ordered set of β buckets in the current histogram.
// T is the current upper bound threshold on a bucket count.
// γ > −1 is a tunable performance parameter.

After an insert of a tuple τ with τ.X = v into R:
Determine the bucket B ∈ H whose interval contains v;
B.count := B.count+ 1;

if B.count=T then do begin
H := EquiDepthSampleCompute(); // (See Figure 3).
T := d(2+ γ) · |R|/βe;

end;

Fig. 4. An algorithm for maintaining an approximate equidepth histogram under insertions to
the database.

computes an approximate equidepth histogram such that with probability at
least 1−β−(

√
c−1)−N−1/3, µed=µcount≤α.

The proof is given in the appendix.

4.1 Maintaining Equidepth Histograms Using a Backing Sample

Given our backing sample, we can compute an approximate equidepth his-
togram at any time, using EquiDepthSampleCompute. To maintain approxi-
mate histograms in the presence of database updates, one could invoke this
procedure whenever the backing sample is modified. However, the overheads
of this approach may be too large, and we would like instead to have a procedure
that can maintain the histogram while only occasionally going to the backing
sample to perform a full recomputation.

To this end, we devise an algorithm that monitors the accuracy of the his-
togram, and performs (partial) recomputation only when the approximation
error exceeds a prespecified tolerance parameter. Figure 4 depicts the new al-
gorithm, denoted EquiDepthSimple.

The algorithm proceeds in a series of phases. At each phase we maintain a
threshold T =d(2+ γ)N ′/βe, where N ′ is the number of tuples in the relation R
at the beginning of the phase, and γ > −1 is a tunable performance parameter.
The threshold is set at the beginning of each phase. The number of tuples in
any given bucket is maintained below the threshold T . (Recall that the ideal
target number for a bucket size would be |R|/β.) As new tuples are added to
the relation, we increment the counts of the appropriate buckets. When a count
exceeds the threshold T , the entire equidepth histogram is recomputed from the
backing sample using EquiDepthSampleCompute, and a new phase is started.

Performance Analysis. We first consider the accuracy of the above algo-
rithm, and show that with very high probability it is guaranteed to be a good
approximation for the equidepth histogram. The following theorem shows that
the error parameter µcount remains unchanged, whereas the error parameter
µed may grow by an additive factor of at most (1+ γ), the tolerance parameter.
The statement of the theorem is in terms of a sample size m.

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

Maintenance of Approximate Histograms • 273

THEOREM 4.2. Let β ≥ 3. Let m= (c ln2
β)β, for some c ≥ 4. Consider

EquiDepthSimple applied to a sequence of N ≥ m3 inserts of tuples into an
initially empty relation. Let S be a random sample of size m of tuples drawn uni-
formly from the relation, either with or without replacement. Let α= (c ln2

β)−1/6.
Then EquiDepthSimple computes an approximate equidepth histogram such
that with probability at least 1−β−(

√
c−1)− (N/(2+γ))−1/3, µed≤α+ (1+γ) and

µcount≤α.

The proof appears in the appendix.
We now consider the performance of the algorithm in terms of its computa-

tional overhead. Consider the cost of the calls to EquiDepthSimple. It is domi-
nated by the cost of reading from disk a relation of size |S|, in order to extract
the β sample quantiles. This procedure is called at the beginning of each phase.
It is easy to see that if the relation size is N at the beginning of the phase,
then the number of insertions before the phase ends is at least (1 + γ)N/β.
Also the relation size at the end of the phase is at least (1+ (1+ γ)/β)N . These
observations can be used to prove the following lemma, which bounds the total
number of calls to EquiDepthSampleCompute as a function of the final relation
size and the tolerance parameter γ .

LEMMA 4.3. Let α= 1+ (1+γ)/β. If a total of N tuples is inserted in all, then
the number of calls to EquiDepthSampleCompute is at most min(logα N , N).

4.2 The Split&Merge Algorithm

In this section we modify the previous algorithm in order to reduce the num-
ber of recomputations from the sample, by trying to balance the buckets using
a local inexpensive procedure, before resorting to EquiDepthSampleCompute.
When a bucket count reaches the threshold T we split the bucket in half in-
stead of recomputing the entire histogram from the backing sample. In order to
maintain the number of buckets β, fixed, we merge two adjacent buckets whose
total count does not exceed T , if such a pair of buckets can be found. Only
when a merge is not possible do we recompute from the backing sample. As
before, we define a phase to be the sequence of operations between consecutive
recomputations.

The operation of merging two adjacent buckets is quite simple; it merely
involves adding the counts of the two buckets and disposing of the boundary
(quantile) between them. The splitting of a bucket is less straightforward; an
approximate median value in the bucket is selected to serve as the bucket
boundary between the two new buckets, using the backing sample. In partic-
ular, we select the median value among all tuples in the backing sample that
fall within the bucket being split. To minimize disk accesses when determin-
ing the median value in a bucket, we keep the backing sample organized on
disk according to the histogram bucket. (Note that we visit the backing sam-
ple each time we split or merge, so we can readily maintain this organization).
The split and merge operation is illustrated in Figure 5. Note that split and
merge can occur only for γ >0. Figure 6 depicts our new algorithm, denoted
EquiDepthSplitMerge.

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

274 • P. B. Gibbons et al.

Fig. 5. Split and merge operation during equidepth histogram maintenance.

EquiDepthSplitMerge()

// R is the relation, X is the attribute of interest.
// H is the ordered set of β buckets in the current histogram.
// T is the current threshold for splitting a bucket.
// γ > −1 is a tunable performance parameter.

After an insert of a tuple τ with τ.X = v into R:
Determine the bucket B ∈ H whose interval contains v;
B.count := B.count+ 1;

if B.count=T then do begin
if ∃ buckets Bi and Bi+1 such that Bi .count+ Bi+1.count < T then do begin

// Merge buckets Bi and Bi+1.
Bi+1.count := Bi .count+ Bi+1.count;

// Split bucket B using the backing sample; use Bi for the first half of B’s tuples.
m := median value among all tuples in S associated with bucket B.
Bi .maxval := m;
Bi .count := bT/2c;
B.count := dT/2e;
Reshuffle equi-depth buckets in H back into sorted order;

end;

else do begin
// No buckets suitable for merging, so recompute the histogram from S.
H := EquiDepthSampleCompute(); // (See Figure 3).
T := d(2+ γ) · |R|/βe;

end;
end;

Fig. 6. The Split&Merge algorithm for maintaining an approximate equidepth histogram under
insertions.

The tolerance parameter γ determines how often a recomputation from the
backing sample occurs. Consider the extreme case of γ ≈ − 1. Here EquiDepth-
SplitMerge recomputes the histogram with each database update: that is, there
are 2(|R|) phases. Consider the other extreme, of setting γ > |R|. Then the al-
gorithm simply sticks to the original buckets, and is therefore equivalent to
the trivial algorithm which does not employ any balancing operation. Thus the
setting of the performance parameter γ gives a spectrum of algorithms, from

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

Maintenance of Approximate Histograms • 275

the most efficient one which provides very poor accuracy performance, to the
relatively accurate algorithm which has a rather poor efficiency performance.
By selecting a suitable intermediate value for γ , we can obtain an algorithm
with good performance, both in accuracy as well as in efficiency. For instance,
setting γ = 1 will result in an algorithm whose imbalance factor is bounded
by about 3 (since each phase begins with roughly |R|/β tuples per bucket, by
Theorem 4.2, and the threshold T for splitting a bucket is 3 times that number),
and the number of phases is O(log N) (as shown in Theorem 4.6 below).

The following lemma establishes a bound on the number of splits in a phase,
as a function of γ . We prove it for the range γ ≤ 2, in which we are particularly
interested.

LEMMA 4.4. Let γ ≤ 2. The number of splits that occur in a phase is at
most β.

PROOF. Let a bucket be denoted as intact if it was involved in neither a
bucket split nor a bucket merge since the beginning of a phase. We claim that
at every merge of two adjacent buckets, at least one of these buckets must be
intact. Indeed, note that a bucket that has participated in a bucket split has
a count of at least T/2. Further note that a bucket that has participated in a
bucket merge has a count of at least 2 ·T/(2+γ) ≥ T/2, since the bucket counts
at the beginning of the phase were T/(2+γ), and γ ≤ 2. The claim follows from
the observation that at least one of the merging buckets must have a count
smaller than T/2.

The claim implies that for every bucket merge, the number of intact buckets
decreases by at least one, and hence the total number of possible bucket merges
in a phase is at most β. The lemma now follows since each bucket split occurs
after a bucket merge.

The number of phases is bounded as follows.

LEMMA 4.5. Let α= 1 + γ /2 if γ >0, and otherwise let α= 1 + (1 + γ)/β.
If a total of N tuples is inserted in all, then the number of calls to EquiDepth-
SampleCompute is at most min(logα N , N).

The proof appears in the appendix.
We can now conclude.

THEOREM 4.6. Consider EquiDepthSplitMerge with β buckets and perfor-
mance parameter −1 < γ ≤ 2 applied to a sequence of N inserts. Then the total
number of phases is at most logα N, and the total number of splits is at most
β logα N, where α= 1+ γ /2 if γ >0, and otherwise α= 1+ (1+ γ)/β.

4.3 Extensions to Handle Modify and Delete Operations

Consider first the EquiDepthSimple algorithm. To handle deletions to the
database, we extend it as follows. Deletions can decrease the number of ele-
ments in a bucket relative to other buckets, so we use an additional thresh-
old T` that serves as a lower bound on the count in a bucket. At the start of
each phase, we set T`=b|R|/(β(2+ γ`))c, where γ` >−1 is a tunable parameter.

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

276 • P. B. Gibbons et al.

Fig. 7. Merge and split operation during equidepth histogram maintenance.

We also set T as before. Consider a deletion of a tuple τ with τ.X = v from R.
Let B be the bucket in the histogram H whose interval contains v. We decre-
ment B.count, and if now B.count=T` then we recompute H from the backing
sample, and update both T and T`.

For modify operations, we observe that if the modify does not change the
value of attribute X , or if it changes the value of X such that the old value is in
the same bucket as the new value, thenH remains unchanged. Else, we update
H by treating the modify as a delete followed by an insert.

Note that the presence of delete and modify operations does not affect the
accuracy of the histogram computed from the backing sample. Moreover, the
upper and lower thresholds control the imbalance among buckets during a
phase, so the histograms remain quite accurate. On the other hand, the number
of phases can be quite large in the worst case. By repeatedly inserting items into
the same bucket until T is reached, and then deleting these same items, we can
force the algorithm to perform many recomputations from the backing sample.
However, if the sequence of updates to a relation R is such that |R| increases
at a steady rate, then the number of recomputes can be bounded by a constant
factor times the bound given in Lemma 4.3, where the constant depends on the
rate of increase.

Now consider the EquiDepthSplitMerge algorithm. The extensions to han-
dle delete operations are identical to those outlined above, with the following
additions to handle the split and merge operations, as illustrated in Figure 7.
If B.count=T`, we merge B with one of its adjacent buckets and then split the
bucket B′ with the largest count, as long as B′.count ≥ 2(T` + 1). (Note that B′

might be the newly merged bucket.) If no such B′ exists, then we recompute H
from the backing sample. Modify operations are handled as outlined above.

Figure 8 depicts the full Split&Merge algorithm, denoted EquiDepthSplit-
Merge2, for maintaining an approximate equidepth histogram under insert,
delete, and modify operations.

5. FAST MAINTENANCE OF APPROXIMATE COMPRESSED HISTOGRAMS

In this section, we consider another important histogram type, the
Compressed(V , F) histogram. We first present a Split&Merge algorithm for
maintaining a Compressed histogram in the presence of database insertions,

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

Maintenance of Approximate Histograms • 277

EquiDepthSplitMerge2()

// R is the relation, X is the attribute of interest.
// H is the ordered set of β buckets in the current histogram.
// T (T`) is the current upper bound (lower bound, resp.) threshold on a bucket count.
// γ > −1 and γ` > −1 are tunable performance parameters.

After an insert of a tuple τ with τ.X = v into R:
Determine the bucket B ∈ H whose interval contains v; B.count := B.count+ 1;

if B.count=T then do begin
if ∃ buckets Bi and Bi+1 such that Bi .count+ Bi+1.count < T then do begin

Bi+1.count := Bi .count+ Bi+1.count; // Merge buckets Bi and Bi+1.
m := median value among all tuples in S associated with bucket B. // Split bucket B.
Bi .maxval := m; Bi .count := bT/2c; B.count := dT/2e;
Reshuffle equi-depth buckets in H back into sorted order;

end;

else do begin // No buckets suitable for merging, so recompute H from S.
H := EquiDepthSampleCompute(); // (See Figure 3).
T := d(2+ γ) · |R|/βe; T` := b(|R|/β)/(2+ γ`)c;

end;end;

After a modify of a tuple τ in R, with τ.X = v before the modify and τ.X = v′ after the modify:
if v 6= v′ then do begin

Determine the buckets for v and v′;
If v and v′ belong to different buckets then do begin

Apply the procedure below for deleting τ with τ.X = v from R;
Apply the procedure above for inserting τ with τ.X = v′ into R;

end;end;

After a delete of a tuple τ with τ.X = v from R:
Determine the bucket B ∈ H whose interval contains v; B.count := B.count− 1;

if B.count = T` then do begin // Merge bucket B with one of its adjacent buckets.
Bi := an adjacent bucket to B;
Bi .maxval := max(B.maxval, Bi .maxval); Bi .count := B.count+ Bi .count;

B′ := a bucket such that ∀ j : B′.count ≥ Bj .count;
if B′.count ≥ 2(T` + 1) then do begin // Split bucket B′.

m := median value among all tuples in S associated with bucket B′.
B.maxval := m; B.count := bB′.count/2c; B′.count := dB′.count/2e;
Reshuffle equi-depth buckets in H back into sorted order;

end;

else do begin // No bucket suitable for splitting, so recompute H from S.
H := EquiDepthSampleCompute(); // (See Figure 3).
T := d(2+ γ) · |R|/βe; T` := b(|R|/β)/(2+ γ`)c;

end;end;

Fig. 8. The Split&Merge algorithm for maintaining an approximate equidepth histogram under
updates.

and then show how to extend the algorithm to handle database modify and
delete operations. To simplify the presentation, we omit any explicit rounding
of quotients to the next smaller or larger integer. We assume throughout that
a backing sample S is being maintained using MaintainBackingSample.

Definitions. Consider a relation of (a priori unknown) size N . In an
equidepth histogram, values with high frequencies can span a number of

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

278 • P. B. Gibbons et al.

buckets; this is a waste of buckets since the sequence of spanned buckets for a
value can be replaced with a single bucket with a single count. A Compressed
histogram has a set of such singleton buckets and an equidepth histogram
over values not in singleton buckets. Our target Compressed histogram with
β buckets has β ′ equidepth buckets and β −β ′ singleton “high-biased” buckets,
where 1≤β ′ ≤β, such that the following requirements hold: (R1) each equidepth
bucket has N ′/β ′ tuples, where N ′ is the total number of tuples in equidepth
buckets, (R2) no single value “spans” an equidepth bucket (i.e., the set of bucket
boundaries is distinct), and conversely, (R3) the value in each singleton bucket
has frequency ≥ N ′/β ′. Associated with each bucket B is a maximum value
B.maxval (either the singleton value or the bucket boundary) and a count,
B.count.

An approximate Compressed histogram approximates the exact histogram
by relaxing one or more of the three requirements above and/or the accuracy of
the counts.

Class Error Metrics. Consider an approximate Compressed histogram H
with equidepth buckets B1, . . . , Bβ ′ and singleton buckets Bβ ′+1, . . . , Bβ . Recall
that f B is defined to be the number of tuples in a bucket B. Let N ′ be the
number of tuples in equidepth buckets; that is, N ′ = ∑β ′

i=1 f Bi . We define two
class error metrics µed and µhb (µed is as defined in Section 4 but applied only
to the equidepth buckets):

µed = β ′

N ′

√√√√ 1
β ′

β ′∑
i=1

(
f Bi −

N ′

β ′

)2

(3)

µhb = β ′

N ′
∑
v∈U

∣∣∣∣ fv − N ′

β ′

∣∣∣∣ , (4)

where U is the set of values that violate requirement (R2) or (R3). This metric
penalizes mistakes in the choice of high-biased buckets in proportion to how
much the true frequencies deviate from the target threshold N ′/β ′ normalized
with respect to this threshold.

Computing Approximate Compressed Histograms from a Random Sample.
Given a random sample, an approximate Compressed histogram can be com-
puted by constructing a Compressed histogram on the sample but scaling the
bucket counts by the scaling factor |R|/|S|. This algorithm, denoted Com-
pressedSampleCompute, is depicted in Figure 9. This is a new algorithm
for computing an approximate version of our target Compressed histogram,
and can be used as well to compute our exact target Compressed histogram by
taking S to be all of R.

Note that if the counts in the sample S accurately reflect the counts in the
set R, then the condition f Svi

≥ m′/β ′ of the first loop addresses Requirement
(R3). The size of the error µhb will depend on how accurately f Svi

represents
fvi , as well as the magnitude of the residual sample size m′. The latter is the
number of items left in the sample after removing all copies of items vj , j ≤ i.

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

Maintenance of Approximate Histograms • 279

CompressedSampleCompute();

// S is the random sample of R used to compute the histogram.
// β is the desired number of buckets.

// Compute the scaling factor for the bucket counts, and initialize β ′ and m′.
λ := |R|/|S|; β ′ := β; m′ := |S|;
For each value v in S compute f Sv , the frequency of v in S;
Let v1, v2, . . . , vβ−1 be the β − 1 most frequent values in nonincreasing order.

For i := 1 to β − 1 while f Svi
≥ m′/β ′ do begin

// Create a singleton bucket for vi .
Bβ ′ .maxval := vi ; Bβ ′ .count := λ · f Sv ;
m′ := m′ − f Sv ; β ′ = β ′ - 1;

end;

Let S ′ be the tuples in S whose values are not in singleton buckets, sorted by value;

// Create β ′ equi-depth buckets from S ′.
For i := 1 to β ′ do begin

u := the value of tuple i ·m′/β ′ in S ′;
Bi .maxval := u; Bi .count := λ ·m′/β ′;

end;

return ({B1, B2, . . . , Bβ }, λ ·m′, β ′);
Fig. 9. Procedure for computing an approximate Compressed histogram from a random sample.

The accuracy directly depends on m′/β ′, and for good accuracy we should aim
at having m′/β ′ ≥ λ, for a suitable choice of λ. For example, λ ≥ 5 ensures good
accuracy with reasonably high confidence. Problems arise with highly skewed
data. For example, if a single value were sufficiently popular such that all the
remaining values together were only a fraction α < 1

2 of the entire relation, and
the backing sample size were such that |S| < λ(β − 1)/α, then after the first
iteration, we would have

m′

β ′
= m′

β − 1
≈ α|S|
β − 1

< λ .

This implies that having a backing sample that is sufficiently large to satisfy
Requirement (R3) for highly skewed data will be very wasteful for more uniform
data.

A possible solution is to replace the random sample with a concise sample,
as defined in Gibbons and Matias [1998]. A concise sample represents multiple
sample items having the same value v as a single pair 〈v, c(v)〉, where c(v) is the
number of sample items with value v (tuple Ids are not retained). Thus each
value in the sample uses only constant space, regardless of its popularity. This
enables a larger uniform sample to be stored within the given space bound, and
in particular, the frequency f Svi

in a concise sample is essentially indifferent to
the popularity of other values vj , j 6= i. As a result we can set the space bound
for S such that S will be sufficient but not wasteful across all distributions,
regardless of skew.

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

280 • P. B. Gibbons et al.

5.1 A Split&Merge Algorithm for Compressed Histograms

In this section, we show how the approach in EquiDepthSplitMerge can be
extended to handle Compressed histograms.

On an insertion of a tuple with value v into the relation, the (singleton or
equidepth) bucket B for v is determined, and the count is incremented. If B is
an equidepth bucket, then as in EquiDepthSplitMerge, we check to see if its
count now equals the threshold T for splitting a bucket, and if it does, we update
the bucket boundaries. The steps for updating the Compressed histogram are
similar to those in EquiDepthSplitMerge, but must address several additional
concerns.

(1) New values added to the relation may be skewed, so that values that did
not warrant singleton buckets before may now belong in singleton buckets.

(2) The threshold for singleton buckets grows with N ′, the number of tuples in
equidepth buckets. Thus values rightfully in singleton buckets for smaller
N ′ may no longer belong in singleton buckets as N ′ increases.

(3) Because of concerns (1) and (2) above, the number of equidepth buckets
β ′ grows and shrinks, and hence we must adjust the equidepth buckets
accordingly.

(4) Likewise, the number of tuples in equidepth buckets grows and shrinks
dramatically as sets of tuples are removed from and added to singleton
buckets. The ideal is to maintain N ′/β ′ tuples per equidepth bucket, but
both N ′ and β ′ are growing and shrinking.

Briefly and informally, our algorithm addresses each of these four concerns
as follows. To address concern (1), we use the fact that a large number of up-
dates to the same value v will suitably increase the count of the equidepth
bucket containing v so as to cause a bucket split. Whenever a bucket is split,
if doing so creates adjacent bucket boundaries with the same value v, then
we know to create a new singleton bucket for v. To address concern (2), we
allow singleton buckets with relatively small counts to be merged back into
the equidepth buckets. As for concerns (3) and (4), we use our procedures
for splitting and merging buckets to grow and shrink the number of buck-
ets, while maintaining approximate equidepth buckets, until we recompute
the histogram. The imbalance between the equidepth buckets is controlled by
the thresholds T and T` (which depend on the tunable performance param-
eters γ and γ`, as in EquiDepthSplitMerge). When we convert an equidepth
bucket into a singleton bucket or vice versa, we ensure that at the time,
the bucket is within a constant factor of the average number of tuples in an
equidepth bucket (sometimes additional splits and merges are required). Thus
the average is roughly maintained as such equidepth buckets are added or
subtracted.

Figure 10 depicts the new algorithm, denoted CompressedSplitMerge.
The requirements for when a bucket can be split or when two buckets can

be merged are more involved than in EquiDepthSplitMerge. A bucket B is a
candidate split bucket if it is an equidepth bucket with B.count ≥ 2(T`+ 1) or
a singleton bucket such that T/(2+ γ)≥ B.count ≥ 2(T`+ 1). A pair of buckets

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

Maintenance of Approximate Histograms • 281

CompressedSplitMerge()

// R is the relation, A is the attribute of interest, S is the backing sample.
// H is the set of β ′ ≥ 1 equidepth buckets (sorted by value) and
// β − β ′ singleton buckets in the current histogram.
// T is the current threshold for splitting an equidepth bucket.
// T` is the current threshold for merging a bucket.
// γ > −1 and γ` > −1 are tunable performance parameters.

After an insert of a tuple τ with τ.A= v into R:
Determine the bucket B ∈ H for v;
B.count := B.count+ 1;

if B is an equidepth bucket and B.count=T then
SplitBucket(B);

SplitBucket(B) // This procedure either splits B or recomputes H from S.

m := median value among all tuples in S associated with bucket B.
Let Bp be the bucket preceding B among the equidepth buckets.

if m 6= Bp.maxval and m 6= B.maxval then
if ∃ buckets Bi and Bj that are a candidate merge pair then do begin

Bj .count := Bi .count+ Bj .count; // Merge Bi into Bj .
Bi .maxval := m; Bi .count := T/2; B.count := T/2; // Split B.

end;
else do begin // No suitable merge pair, so recompute H from S.

(H, N̂ ′, β ′) := CompressedSampleCompute(); // (see Figure 9).
T := (2+ γ) · N̂ ′/β ′; T` := N̂ ′/((2+ γ`)β ′); // Update thresholds.

end;

else if m= Bp.maxval then do begin
// Create a singleton bucket for the value m.
B.count := Bp.count+ B.count− f Sm · |R|/|S|; // First use B for B ∪ Bp−m.
Bp.maxval := m; Bp.count := f Sm · |R|/|S|; // Then use Bp for m.

if B.count ≥ T then // The merged bucket (without m) is too big.
SplitBucket(B);

else if B.count ≤ T` then do begin // The merged bucket (without m) is too small.
if ∃ buckets Bi and Bj that are a candidate merge pair such that B= Bi

or B= Bj and ∃ bucket Bs that is a candidate split bucket then
Bj .count := Bi .count+ Bj .count; SplitBucket(Bs); // Merge and split.

else do begin
(H, N̂ ′, β ′) := CompressedSampleCompute(); // (see Figure 9).
T := (2+ γ) · N̂ ′/β ′; T` := N̂ ′/((2+ γ`)β ′); // Update thresholds.

end;
end;

else if m= B.maxval then
// This case is similar to the previous case, focusing on B and the bucket after it.

Fig. 10. An algorithm for maintaining an approximate Compressed histogram under insertions.

Bi and Bj is a candidate merge pair if (1) either they are adjacent equidepth
buckets or they are a singleton bucket and the equidepth bucket in which its
singleton value belongs, and (2) Bi.count+ Bj .count < T . When there is more
than one candidate split bucket (candidate merge pair), the algorithm selects
the one with the largest (smallest combined, respectively) bucket count.

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

282 • P. B. Gibbons et al.

LEMMA 5.1. Algorithm CompressedSplitMerge maintains the following in-
variants. (1) For all buckets B, B.count>T`. (2) For all equidepth buckets B,
B.count < T. (3) All bucket boundaries (B.maxval) are distinct. (4) Any value v
belongs to one singleton bucket, one equidepth bucket, or two adjacent equidepth
buckets (in the last case, any subsequent inserts or deletes are targeted to the first
of the two adjacent buckets).

Thus the set of equidepth buckets has counts that are within a factor of
T/T`= (2+ γ)(2+ γ`), which is a small constant independent of |R|.

5.2 Extensions to Handle Modify and Delete Operations

We now discuss how to extend CompressedSplitMerge to handle deletions to
the database. Deletions can decrease the number of tuples in a bucket relative
to other buckets, resulting in a singleton bucket that should be converted to an
equidepth bucket or vice versa. A deletion can also drop a bucket count to the
lower threshold T`.

Consider a deletion of a tuple τ with τ.X = v from R. Let B be the bucket
in the histogram H whose interval contains v. We decrement B.count, and if
B.count=T`, we do the following. If B is part of some candidate merge pair,
we merge the pair with the smallest combined count and then split the candi-
date split bucket B′ with the largest count. (Note that B′ might be the newly
merged bucket.) If no such B′ exists, then we recompute H from the back-
ing sample. Likewise, if B is not part of some candidate merge pair, we re-
compute H from the backing sample. As in the insertion-only case, the con-
version of buckets from singleton to equidepth and vice versa is primarily
handled by detecting the need for such conversions when splitting or merging
buckets.

For modify operations, we observe as before that if the modify does not change
the value of attribute X , or it changes the value of X such that the old value
is in the same bucket as the new value, then H remains unchanged. Else, we
update H by treating the modify as a delete followed by an insert.

The invariants in Lemma 5.1 hold for the version of the algorithm that in-
corporates these extensions for modify and delete operations.

6. EXPERIMENTAL EVALUATION

In this section, we experimentally study the effectiveness of our histogram
maintenance techniques and their efficiency. First, we describe the experiment
testbed.

Database. We model the base data already in the database independently
from the update data. Both are modeled using an extensive set of Zipfian [Zipf
1949] data distributions. The z value was varied from 0 to 4 to vary the skew
(z = 0 corresponds to the uniform distribution). The number of tuples (T) in
the relation was 100 K to start with and the number of distinct values (D) was
varied from 200 to 1000. Since the exact attribute values do not affect the rela-
tive quality of our techniques, we chose the integer value domain. Finally, the

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

Maintenance of Approximate Histograms • 283

frequencies were mapped to the values in different orders—decreasing (decr),
increasing (incr), and random (random)—thereby generating a large collection
of data distributions. We refer to a Zipf distribution with the parameter z and
order x as the zipf (z, x) distribution.

Histograms. The equidepth and Compressed histograms consisted of 20
buckets and were computed from a sample of 2000 tuples, which was also the
size of the backing sample.

Updates. We used the following classes of updates, based on the mix of
insert, delete, and modify operations. In each case, the update data were taken
from a Zipf distribution. By varying the z parameter, we were able to vary the
skew in the updates. The number of updates was increased up to 400 K (four
times the relation size).

(1) Insert: The first class of updates consists of just insert operations. Since our
algorithms are most efficient for such an environment, they are studied in
most detail.

(2) Warehouse: This class contains an alternating sequence of a set of in-
serts followed by a set of deletes. This pattern is common in data ware-
houses keeping transactional information during sliding time windows
(loading fresh data and discarding very old data, when loaded close to
capacity).

(3) Mixed: This class contains a uniform mixture of insert, delete, and modify
operations occurring in random order.

Unless otherwise specified, experimental results are for the Insert class of
updates.

Techniques. We studied several variants of old and new techniques which
are described below in terms of their operations for a single insert (operations
for delete are similar in principle).

(1) Fixed-Histogram: The sum of frequencies in each bucket is incremented by
1/β so that the total sum of the frequencies increases by 1. This is essentially
the technique in use in nearly all systems prior to our work, in that they
update the number of tuples but do not update the histogram.

(2) Periodic-Sample-Compute: This (expensive) technique requires recomput-
ing the histogram from the backing sample after each insertion into the
sample, while the total sum of frequencies is incremented as in the above
technique.

(3) SplitMerge: This is the class of techniques corresponding to the algorithms
proposed in this article.

(4) No-Recompute: This technique differs from SplitMerge by not performing
the recomputations and simply increasing the split threshold when a merge
can not be performed.

(5) Fixed-Buckets: This technique differs from SplitMerge by not attempting
to split any bucket. But, unlike the Fixed-Histogram algorithm, the size of
the bucket containing the inserted value is correctly incremented.

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

284 • P. B. Gibbons et al.

Fig. 11. Effect of γ and recomputation on µed errors.

Error Metrics. The following error metrics are used: µcount (Equation (1)),
µed (Equations (2) and (3)), and µhb (Equation (4)). In addition, a new metric
µrange is defined, which captures the accuracy of histograms in estimating the
result sizes of range predicates (of the form X ≤a). The query set contains
range predicates over all possible values in the joint value domain. For each
query, we find the error as a percentage of the result size. µrange is defined as
the average of these errors over the query set.

All our experiments were conducted five times to reduce the accidental effects
of samples and had similar results in each instance. Hence, we present the
results of one of the runs.

6.1 Effects of Recomputation and γ

Figure 11 depicts the errors (µed) of the equidepth histogram obtained at the
end of 400 K insertions as a function of γ , under the SplitMerge and No-
Recompute techniques. The base data distribution for this case was uniform
and the update distribution was zipf(2,decr). It is clear that SplitMerge out-
performs the technique without recomputations. Also, the errors due to the
techniques are lowest for low values of γ and increase rapidly as γ increases.
This is because for low values of γ , the histogram is recomputed more of-
ten and the bucket sizes do not exceed a low threshold, thus keeping the
µed small.

On the other hand, small values of γ result in a larger number of disk accesses
(for the backing sample). Figure 12 shows the effect of γ on the number of
recomputations. It is clear that too small values of γ result in a large number
of recomputations. Based on similar sets of experiments conducted over the
entire set of data distributions, we concluded that γ = 0.5 is a reasonable value
for limiting the number of computations as well as for decreasing errors; we
use this setting in all the remaining experiments.

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

Maintenance of Approximate Histograms • 285

Fig. 12. Effect of γ on the number of recomputations.

Fig. 13. Effect of update sampling.

6.2 Update Sampling

Nearly all the experiments in this article were conducted by considering every
insertion in the database. In some update-intensive databases this could result
in intolerable performance degradation. Hence we propose uniformly sampling
the updates with a certain probability and modifying the histograms only for the
sampled updates. In this experiment, we study the effect of the update sampling
probability on histogram performance. The base and update distributions are
chosen to be zipf(1,incr) and zipf(0.5, random), respectively, and the histogram
is Compressed. Figure 13 depicts the errors due to the SplitMerge technique for
various sampling probabilities. The x-axis represents the average number of
updates that are skipped and the y-axis represents the errors incurred by the
histogram resulting at the end of 400 K inputs in estimating the result sizes of
range queries (µrange). It is clear from this figure that the accuracy depends on

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

286 • P. B. Gibbons et al.

Fig. 14. µed errors (equidepth histograms).

the number of updates sampled; as long as not too many updates are skipped
(say, at most 100 in this experiment), the errors are reasonably small.

6.3 Approximation of Equidepth Histograms

We compare the effectiveness of various techniques in approximating equidepth
histograms under insertions into the database. The results are presented for
uniform base data and zipf(2,incr) update data and are fairly consistent over
most other combinations. Figures 14 through 16 depict various error measures
as a function of the number of insertions. For this experiment, the SplitMerge
technique performed just 2 recomputations from the backing sample, whereas
Periodic-Sample-Compute performed 3276.

It is clear from Figure 14 that the SplitMerge technique is nearly identical
to the more expensive Periodic-Sample-Compute technique in maintaining the
histogram close to equidepth. The Periodic-Sample-Compute technique does
not maintain a perfectly equidepth histogram because it is recomputed from
the backing sample which may not reflect all the insertions. The other two
techniques clearly result in a very poor equidepth histogram because they do
not perform any splits of the overpopulated buckets. Figure 15 shows that the
SplitMerge and Fixed-Buckets techniques are very accurate in reflecting the
accurate counts, because their bucket sizes are correctly updated after every
insertion. For the other two techniques, the size of a bucket is always equal
to N/β, hence the µcount and µed measures are identical. Finally, it is clear
from Figure 16 that the SplitMerge technique offers the best performance in
estimating range query result sizes as well.

6.4 Approximation of Compressed Histograms

We compare the effectiveness of various techniques in maintaining approximat-
ing Compressed histograms. The base data distribution is zipf(1,incr) (a skewed
distribution is chosen so that the Compressed histogram will contain a few high-
biased buckets) and the update distribution is zipf(2,random), which introduces

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

Maintenance of Approximate Histograms • 287

Fig. 15. µcount errors (equidepth histograms).

Fig. 16. µrange errors (equidepth histograms).

skew at different points in the relation’s distribution. Figures 17 and 18 depict
the µhb and µrange errors on the y-axes, respectively, and the number of inser-
tions on the x-axes. The results for the other two metrics are similar to the
equidepth case and consistently demonstrate the accuracy of the SplitMerge
technique, hence are not presented. Once again, the SplitMerge technique
performed just 2 recomputations from the sample, whereas Periodic-Sample-
Compute performed 3274 recomputations.

It can be seen from Figure 17 that the Periodic-Sample-Compute and Split-
Merge techniques result in almost zero errors in capturing the high frequency
values in the updated relation, even when these values are not frequent in the
base relation. In the beginning, the updates do not create a new high frequency
value and all techniques perform well. But once a new value becomes frequent,
it is clear that the other two techniques fail to characterize it as such and hence
incur high errors.

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

288 • P. B. Gibbons et al.

Fig. 17. µhb errors (Compressed histograms).

Fig. 18. µrange errors (Compressed histograms).

Figure 18 shows that the errors in range size estimation follow a similar
pattern to that of the equidepth case. Also, as expected from our earlier work
[Poosala et al. 1996], the Compressed histograms are observed to incur smaller
errors than the equidepth histograms from Figure 16.

6.5 Effect of Skew in the Updates

High skew in the update data can alter the overall data distribution dra-
matically, and hence requires effective histogram maintenance techniques. In
Figure 19 we depict the performance of various Compressed histograms result-
ing from the techniques at the end of 400 K insertions to the database. The
x-axis represents the z parameter values and the y-axis represents the errors
in estimating range query result sizes (µrange). The Fixed-Histogram technique
fails very quickly because it assumes that the updates are uniform and hence
does not update the high-biased part correctly. It is clear from this figure that
the SplitMerge technique performs consistently well for all levels of skew and is

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

Maintenance of Approximate Histograms • 289

Fig. 19. Effect of skew in the updates.

Fig. 20. Errors under Warehouse updates.

always better than the other techniques, because it approximates the equidepth
part well using splits and recomputations, and approximates the high-biased
part well by dynamically detecting high-frequency values.

6.6 Effect of Update Nature

The updates in all the experiments studied thus far consisted of inserts only
(the Insert update set). In this section we study the performance of various
maintenance techniques in the presence of delete and modify operations. The
performance of Compressed histograms maintained using various maintenance
techniques is depicted in Figures 20 and 21 for the Warehouse and Mixed update
sets, respectively. These graphs show range size estimation errors as a function
of the number of updates. The same conclusions as in the previous experiments
were derived for other error metrics and for equidepth histograms. Hence, we
do not present those results here.

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

290 • P. B. Gibbons et al.

Fig. 21. Errors under Mixed updates.

Note that the Periodic-Sample-Compute and SplitMerge techniques success-
fully limit the range size estimation errors to a small constant value in the
presence of both kinds of updates. On the other hand, depending on the fluctu-
ating relation size, the errors due to Fixed-Buckets increase and decrease, but
overall they increase because the approximate histogram deviates too far from
the actual data distribution. The performance of Fixed-Buckets differs from the
experiments on Insert data because the insert, delete, and modify streams are
skewed at different attribute values and hence vary the data distribution dras-
tically and require significant bucket changes in order to capture it accurately.
As in the earlier experiments, Fixed-Histogram performs poorly because it fails
to capture the varying shape of the distribution.

6.7 Practicality Considerations

In this section we discuss the costs of using our histogram maintenance tech-
niques in a DBMS. Our techniques require the following resources.

CPU. For most updates the only CPU-intensive operation one needs to per-
form is incrementing the bucket count. This is further reduced by sampling
the updates. Complete recomputations of histograms from the backing sample
are more expensive (on the order of tens of milliseconds [Poosala et al. 1996]),
but happen rarely (twice during a fivefold increase in the size of a database).
Also, since histograms are no longer read-only data structures, one now needs
some form of concurrency control mechanism for accessing them. We suggest
using inexpensive latches for updating the histograms and allowing inconsis-
tent reads (which is often fine in an estimation application).

I/O. For inserts, the backing sample on the disk is accessed only during
splits, sample updates, and recomputations. In the last case, the entire back-
ing sample has to be accessed, which may require fetching a small number of
disk pages, but this is very rare. As shown in our theorems, one needs a very
large number of inserts in order to perform a split, hence the split costs are

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

Maintenance of Approximate Histograms • 291

also quite negligible. Similarly, for a large relation, the backing sample is also
updated very rarely. On the other hand, our techniques for arbitrary delete
and modify operations require accessing the backing sample on every sampled
update, which may make the techniques expensive in some environments. For
delete operations in a data warehouse environment, which houses transactional
information for sliding time windows, the techniques are I/O effective.

Space. Our techniques do not require any additional data in memory other
than those already present in a histogram. On the other hand, they need disk
space (on the order of 1 to 10 pages) for the backing sample. In comparison
with typical relation and disk sizes, this is clearly negligible (see Figure 1 for
an illustration).

Overall, the above argues qualitatively that the resource requirements of
the maintenance algorithms are negligibly small in most situations. Further
quantitative studies in real database systems are needed in order to measure
the overheads occurring in practice.

7. CONCLUSIONS

This article proposed a novel approach for maintaining histograms and sam-
ples up to date in the presence of updates to the database. This is critical for
various DBMS components (primarily query optimizers) that rely on estimates
requiring information about the current data. Algorithms were proposed for the
widely used equidepth histograms and the highly accurate class of Compressed
histograms. We introduced these innovations:

—The notion of a backing sample, with its advantages over previous approaches
to obtaining samples, and techniques for its maintenance;

—The idea of maintaining histograms incrementally by making use of the back-
ing sample. The backing sample can be much larger than the histogram and
reside on the disk; it is accessed very rarely in support of the histogram,
which is typically in main memory; and

—Split and merge techniques on histogram buckets, which drastically reduce
accesses to the disk for the backing sample.

Next, we conducted a large set of experiments to demonstrate the effec-
tiveness of our algorithms in maintaining histograms. Our conclusions are as
follows.

—The new techniques are very effective in approximating equidepth and
Compressed histograms. They are equally effective for relations orders of
magnitude larger. In fact, as the relation size grows, the relative over-
head of maintaining a backing sample with equal accuracy becomes even
smaller.

—Very few recomputations from the backing sample are incurred for a large
number of updates, proving that our split and merge techniques are quite
effective in minimizing the overheads due to recomputation.

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

292 • P. B. Gibbons et al.

—The experiments clearly show that histograms maintained using these tech-
niques remain highly effective in result size estimation, unlike the previous
approaches.

The CPU, I/O, and storage requirements for these techniques are negligible for
insert-mostly databases and for data warehousing environments.

Based on our results, we recommend that these techniques be used in most
DBMSs, for effective incremental maintenance of approximate histograms.

APPENDIX

A. PROOFS FROM SECTION 3

In this section, we prove the correctness of MaintainBackingSample, as well
as various properties about the algorithm. An important assumption we use is
that the sequence of database operations is independent of the random choices
made by our algorithm.

Let S be a set of size N . A sample of size n≤N (without replacement) from
S is a subset of size n of the elements in S. There are (N

n) possible samples of S
of size n. A random sample of size n is a sample of S selected with probability
1/(N

n).
Our algorithm treats database insertions as in Vitter’s [1985] algorithm, so

we use the following fact shown in Vitter [1985], restated using the terminology
of this article.

OBSERVATION A.1. Let S be a set of size N, and let x be an element not in
S. Let S1 be a random sample of size n of S, and let u be an element selected
uniformly at random from S1. Let S2 be constructed as follows.

S2 =
{

S1 + {x} − {u} with probability n
(N+1)

S1 otherwise.

Then S2 is a random sample of size n of S+{x}.

Next consider deletions. For an element just deleted from the relation R, if
the element is in the backing sample S, our algorithm deletes it from S, else it
leaves S unchanged. Lemma A.2 establishes that this maintains the property
that S is a random sample.

LEMMA A.2. Let S be a set of size t, and let y be an element in S. Let S1 be
a random sample of size s of S. Then if y is not in S1 then S2= S1−{ y}= S1 is
a random sample of size s of S−{ y}. Else if y is in S1 then S2= S1−{ y} is a
random sample of size s− 1 of S−{ y}.

PROOF. In the former case (y is not in S1), there are (t−1
s) possible

samples of size s of S that do not contain y , each of which is equally
likely to be selected for S1. Since S2= S1, there is a one-to-one correspon-
dence between samples S1 not containing y and samples S2. Thus, for any S2,
Pr[S2 selected]=Pr[S1 selected |select a sample without y]= Pr[S1 selected]/

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

Maintenance of Approximate Histograms • 293

Pr[select a sample without y], which equals

1(
t
s

)
(

t − 1
s

)
(

t
s

)
= 1(

t − 1
s

) .

In the latter case (y is in S1), there are (t
s) − (t−1

s)= (t−1
s−1) possible samples

size s of S that contain y , each of which is equally likely to be selected for S1.
There is a one-to-one correspondence between samples S1 containing y and
samples S2. Thus, for any S2, the probability S2 is selected is 1/(t−1

s−1).

We now proceed to prove Theorem 3.1.

PROOF OF THEOREM 3.1. Consider a sequence of insert, modify, and delete op-
erations for an initially empty relation R. Let S be the sample resulting from
applying MaintainBackingSample to the sequence, with a given L and U ,
1≤ L≤U . We first prove the claim that the ids in S are a random sample
of the ids in R.

The proof is by induction on the length k of the sequence. For a sequence
of length k, let Rk be the set of ids in R resulting from applying the up-
dates in the sequence to an initially empty relation R, and let Sk be the
set of ids in S resulting from applying the algorithm in response to the
sequence.

For the base case k= 1, the first update must be an insert for some id . This
id is added to S, so S1={id } is a random sample of R1={id }.

Assume the claim is true for k≥1, and consider an arbitrary sequence Ak+1,
of length k+ 1. The sequence Ak+1 consists of a sequence Ak of length k followed
by a single update operation (an insert, a modify, or a delete). Let Rk and Sk be
defined according to Ak .

First, consider the case where the (k+ 1)st update is an insert of a new
element id . Thus Rk+1= Rk +{id }. If |Sk| +1= |Rk+1| ≤U then |Sk| = |Rk| and
both sets contain the same ids. By the algorithm, Sk+1= Sk +{id }, and the
claim holds by the inductive assumption. Else the claim holds by the inductive
assumption and Observation A.1.

Second, consider the case where the (k+ 1)st update is a modify of one or
more of the values of an element id in Rk . By the algorithm, Rk+1= Rk and
Sk+1= Sk , so the claim holds by the inductive assumption.

Third, consider the case where the (k+ 1)st update is a delete of an element
id in Rk . If id 6∈ Sk , then the claim holds by the inductive assumption and
Lemma A.2. If id ∈ Sk , then also by the inductive assumption and Lemma A.2,
the ids in Sk −{id } are a random sample of the ids in Rk+1. If the algorithm
scans Rk+1, then consider some sequence A′ of |Rk+1|< k inserts, one insert for
each element in Rk+1. By the inductive assumption applied to A′, the ids in
Sk+1 are a random sample of the ids in Rk+1.

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

294 • P. B. Gibbons et al.

Since in all three cases the claim holds for an arbitrary Ak+1, the claim is
maintained for all sequences of length k+ 1, and hence by induction holds for
all finite length sequences.

Finally, consider the relation R after an arbitrary sequence of update oper-
ations and a sample S generated by the algorithm. Since the set of ids in S
is a random sample of the set of ids in R, and the updates are independent of
the random choices made by the algorithm, then for any attribute X of R, the
set Vs=

⋃
id∈S id.X of values is a random sample of the set Vr =

⋃
id∈R id.X of

values. The theorem follows.

MaintainBackingSample maintains a backing sample S such that
min(|R|, L)≤ |S| ≤U , where L and U are prespecified upper and lower bounds.
It populates S up to U elements and then a series of U − L+ 1 deletes of sample
elements are needed in order to force the algorithm to rescan the relation R in
order to repopulate S. The next lemma shows that rescans are expected to be
infrequent for large relations.

LEMMA A.3. Consider an initial relation R and a backing sample S for R of
size U. Consider any sequence of updates to R and let N0≥U be a lower bound
on the size of R after each such update. (There is no upper bound imposed on
|R|.) Then at most one rescan is expected every N0(U − L+ 1)/U updates.

PROOF. Initially, |S| =U , so a series of U − L+ 1 deletes of sample elements
is needed in order to force a rescan of R. At any time, the probability that an
id selected for deletion is in S is |S|/|R| (since (|R|−1

|S|−1)/(|R||S|) = |S|/|R|). Since
|S|/|R| ≤U/N0, the expected number of deletions needed is at least N0(U −
L+ 1)/U . After the rescan, |S| =U , and the argument can be repeated.

As an example, consider a relation of size N = 2N0 and L=U/2+ 1. Then in
order to force a rescan, we must delete half of the relation. Moreover, in such
cases, the number of tuples to be rescanned is N/2, which can be amortized
against the N/2 deletions needed to force the rescan.

B. PROOFS FROM SECTION 4

To simplify the presentation of the proofs that follow, we ignore the use of floors
and ceilings in the algorithms.

PROOF OF THEOREM 4.1. Since each bucket count is set to N/β, µed=µcount for
this algorithm. We assume without loss of generality that all values are distinct;
this can be accomplished by appending to each original value a unique label.

The probability that sampling with replacement will pick m distinct elements
is

N (N − 1)(N − 2) · · · (N −m+ 1)
Nm ≥

(
N −m

N

)m

=
(

1− m
N

)m
≥ 1− m2

N
.

Since m≤N 1/3, the probability is at least 1− 1/N1/3. Thus we ignore the differ-
ence between sampling with and without replacement by considering whichever
one is more suited to the analysis, and compensate by subtracting N−1/3 from

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

Maintenance of Approximate Histograms • 295

the probability of obtaining the stated bounds. (This can be argued formally
using conditioned events.)

By Lemma 7.1 in Reif and Valiant [1987], for each bucket Bi,

Pr

{
f Bi ∈

[(
1±

(
m
β

)−1/6
)

N
β

]}
≥ 1− 2√

c lnβ
β−
√

c ,

which is greater than 1−β−
√

c. Thus f Bi is within the above range for all i with
probability at least 1− β−(

√
c−1). This implies that, with the same probability,

µed ≤ β

N

√√√√1
β

β∑
i=1

(
N
β

(
m
β

)−1/6
)2

=
(

m
β

)−1/6

.

The theorem follows.

PROOF OF THEOREM 4.2. Consider some phase in the EquiDepthSimple algo-
rithm, at which the relation is of size N . At the beginning of the phase, let
N ′ be the size of the relation, and let µ′count and µ′ed be the errors µcount and
µed, respectively. Let ρ ′ = 1−β − (

√
c−1)− (N ′)−1/3, and let ρ= 1−β−(

√
c−1)− (N/

(2+ γ))−1/3. Since during a phase N ≤N ′(2+ γ), we have ρ ≤ ρ ′. By Theorem 4.1,
µ′ed=µ′count≤α with probability at least ρ ′, and hence at least ρ.

During a phase, a value inserted into bucket Bi increments both f Bi and
Bi.count. Therefore, by the definition of µcount (Equation 1), its value does
not change during a phase, and hence at any time during the phase µcount=
µ′count≤α with probability ρ. It remains to bound µed.

Let f ′Bi
and Bi.count′ be the values of f Bi and Bi.count, respectively, at the

beginning of the phase. Let 1′i = f ′Bi
−N ′/β, and let 1i = f Bi −N/β. We claim

that |1i −1′i| ≤ (1+ γ)N ′/β. Note that |1i −1′i| ≤ max(f Bi − f ′Bi
, N/β −N ′/β).

The claim follows since f Bi − f ′Bi
= Bi.count− Bi.count′ ≤T − Bi.count′ =

(2+ γ)N ′/β −N ′/β, and N −N ′ ≤β(Bi.count− Bi.count′).
By the claim,

1i
2 ≤ (1′i + (1+ γ) N ′/β)2 = 1′i2 + 21′i(1+ γ) N ′/β + ((1+ γ) N ′/β)2.

Note that
∑β

i=11
′
i =

∑β

i=1(f Bi − N ′/β) = 0. Hence, substituting for 12
i in the

definition of µed (Equation (2)) we obtain

µed = β

N

√√√√1
β

(
β∑
i

1′i
2 +

β∑
i=1

((1+ γ)N ′/β)2

)

≤ µ′ed+
β

N
(1+ γ) N ′/β ≤µ′ed+ (1+ γ).

The theorem follows.

PROOF OF LEMMA 4.5. Let N ′ be the total number of elements at the beginning
of a phase t. Note that the sum of the bucket counts at the start of phase t is N ′.
Each new element increases this sum by one, and both splitting and merging
have no effect on this sum. Thus throughout phase t, the sum of the bucket
counts is always exactly the number of elements.

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

296 • P. B. Gibbons et al.

Consider first the case that γ >0. Recall that a phase ends when there is
no pair of adjacent buckets Bi and Bi+1 such that Bi.count+ Bi+1.count<T .
Therefore, summing over the pairs, {B2 j−1, B2 j } for j = 1, 2, . . . , β/2 we ob-
tain that the sum of the bucket counts (and hence the total number of el-
ements) at the end of phase t is at least (β/2) · T =β/2 · (2 + γ) · N ′/β =
(1+ γ /2)N ′.

For the case−1<γ ≤ 0 we note that a bucket can get to be of size T only after
getting (1+ γ)N ′/β new elements. Therefore the total number of elements at
the end of the phase is at least (1+ (1+ γ)/β)N ′.

Thus in either case, the number of phases after N inserts is at most logα N .
The lemma follows because the number of phases is also upper bounded by the
number of inserts.

ACKNOWLEDGMENTS

We acknowledge the contributions of Andy Witkowski to the algorithm for
maintaining approximate equidepth histograms. We also thank Nabil Kahale
and Sridhar Rajagopalan for discussions related to this work. Finally, we
thank the anonymous referees for their helpful comments on improving the
article.

REFERENCES

ABOULNAGA, A. AND CHAUDHURI, S. 1999. Self-tuning histograms: Building histograms without
looking at data. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, ACM, Philadelphia, 181–192.

ACHARYA, S., GIBBONS, P. B., AND POOSALA, V. 2000. Congressional samples for approximate an-
swering of group-by queries. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, ACM, Dallas, 487–498.

ACHARYA, S., GIBBONS, P. B., POOSALA, V., AND RAMASWAMY, S. 1999. Join synopses for approximate
query answering. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, ACM, Philadelphia, 275–286.

BLOHSFELD, B., KORUS, D., AND SEEGER, B. 1999. A comparison of selectivity estimators for range
queries on metric attributes. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, ACM, Philadelphia, 238–250.

BRUNO, N., CHAUDHURI, S., AND GRAVANO, L. 2001. STHoles: A multidimensional workload-aware
histogram. In Proceedings of the ACM SIGMOD International Conference on Management of
Data, ACM, Santa Barbara, CA, 211–222.

CHAUDHURI, S., DAS, G., AND NARASAYYA, V. 2001. A robust, optimization-based approach for ap-
proximate answering of aggregate queries. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, ACM, Santa Barbara, CA, 295–306.

CHAUDHURI, S., MOTWANI, R., AND NARASAYYA, V. 1998. Random sampling for histogram construc-
tion: How much is enough? In Proceedings of the ACM SIGMOD International Conference on
Management of Data, ACM, Seattle, 436–447.

CHRISTODOULAKIS, S. 1984. Implications of certain assumptions in database performance evalua-
tion. ACM Trans. Database Syst. 9, 2 (June), 163–186.

DESHPANDE, A., GAROFALAKIS, M., AND RASTOGI, R. 2001. Independence is good: Dependency-based
histogram synopses for high-dimensional data. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, ACM, Santa Barbara, CA, 199–210.

GANTI, V., LEE, M.-L., AND RAMAKRISHNAN, R. 2000. ICICLES: Self-tuning samples for approximate
query answering. In Proceedings of the 26th International Conference on Very Large Data Bases,
Morgan Kaufman, Cairo, 176–187.

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

Maintenance of Approximate Histograms • 297

GIBBONS, P. B. 2001. Distinct sampling for highly-accurate answers to distinct values queries and
event reports. In Proceedings of the 27th International Conference on Very Large Data Bases,
Morgan Kaufman, Rome, 541–550.

GIBBONS, P. B. AND MATIAS, Y. 1998. New sampling-based summary statistics for improving ap-
proximate query answers. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, ACM, Seattle, 331–342.

GILBERT, A., GUHA, S., INDYK, P., KOTIDIS, Y., MUTHUKRISHNAN, S., AND STRAUSS, M. J. 2002a. Fast
small-space algorithms for approximate histogram maintenance. In Proceedings of the 34th ACM
Symposium on the Theory of Computing, ACM, Montreal.

GILBERT, A. C., KOTIDIS, Y., MUTHUKRISHNAN, S., AND STRAUSS, M. J. 2002b. How to summarize the
universe: Dynamic maintenance of quantiles. In Proceedings of the 28th International Conference
on Very Large Data Bases, Morgan Kaufman, Hong Kong.

GREENWALD, M. AND KHANNA, S. 2001. Space-efficient online computation of quantile summaries.
In Proceedings of the ACM SIGMOD International Conference on Management of Data, ACM,
Santa Barbara, CA, 58–66.

GUHA, S., KOUDAS, N., AND SHIM, K. 2001. Data-streams and histograms. In Proceedings of the 33rd
ACM Symposium on Theory of Computing, ACM, Hersonissos, Crete, 471–475.

GUNOPULOS, D., KOLLIOS, G., TSOTRAS, V. J., AND DOMENICONI, C. 2000. Approximating multi-
dimensional aggregate range queries over real attributes. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, ACM, Dallas, 463–474.

IOANNIDIS, Y. AND CHRISTODOULAKIS, S. 1991. On the propagation of errors in the size of join results.
In Proceedings of the ACM SIGMOD Conference on Management of Data, ACM, Denver, 268–
277.

IOANNIDIS, Y. AND POOSALA, V. 1999. Histogram-based techniques for approximating set-valued
query-answers. In Proceedings of the 25th International Conference on Very Large Databases,
Morgan Kaufman, Edinburgh, 174–185.

JAGADISH, H. V., KOUDAS, N., MUTHUKRISHNAN, S., POOSALA, V., SEVCIK, K., AND SUEL, T. 1998. Optimal
histograms with quality guarantees. In Proceedings of the 24th International Conferece on Very
Large Data Bases, Morgan Kaufman, New York, 275–286.

KONIG, A. C. AND WEIKUM, G. 1999. Combining histograms and parametric curve fitting for
feedback-driven query result-size estimation. In Proceedings of the 25th International Confer-
ence on Very Large Databases, Morgan Kaufman, Edinburgh, 423–434.

KOOI, R. P. 1980. The optimization of queries in relational databases. PhD Thesis, Case Western
Reserve University.

LIPTON, R. J., NAUGHTON, J. F., AND SCHNEIDER, D. A. 1990. Practical selectivity estimation through
adaptive sampling. In Proceedings of the ACM SIGMOD Conference on Management of Data,
ACM, Atlantic City, NJ, 1–11.

MATIAS, Y., VITTER, J. S., AND WANG, M. 1998. Wavelet-based histograms for selectivity estimation.
In Proceedings of the ACM SIGMOD International Conference on Management of Data, ACM,
Seattle, 448–459.

MATIAS, Y., VITTER, J. S., AND WANG, M. 2000. Dynamic maintenance of wavelet-based histograms.
In Proceedings of the 26th International Conference on Very Large Data Bases, Morgan Kaufman,
Cairo, 101–110.

POOSALA, V. 1997. Histogram-based estimation techniques in database systems. PhD Thesis, Uni-
versity of Wisconsin-Madison.

POOSALA, V. AND IOANNIDIS, Y. 1996. Estimation of query-result distribution and its application in
parallel-join load balancing. In Proceedings of the 22nd International Conference on Very Large
Databases, VLDB, Bombay, 448–459.

POOSALA, V. AND IOANNIDIS, Y. 1997. Selectivity estimation without the attribute value indepen-
dence assumption. In Proceedings of the 23rd International Conference on Very Large Data Bases,
Morgan Kaufman, Athens, 486–495.

POOSALA, V., IOANNIDIS, Y., HAAS, P., AND SHEKITA, E. 1996. Improved histograms for selectivity
estimation of range predicates. In Proceedings of the ACM SIGMOD Conference on Management
of Data, ACM, Montreal, 294–305.

REIF, J. H. AND VALIANT, L. G. 1987. A logarithmic time sort for linear size networks. J. ACM 34, 1,
60–76.

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

298 • P. B. Gibbons et al.

SELINGER, P. G., ASTRAHAN, M. M., CHAMBERLIN, D. D., LORIE, R. A., AND PRICE, T. T. 1979. Access
path selection in a relational database management system. In Proceedings of the ACM SIGMOD
Conference on Management of Data, ACM, Boston, 23–34.

VITTER, J. S. 1985. Random sampling with a reservoir. ACM Trans. Math. Softw. 11, 37–57.
ZIPF, G. K. 1949. Human Behaviour and the Principle of Least Effort. Addison-Wesley, Reading,

Mass.

Received February 2001; revised August 2002; accepted August 2002

ACM Transactions on Database Systems, Vol. 27, No. 3, September 2002.

