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Abstract

Frequent itemset mining is a core data mining operation and
has been extensively studied over the last decade. This paper
takes a new approach for this problem and makes two ma-
jor contributions. First, we present a one pass algorithm for
frequent itemset mining, which has deterministic bounds on
the accuracy, and does not require any out-of-core summary
structure. Second, because our one pass algorithm does not
produce any false negatives, it can be easily extended to a
two pass accurate algorithm. Our two pass algorithm is very
memory efficient, and allows mining of datasets with large
number of distinct items and/or very low support levels.

Our detailed experimental evaluation on synthetic and real
datasets shows the following. First, our one pass algorithm is
very accurate in practice. Second, our algorithm requires sig-
nificantly lower memory than Manku and Motwani’s one pass
algorithm and the multi-pass apriori algorithm. Our two pass
algorithm outperforms apriori and FP-tree when the number
of distinct items is large and/or support levels are very low.
In other cases, it is quite competitive, with possible exception
of cases where the average length of frequent itemsets is quite
high.

1 Introduction
Frequent itemset mining is a core data mining operation and

has been extensively studied over the last decade [1, 13, 14,
23, 24]. Algorithms for frequent itemset mining form the ba-
sis for algorithms for a number of other mining problems, in-
cluding association mining, correlations mining, and mining
sequential and emerging patterns [14].

Algorithms for frequent itemset mining have typically been
developed for datasets stored in persistent storage and involve
two or more passes over the dataset. Recently, there has been
much interest in data arriving in the form of continuous and
infinite data streams. In a streaming environment, a mining
algorithm must take only a single pass over the data. Such
algorithms can only guarantee an approximate result.

In this paper, we present a new approach for frequent itemset
mining. Our work has two main contributions:

In-core Mining in Streaming Environment: We present a

single pass algorithm for frequent itemset mining in a stream-
ing environment. Our algorithm has provable deterministic
bounds on accuracy. Unlike the only other existing work in
this area that we are familiar with [18], our algorithm does not
require any out-of-core summary structure. We believe that
this is a very desirable property, since stream mining algo-
rithms may need to be executed in small and mobile devices,
which do not have attached disks for storing an out-of-core
summary structure.

Memory Efficient Accurate Mining: A key limitation of the
existing work on frequent itemset mining has been the high
memory requirements when the number of distinct items is
large and/or the support level desired is quite low. Our sin-
gle pass algorithm has a property that it does not produce
false negatives, i.e., all frequent itemsets with desired sup-
port level are reported. The false positives reported by our
algorithm can be easily removed through a second pass on
the dataset. Our two pass algorithm provides high memory
efficiency, while not compromising accuracy in any way.

Our work derives from the recent work by Karp et al. on
determining frequent items (or 1-itemsets) [17]. They present
a two pass algorithm for this purpose, which requires only�������
	

memory, where
�

is the desired support or frequency
level. Their first pass computes a superset of frequent items,
and the second pass eliminates any false positives. Our work
addresses three major challenges in applying their ideas for
frequent itemset mining in a streaming environment. First,
we have developed a method for finding frequent k-itemsets,
while still keeping the memory requirements limited. Sec-
ond, we have developed a way to have a bound on the super-
set computed after the first pass. Third, we have developed
a new data structure and a number of other implementation
optimizations to support efficient execution.

Our algorithm takes as input a parameter � . Given the de-
sired support level

�
, our one pass algorithm reports all item-

sets occurring with frequency level
�
, and does not include

any itemset occurring with frequency level less than
���� � 	�� .

In the process, the memory requirements increase propor-
tional to

��� � .
To efficiently implement the new algorithm, we have also

designed a new data structure, referred to as TreeHash. This



data structure implements a prefix tree using a hash table. It
has the compactness of a prefix tree and allows easy deletions
like a hash table.

We have carried out a detailed evaluation using both syn-
thetic and real datasets. Our results can be summarized as
follows.

� Our one pass algorithm is very accurate in practice. Even
when � is 1, the accuracy is 94% or higher, and in fact
100% in several cases. Using ����� ��� results in an accu-
racy of 98% or higher in all cases.

� Our algorithm is very memory efficient. For example,
using the T10.I4.N10K dataset and a support level of
1%, we can consistently handle 4 million to 20 million
transactions with less than 2.5 MB main memory. In
comparison, Manku and Motwani’s algorithm [18] re-
quires an out-of-core data-structures on top of a 44 MB
buffer to process 1 million transactions.

� The algorithm can handle large number of distinct items
and small support levels using a reasonable amount of
memory. For example, a dataset with 100,000 distinct
items and a support level of 0.05% could be handled with
less than 200 MB main memory, a factor of 5 improve-
ment over apriori.

The rest of the paper is organized as follows. In Section 2,
we present our new algorithm. Theoretical properties of the
algorithm are established in Section 3. Details of our imple-
mentation and the data-structures used are presented in Sec-
tion 4. Detailed experimental evaluation is presented in Sec-
tion 5. We compare our work with related research efforts in
Section 6 and conclude in Section 7.
2 Algorithm

This section describes our algorithm for in-core and mem-
ory efficient frequent itemset mining.
2.1 Basic Approach

Our work is derived from the recent work by Karp, Pa-
padimitriou and Shenker on finding frequent elements (or 1-
item sets) [17]. Formally, given a sequence of length � and a
threshold

�
( 	�
 � 
 �

), the goal of their work is to deter-
mine the elements that occur with frequency greater than � �

.
In the process, their algorithm requires only � �������
	

memory.
The basic idea on which their work develops is as follows.

Suppose,
� �	�� � , i.e, we want to find a majority element. A

trivial algorithm for this will involve counting the frequency
of all distinct elements, and checking if any of them is the
majority element. If there are � distinct elements, this will re-
quire � � � 	 memory. Instead, the following algorithm could
be used. We find two distinct elements and eliminate them
from the sequence. We repeat this process until only one dis-
tinct element remains in the sequence. It is easy to see that the
remaining distinct element in the sequence is the only candi-
date for being the majority element. We can take another pass

over the original sequence and check if the frequency of this
element is greater than � ���

.
This idea can be generalized to an arbitrary value of

�
. We

can proceed as follows. At any given time, we maintain a set�
of frequently occurring items and their counts. Initially,

this set is empty. As we read an element from the sequence,
we either increment its count in the set

�
, or insert it in the

set with a count of 1. Thus, the size of the set
�

can keep
growing. To bound the memory requirements, we do a special
processing when � � ��� �����

. We decrement the count of
each element in the set

�
, and delete elements whose count

has becomes zero.
Now, let us consider the set

�
after the entire sequence has

been processed. The key property is that any element which
occurs at least � �

times in the sequence is in the set
�

. Con-
sider any element that occurs � times in the sequence, but is
not in

�
. Each occurrence of this element is eliminated to-

gether with more than
�����  �

occurrences of other elements.
Thus, at least a total of � ��� elements are eliminated. How-
ever, since � ��� 
�� , we have ��
�� �

.
Note, however, that not all elements occurring in

�
need

to have frequency greater than � �
. Thus, the set

�
is a su-

perset of the frequent items we are interested in. To find the
precise set of frequent items, another pass can be taken on
the sequence, and the frequency of all elements in the set

�
can be counted. The total memory requirements for the entire
process is � �������
	

.
In this paper, we build a frequent itemset mining algorithm

using the above basic idea. As we stated previously, we have
two goals. First, we want to have a memory efficient two pass
algorithm for frequent itemset mining. Second, we want a
one pass algorithm with a provable bound on the accuracy.

Thus, we see the following two challenges in developing our
algorithm:

� Computing k-itemsets approximately after the first pass
and accurately after the second pass, without requiring
any out-of-core or large summary structure. This can be
particularly challenging, because the number of candi-
date k-itemsets can be very large. For example, if each
transaction had the length � and we were interested in
frequent 3-itemsets, a straight-forward application of the
above idea will require

�������
	������� 
space, which may not

be very efficient.

� Ensuring a provable bound on the accuracy of the results
after the first pass on the dataset. In streaming environ-
ments, second pass on the dataset is usually not feasible.
Therefore, it is important that the set

�
computed above

does not contain many false positives.

2.2 Algorithm Description
We now describe our algorithm for in-core frequent item-

set mining on streaming data. Our algorithm is referred to
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StreamMining � Stream ���
global �����	�	
	������
local ���������������
local �������! �����	
#"$���%��'&)(*�!�+&)(*�
f &),*�.-�/10�2����3��4��65879
#�:��;< ��=�*>����6�	�����! �����	
#"$�?/�@
c &),*�.-�/�A<B�;<C.�=�� �"3�D��FEGEH �IJ���"3 $ �K�2��=�1/�@
foreach �H�9LM�N��+&)�PO<-��Q@��B�>�R����:���S�%T.��T=U��%�B�>�R����:���S�%T.��TV5��%�

f &W��X8"$Y��:�=;Z =���:[��=�$���3���! ����.�	
	"$�\�S�]�%�
if ^ �`_*^Facb	U�d�e3fQg�h fi �3"3 $ �K82F�=�*�H��T]5��.�

c jkjl�
m&)5*�
while �`n�op (
qjrjl�

foreach �S�sL<�D�B�>�R����:���H�%T%��T]
:�%�i ��"3 $ �K�2��=�*�#��TQ
	�.��t&)(*�
while c uMv]^ �<^$h=e$w

c jrjl�
foreach �#�`n�op (��i �3"3 $ �K82F�=�*�H��T:
:�%�K8���x>����%�H�6�%�

Figure 1. StreamMining Description

as StreamMining and is outlined in Figure 1. The key sub-
routines used as part of this algorithm are shown in Figure 2.
Here, we are focusing on the one pass algorithm which can
be applied on streaming data. This algorithm can be trivially
extended to a two pass accurate algorithm.

As we stated previously, one of the challenges in applying
the idea from Karp et al. to frequent itemset mining is the
potentially large number of frequent y -itemsets. Specifically,
a direct application of the idea will require

������� 	 � � �Nz
space,

where � is the length of each transaction. In comparison, most
of the existing work on frequent itemset mining uses the apri-
ori property [1], i.e., an y -itemset can be frequent only if all
subsets of this itemset are frequent. One of the drawbacks
of this approach has been the large number of 2-itemsets, es-
pecially when the number of distinct items is large, and

�
is

small.
Therefore, our algorithm uses a hybrid approach. We use

the idea from Karp et al. to reduce the memory requirements
for determining the frequent 2-itemsets. Then, we use such a
reduced set of frequent 2-itemsets and the apriori property to
reduce the number of y -itemsets, for y�� � .

We initially introduce some terminology. We are mining
a stream of transactions { . Each transaction | in this stream
comprises a set of items. The algorithm takes as input two pa-
rameters.

�
is the support level, i.e. the minimum frequency

Update � Transaction t, Lattice � , i �
for ��EGE*
q =�qC ��=�] s "�� t

if s LZ��n
s } �"$���~�qjrjl�

else if 
��k5�`n%} 
#�! ����$�%� s �%�
else if ��EGE*
!7�U6 �qC ����] \"3� s L L n	����`n%} 
#�! ����$�%� s �%�

CrossOver � Lattice � , i �
foreach 
�
#�:�=;Z =���] s L<�`n

s } �"$���~�!7�7��
if s } �="��q��� p ,�`n%} R��$EG���:��� s �%�

TwoItemsetPerTransaction � Transaction t �
global ���.-�/�A?��;<C.�=��"3�D5�Y3�:��;< ��=�!/�@
global A9�.-�/�A?��;<C.�=�1"3�����3���� =�F�.�	
	"��� 6/�@
local �~�.-�/�0�2F�=�3��4F�65�Y3�:��;< ��=�~[��=�`�������! �����	
#"$��/�@Atjrjl���&��cj � ^ �^5�� �
f &�bx��dA�g��
if ^ �6_*^�aMb	U�d�e3fQg�h fA�&�Ac7+b	U�d�e3fQg����&���7�b	U�d�e3fQg�h f ������	����� f �

Figure 2. Subroutines Description

with which an itemset should occur to be considered frequent.� is a factor that determines the accuracy of the one pass al-
gorithm. We have 	�
 � 
 �

and 	 
 ��� �
.

To store and manipulate the candidate frequent itemsets dur-
ing any stage of the algorithm, a lattice � is maintained.

� �������k�N�D� � � �����N�
where, � is largest frequent itemset, and � z� � ��y �¡�

comprises the potential frequent y -itemsets.
The algorithm maintains a buffer ¢ which stores the re-

cently received transactions. Initially, the buffer is empty.
When a new transaction | arrives, we put it in ¢ . Next, we call
the Update routine to increment counts in ��� and �l� . This
routine simply updates the count of 1-itemsets and 2-itemsets
that are already in �£� and �N� , respectively. Other 1-itemsets
and 2-itemsets that are in the transaction | are inserted in the
sets ��� and �l� .

The size of the set �£� is bound by the number of distinct
items in the dataset, and is typically not very large. However,
the size of � � can get very large. Therefore, when the size
of � � is beyond a certain threshold, we call the procedure
CrossOver. The value of this threshold is crucial for accu-
racy and memory efficiency of our algorithm, and is discussed
later.

The function CrossOver can be invoked for any value of y .
It examines all candidate i-itemsets in the set � z . The counts

3



of all candidates k-itemsets are decremented, and the itemsets
whose count becomes zero are deleted from the set.

After invoking CrossOver on �N� , we have a reduced set of
2-itemsets. We use these for generating i-itemsets, for y � � .
This process is carried out level-wise, i.e, it proceeds from�

-itemsets to the largest potential frequent itemsets. For each
transaction in the buffer � , we enumerate all y -subsets. For
any y -subset that is already in � , the process will be the same
as for a

�
-itemset, i.e, we will simply increment the count.

However, an y -subset that is not in � will be inserted in �
only if all of its y  �

subsets are in � as well. Thus, we use
the apriori property.

After updating y -itemsets in � , we will invoke the
CrossOver routine. Thus, the itemsets whose count is only 1
will be deleted from the lattice. This procedure will continue
until there are no frequent � -itemsets in � . At the end of this,
we clear the buffer, and start processing new transactions in
the stream.

Now, we discuss how we choose the value of the threshold
that determines how frequently CrossOver is called. Let � { �
be the number of transactions in the stream when the results
are output. Initially, suppose that we are not interested in hav-
ing a bound on the false positives that may be output by the
algorithm. In this case, we choose ��� �

. If each transaction
was a set of two items, only the count of a single 2-itemset
could be updated by processing it. Then, the size

�����
would

have been sufficient to ensure that no frequent 2-itemset is ex-
cluded from �N� . However, the transactions could have an ar-
bitrary length. A transaction of length � can have

� � � distinct
2-itemsets. Therefore, we maintain a factor � , which is the
weighted average of the number of 2-itemsets that each trans-
action processed so far has. This weighted average is com-
puted by giving higher weightage to recent transactions. The
details are shown in the pseudocode for the routine TwoItem-
setPerTransaction. A size � ��� can now ensure that � � does
not have any false negatives.

In a streaming environment, we are interested in having a
bound on the accuracy of the results. In our case, if we choose��
 �

, we guarantee that no itemset occurring with frequency
less than

���  � 	�� � { � will be in the set � . In the process,
however, the memory requirements can increase by a factor
proportional to

��� � . To ensure such a bound on the accuracy,
we initially reduce the frequency of invocation of CrossOver
routine by a factor proportional to

��� � . As a result, any item-
set occurring with the frequency greater than � � � { � will be in-
cluded in � . Then, before outputting the results, any itemset
remaining in � with a count less than

���  � 	 � � { � is deleted.
This is achieved through the last while loop in the algorithm
shown in Figure 1. The net result is that 1) any itemset occur-
ring with a frequency greater than

� � { � is definitely included
in � , and 2) any itemset occurring with a frequency less than���  � 	�� � { � is definitely not included.

3 Theoretical Analysis
In this section, we establish a number of results on the cor-

rectness, accuracy, and memory efficiency of our algorithm.
As stated previously, we are mining a stream { and the num-

ber of transactions seen when the results are output is � { � . �
and � are as defined earlier. � z is the set of frequent i-itemsets
output by the one pass algorithm. Given any frequency � � { � ,
let � �z be the actual set of i-itemsets occurring in { .
3.1 Correctness
Lemma 1 ������ �N� .

Proof:The proof has two parts. First, we can see that
CrossOver is called at most � � � � { � � times in the foreach loop.
Thus, any

�
-itemset that appears more than

� � � { � times will
stay in the set � � . Then, after the while loop, the total invoca-
tions of CrossOver will be at most

� � { � . Therefore, we have���� � � � .
Lemma 2 For any

�
-itemset 	�
c� � , 	�
c�� ������� �� . In other

words, 	 will appear at least
���  � 	�� � { � times in � .

Proof:Before outputting the results, CrossOver is called at
least

���  � 	�� � { � times in the while loop. Suppose there is an
itemset appearing with a frequency less than

���  � 	 � � { � in
the stream � { � . The highest count it can have before the while
loop is less than

���  � 	 � � { � . Therefore, it will be removed
from �N� before the results are output.

Putting Lemmas 1 and 2 together, we have following result.

Lemma 3

� ���� � � � �� ������� ��
Theorem 1 For any ��� � , ���� � �l� � �  ������� �� .

Proof:We prove this inductively. The base case, � � �
,

has been shown in the Lemma 3. Now, assume that the prop-
erty holds true for � ���6� . To show that it is valid for � � , we
take two steps. First, assume there is no checking for sub-
sets. Then, any k-itemsets which appears in the buffer will be
inserted in the lattice. In this case, it is easy to see that the
property holds for �N� .

Now let us consider why subset checking does not change
the final results. Assume there is an � -itemset 	 appearing in
a transaction | , and one of its �  �

subset is not in �£���6� . We
can deduce that 	 must only appear once in the buffer, and
it is not included in any other transactions besides | . Thus,
we can see that 	 , if included in the lattice, would have been
eliminated by the next invocation of CrossOver.
4 Data Structures and Efficient Implementa-

tion
In this section, we discuss the data structure and other op-

timizations used for efficiently implementing our algorithm.
Particularly, we address the challenges in efficient execution
of Update and CrossOver routines.
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4.1 Data Structure
An efficient data structure is required to maintain the lattice� . Frequent itemset mining implementations often use a pre-

fix tree for this purpose. However, our algorithm requires the
ability to delete the itemsets efficiently, which is not possible
using a prefix tree.

An obvious alternative is to use a hash table. Itemsets of
different lengths can be mapped to hash buckets and stored
there. However, this poses two problems. First, the total stor-
age for large itemsets can be quite high. Second, comparing
two itemsets of large length can be time consuming.

Thus, we need a data structure that is compact, and can al-
low the following operations efficiently: 1) insertion of a new
itemset, 2) deletion of an itemset, 3) incrementing the count
of an itemset, and 4) traversal of the lattice. We have devel-
oped a new data structure, which we refer to as TreeHash.
Essentially, this data structure stores a prefix tree using hash
tables. It has the benefit of easy deletion that a hash table
allows, but it is also compact like a prefix tree.

To explain this data structure, we first review how a pre-
fix tree is used to represent a lattice � of frequent item-
sets. If an itemset � is in � , then all subsets of � are
also in � . Thus, any prefix subset of � is also in � . As-
sume � ������� � �F� � � � � � �*��� , its prefix subsets are � z �
����� � �*� �	���	�F� � z � � y � � . �Z���6� is denoted as the immediate
prefix subset of � . Clearly, 
 is the immediate prefix subset
of any singleton set. In a prefix tree, each node in the tree
records an itemset, and its parent node records its immediate
prefix subset.

Looking up a k-itemset in a prefix tree involves � operations,
one for each of its prefix subsets. However, in a frequent item-
set mining algorithm, if the count of an itemset needs to be
incremented, count of all its prefix subsets need to be incre-
mented as well. Thus, a prefix tree can allow compact storage
and easy identification of an itemset, without requiring any
additional work.

Our data structure TreeHash maintains a prefix tree using a
hash table. A hashing function maps each node in the prefix
tree to a hash bucket. For each itemset in a hash bucket, the
following information is stored: 1) the length of the itemset,
2) hash address of its immediate prefix itemset, which is used
for identifying this itemset, 3) A serial number to this item-
set within this hash bucket, and 4) a count of the number of
occurrences of the itemset.

Thus, the set of items is not explicitly maintained, allowing
a compact representation. However, now two basic issues in
using this data structure are: 1) given an itemset � , how we
locate it in the hash table, and 2) given an entry in a hash
bucket, how do we identify the itemset.

Both of the above problems are addressed inductively. We
first consider the problem of mapping an itemset into a par-
ticular hash bucket. The empty set is trivially hashed into the
hash table. Now, let �Z� �6� be hashed in the hash table, where
its hash address (hash bucket number) is � � � ���1� 	 and its

serial number is 	 � � ���6� 	 . We use � � �Z���1� 	 , 	 � �<���1� 	 , and
�*� to determine the hash bucket for � . Within this bucket, the
itemset is identified by the value � � � ���1� 	 that is stored there.
Note that this requires that for two itemsets with the same
� � � ���1� 	 (but different 	 � � ���1� 	 ), the hash bucket numbers
output by the hash function are always different. This can be
ensured by dividing the hash table into portions equal to the
number of entries that can be stored in a bucket.

Now, we consider the problem of determining the itemset
that a hash table entry represents. We have a hash element
encoding � , which has the length � . Its identifier in the hash
bucket is � � �Z���6� 	 , which points to the bucket where � ’s
immediate prefix itemset � ���6� is stored. To identify �Z���1� ,
we also need 	 � �Z���1� 	 . To reconstruct the itemset, we also
need to determine ��� . Thus, if we have the hash function �
such that

� � �Z� 	 �� � � � �Z���6� 	 � 	 � �Z���6� 	 � �*� 	
we need to have functions � and � such that

� � � � � � � � ���6� 	 � � � � � 	 	
and

	 � � ���1� 	 ��� � � � � ���6� 	 � � � � � 	�	
4.2 Update and Delete Operations

One of the key operations in implementing our algorithm is
deleting itemsets that do not occur frequently. Karp et al. [17]
propose the following method. A linked list is maintained,
where each entry represents a distinct count value of the item-
sets. All of the elements which have the same count are orga-
nized as a double linked list and are attached to the first linked
list. Thus, an increment operation will simply move the ele-
ment from one double linked list to the next double linked
list. The CrossOver routine will remove all of the elements
in the double linked list which has the count value less than
the desired value (typically 1). Theoretically, it provides an
� ����	

computational cost to deal with each itemset and keeps
the memory cost minimum. However, in practice, changing
pointers while inserting and deleting elements from a double
linked list results in high memory access costs.

We instead use the following approach. The counts of
elements are not decremented during every invocation of
CrossOver. Instead, they are decremented by � during ev-
ery ����� invocation of CrossOver. Similarly, infrequent items
are also typically removed after every ����� invocation of
CrossOver. This, however, leads to the problem of determin-
ing when CrossOver must be invoked. In other words, we
still need to know the number of 2-itemsets that would have
been in the lattice even if deletion and decrement operations
were performed during each of the previous invocations of
CrossOver.

To address this problem, we maintain the following data
structures. To count the correct number of 2-itemsets, we
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maintain a small array � which has the size ��� �
. Fur-

ther, we keep the number of 2-itemsets which have the county � � � y'� � in ��� y�� . We also record the total number of
�
-

itemsets that have count greater than � in ��� ��� � � .
Now, let us consider the Update operation. Assume that

the count of the target 2-itemset is � . Besides incrementing
the count by 1, we will also decrement ��� �	� and increment
��� �
� � � , provided � � � . Let � be the number of times
CrossOver has been invoked since the last time the counts
were actually decremented. Here,

� ���k� � . We can see that
��� y�� � �+�Wy � � , always has the correct number of

�
-itemsets

which would have the count y  � , if decrement was done
during every invocation of CrossOver. Adding the values of
��� y�� , � � yN� ��� �

also gives the correct count of 2-itemsets
in the lattice.

We also do not remove the infrequent itemsets every time
CrossOver routine is invoked. Instead, the deletion happens
in the following three ways. First, when we insert a new item-
set in a bucket, if the bucket have some infrequent itemset
present, it will be removed and the new itemset will be stored.
Secondly, after every � invocations of CrossOver, we remove
all infrequent itemsets in the lattice by examining the entire
hash table. Finally, when the memory usage is beyond some
threshold, infrequent itemsets are removed.
4.3 Other Optimizations

In the implementation of StreamMining used for our experi-
ments, three additional optimizations are applied. The first is
online dataset trimming. It was proposed by Park et al. [19]
to reduce the transaction size. The basic idea is to use some
statistics of each item in the transaction to determine if it can
be part of a large frequent itemset. This method is only ap-
plicable if the dataset is in-core, but we found that it is very
useful in the online context. The second is reducing subset
checking. Recall that in our algorithm, the precondition for
inserting a new itemset is that all of its subsets must be fre-
quent. Our experience has shown that inserting with just test-
ing for prefix subsets is more efficient. If an itemset is not
frequent, it is typically deleted soon by the CrossOver rou-
tine.

Another optimization we implemented was based upon our
experiences with the real dataset BMS-WebView-1 [24]. To
motivate this, suppose we have two almost identical and large
itemsets that appear physically very close to each other. Let 	
be the set of items in their intersection. Then, our algorithm
will recognize any member of the power set of 	 to be a fre-
quent itemset and insert it in the lattice. If 	 has

� 	 items,
almost

�
million different itemsets will be added to the lat-

tice, resulting in significant slow down to our algorithm. We
believe that any one pass frequent itemset mining algorithm
will have difficulty in handling such a case, whereas the per-
formance of any multi-pass algorithm will not be impacted.

We use a technique we call online checking to deal with such
situations. When a new transaction arrives, we compare it
with the transactions in the buffer ¢ . If two of them have
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Figure 3. Execution Time with Changing Sup-
port Level (T10.I4.N10K Dataset)
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Figure 4. Memory Requirements with Changing
Support Level (T10.I4.N10K Dataset)

a common and large subset, we put the new transaction in a
transaction pool. After one pass of the data stream, we have
a lattice as well as a separate pool of transactions. Now, we
use the transaction pool to update counts of certain itemsets
and insert new itemsets. Our implementation still ensures the
accuracy properties we established earlier.
5 Experimental Results

In this section, we evaluate our new algorithm using a num-
ber of synthetic and real datasets. We focus on a number of
different aspects of our algorithm.

� Comparing the execution time and memory require-
ments of our one pass and two pass algorithm with those
of apriori and fp-tree based algorithms.

� Evaluating the execution time and memory requirements
of our new algorithms with increasing dataset size and
decreasing support levels.

� Evaluating the accuracy of our algorithm with different
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Figure 7. Memory Requirements with Increas-
ing Dataset Size (T10.I4.N10K Dataset)

levels of � .
� Demonstrating the ability of our algorithm to handle

very large number of distinct items and very low support
levels.

For comparing our algorithm against the Apriori algorithm,
we used a well-known public distribution from Borgelt [4].
Earlier versions of this code have been incorporated in a com-
mercial data mining tool called Clementine. For comparisons
with FP-tree based approach, the implementation we used is
from Goethals [11]. All our experiments were conducted on
a 933 MHz Pentium III machine with 512 MB main memory.
5.1 Synthetic Datasets

The synthetic datasets we used were generated using a tool
from IBM [2]. Datasets generated from this tool have been
widely used for evaluating frequent itemset and association
mining implementations.

Initially, we focus on two datasets where conventional of-
fline algorithm have performed well. We show that our algo-
rithm can still be competitive, while allowing high accuracy
on streaming data. Later, we show our algorithms ability to
handle very large number of distinct itemsets and very low
support levels.

The first dataset we used is T10I4.N10K. The number of
distinct itemsets is 10,000, the average number of items per
transaction is 10, and the average size of large itemsets is 4.
We used three different versions of our algorithm. Stream-
e1 uses 1 as the value of � and does not provide any theo-
retical bound on the accuracy. Stream-e.75 uses .75 as
the value of � to provide a theoretical bound on the accuracy.
Stream+ is the two pass implementation that gives the ac-
curate set of frequent itemsets and their frequency counts.

Figure 3 shows the execution times of apriori, fp-tree and
our three versions as the support threshold is varied from
0.1% to 1.0%. The number of transactions is 12 million. Be-
cause of high memory requirements, fp-tree could not be ex-
ecuted with support levels lower than 0.4%. This limitation
of the fp-tree appraoch has been identified by other experi-
mental studies also [7]. Up to the support level of 0.4%, the
execution times of all versions is quite similar. However, apri-
ori’s execution time increases rapidly when the support level
is less than 0.4%. As expected, Stream-e1 has the lowest
execution time among all of our versions. The use of .75 as
the value of � increases the execution time by up to 25%. If
a second pass is used, the total execution time is increased by
up to 50%.

Figure 4 compares the memory requirements. Because the
memory requirements of Stream+ are identical to those of
Stream-e1, this version is not shown separately in our
memory requirements charts. The important property of our
algorithm is that the memory requirements do not increase
significantly as the support level is decreased.

Accuracy of an algorithm is defined as the fraction of re-
ported frequent itemsets that are actually frequent. Obvi-
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Figure 8. Execution Time with Changing Sup-
port Level (T15.I6.N10K Dataset)

ously, the accuracy of apriori, fp-tree and Stream+ is al-
ways 100%. With 12 million transactions, Stream-e1 and
Stream-e.75 give accuracy of 100% with thresholds at
1%, .8%, .6%, and .4%. With thresholds of .2% amd .1%,
Stream-e1 has an accuracy of 95.8% and 97.8%, respec-
tively. However, in both these cases, with .75 as the value of� , the accuracy again becomes 100%.

Figures 5 and 6 examine the execution times as the dataset
is increased. The threshold is kept at .4% and .1%, respec-
tively. Because of the high memory requirements of fp-tree,
our algorithm is only compared against apriori. When the
support level is 0.1%, our algorithm is up to an order of mag-
nitude faster. The relative difference is smaller when the sup-
port level is 0.4%, but even our two pass version is faster than
apriori. Even as the dataset size is varied, our one pass algo-
rithms always give an accuracy of 100% when the threshold
is .4%. With the threshold at .1%, the accuracy of Stream-
e.75 is again 100% in all cases. The accuracy of Stream-
e1 varies between 94.3% and 98.6%.

Figure 7 focuses on memory requirements with support lev-
els of .4% and .1%. At the support level of .4%, apriori’s
memory requirements are lower than our versions. However,
with threshold at .1%, our versions require less than half the
memory. Moreover, it is important to note that with 10,000
distinct items and a support level of .1%, the total memory
requirements are only around 17 MB. Thus, our algorithm is
well suited for mining streaming data using a small device
with only a limited memory.

The second dataset we use is T15.I6.N10K. We repeated the
same set of experiments using this dataset. The results are
shown in Figures 8, 9, 10, 11, and 12, respectively. The
key difference between this dataset and the previous dataset
is the the length of each transaction and each frequent itemset
is higher. Because our algorithm needs to generate fairly ac-
curate results after one pass, its ability to prune large itemsets
is limited. As a result, our algorithm does not always outper-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Threshhold(%)

M
em

or
y(

K
B

)

Apriori
FP−Tree
Stream−e1
Stream−e.75

Figure 9. Memory Requirements with Changing
Support Level (T15.I6.N10K Dataset)
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Dataset Size (threshold=0.1%, T15.I6.N10K
Dataset)

4 6 8 10 12 14 16 18 20
100

200

300

400

500

600

700

800

900

1000

1100

Number of transactions (Million)

T
im

e(
S

ec
on

d)

Apriori
Stream−e1
Stream−e.75
Stream+

Figure 11. Execution Time with Increasing
Dataset Size (threshold=0.4%, T15.I6.N10K)
Dataset

8



4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9
x 10

4

Number of transactions (Million)

M
em

or
y(

K
B

)
Apriori−t.4
Stream−e1−t.4
Stream−e.75−t.4
Apriori−t.1
Stream−e1−t.1
Stream−e.75−t.1
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ing Dataset Size (T15.I6.N10K Dataset)
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Figure 13. Execution Time with Changing Sup-
port Level (T25.I4.N100K Dataset)

form apriori with this dataset. However, our algorithm does
maintain very high accuracy of results after one pass on the
dataset. With 4 million, 8 million, 12 million, 16 million, or
20 million transactions, and with support levels of 1%, .8%,
.6%, or .4%, our Stream-e1 always produces 100% accu-
racy. With support levels of .2% and .1%, the accuracy is still
above 94%. The accuracy of �Stream-e.75 is always above
99% with these support levels.

When the support level is .1%, Stream-e1 is always sig-
nificantly faster than apriori. Stream-e.75 is also faster
than apriori, but the difference is less significant. Stream+
is actually slower than apriori. With the support level of .1%,
Stream-e1 also always requires less memory than apriori.
When the threshold is .4%, apriori is faster than all of our
versions.

As stated earlier, besides providing reasonably accurate re-
sults in one pass, the key benefit of our algorithm is its abil-
ity to handle very large number of distinct items and/or very
low support levels. To demonstrate this, we first used the
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Figure 14. Memory Requirements with Chang-
ing Support Level (T25.I4.N100K Dataset)
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Figure 15. Execution Time with Increasing
Dataset Size (threshold=0.08%, T10.I4.N10K
Dataset)

T25.I4.N100K dataset, which has 100,000 distinct items. The
number of transactions was 12 million. Note that the size of
each transaction is also quite large. Even in this case, the ac-
curacy from Stream-e1 is above 99.5% and the accuracy
from Stream-e.75 is above 99.8%. The execution times
and memory requirements from this dataset are shown in Fig-
ures 13 and 14, respectively. With support levels below .4%,
all of our versions are significantly faster than apriori. With
support levels of .1% and .05%, the memory requirements are
also drastically lower than those of apriori.

Next, we focus on the case when support levels are very
low. The dataset we use is T10.I4.N10K. We consider sup-
port levels of .05% and .08%. The accuracy achieved is still
very good. Stream-e1 has an accuracy of 97% or better,
and Stream-e.75 has an accuracy of 99.8% or better. The
execution times are presented in Figures 15 and 16 and the
memory requirements are shown in Figure 17. All of our ver-
sions are significantly better both in terms of execution time
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Figure 16. Execution Time with Increasing
Dataset Size (threshold=0.05%, T10.I4.N10K
Dataset)
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Figure 18. Execution Time with Changing Sup-
port Level (BMS-WebView-1 Dataset)
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Figure 19. Memory Requirements with Chang-
ing Support Level (BMS-WebView-1 Dataset)

and memory requirements.
5.2 Real Dataset

The real dataset we use is the BMS-WebView-1 dataset
which contains several months of clickstream data from one
e-commerce website. A portion of it has been used in
the KDD-Cup 2000 competition and also used by Zhang et
al. [24] to evaluate tranditional offline association mining al-
gorithms.

The characteristics of the BMS-WebView-1 dataset are quite
different from the IBM Quest synthetic datasets. The origi-
nal dataset has 59,602 transactions and contains 497 distinct
items. The maximum transaction size is 267, while the aver-
age transaction size is just 2.5. For our experiments, we dupli-
cated and randomized the original dataset to obtain 1 million
transactions.

Because of the small size of the dataset and the small num-
ber of distinct items, we did not expect to outperform apriori
on this dataset. However, we have still compared the perfor-
mance with apriori to show that the algorithm can give accu-
rate results in one pass, and can still be competitive.

In our experiments, we use � � 	 � � . Further, we provide an-
other parameter � to represent the maximal frequent itemsets
we are interested in. This is because if we have some addi-
tional knowledge about the length of the maximal frequent
itemsets, the performance of our implementation can be im-
proved. In this dataset, as the support level is 0.2%, 0.4%,
0.6%, 0.8% or 1%, the maximal frequent itemsets is 2, 3, 3,
4, and 6, repectively. For the online checking optimization
we had described earlier, the threshhold we define is 10, i.e,
two transactions in the buffer will not have a common subset
which contains more than

� 	 items. Since we have only less
than 500 distinct items, we maintain all of the 2-itemsets as
an array in the main memory.

Figure 18 compares the execution time. Stream-m* refers
to StreamMining with some knowedge of maximal frequent
itemsets. For support level of 0.2%, we had � ��� , and for
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others, we had � � �
. Stream-m6 refers to the version

using � � � in all cases. Stream refers to StreamMining
having no knowledge about the maximal frequent itemsets.
Stream+m*, Stream+m6 and Stream+ refer to the cor-
responding two pass versions.

The three versions have very similar results for accuracy.
For threshhold levels between 1% and 0.4%, they achieve
100% accuracy. For the threshold of 0.2%, the accuracy is
nearly 99%.

We can see that the performance of Stream-m* is quite
similar to apriori. For the Stream-m6 and Stream, we
can see as the additional information on maximal frequent
itemsets is reduced, the algorithm peformance becomes less
competitive. For the two-pass algorithm, we can see that the
second pass just adds a faily small and constant time.

Figure 19 compares the memory cost of apriori and Stream-
Mining. Because the number of frequent itemset is relatively
small, the memory cost of apriori is very low. Although the
cost of StreamMining is almost two orders higher than
that of apriori, we can see the absolute memory cost is just
11MB. It comes mostly from the initial hash table and the
2-itemset array.
6 Related Work

As stated through-out, our work has two implications. First,
we have presented a one pass algorithm for approximate fre-
quent itemset mining on streaming data. Second, we have
presented a more memory efficient algorithm for two pass ac-
curate frequent itemset mining. In this section, we compare
our work with related research efforts in each of the areas.

Processing of streaming data has received a lot of attention
within the last couple of years [3, 5, 8, 10]. Within the area of
data mining, significant work has been done on the problem
of classification [6, 16] and clustering [12]. More recently,
attention has been paid to the area of frequent itemset min-
ing [9, 18].

The work closest to our work on handling streaming data
is by Manku and Motwani [18]. They have also presented
a one pass algorithm that does not allow false negatives,
and has a provable bound on false positives. They achieve
this through a very different approach, called lossy counting.
The differences in the two approaches are in space require-
ments. For finding frequent items, the approach we use takes
� �������
	

space. Their approach requires � ���������
	 ����� � � � 	�	
space, where

�
is the desired support level and � is the length

of the stream. Therefore, for frequent itemset mining, they re-
quire an out-of-core data structure. In comparison, we do not
need any such structure. On the T10.I4.N10K dataset used in
their paper as well, we see that with 1 million transactions and
a support level of 1%, their algorithm requires an out-of-core
data-structures on top of even a 44 MB buffer. For datasets
ranging from 4 million to 20 million transactions, our algo-
rithm only requires 2.5 MB main memory based summary.
In addition, we believe that there a number of advantages of
an algorithm that does not require an out-of-core summary

structure. Mining on streaming data may often be performed
in mobile, hand-held, or sensor devices, where processors do
not have attached disks. It is also well known that additional
disk activity increases the power requirements, and battery
life is an important issue in mobile, hand-held, or sensor de-
vices. Also, while their algorithm is shown to be currently
computation-bound, the disparity between processor speeds
and disk speeds continues to grow rapidly. Thus, we can ex-
pect a clear advantage from an algorithm that does not require
frequent disk accesses.

Recently, Giannella et al. have developed a technique for
dynamically updating frequent patterns on streaming data [9].
They create a variation of FP-tree, called FP-stream, for time-
sensitive mining of frequent patterns. Because this approach
gives additional weightage to recent transactions, it can effi-
ciently answer time-sensitive queries, which we do not con-
sider. However, for queries involving queries on an entire data
stream, their approach is not efficient.

As our experimental results have shown, the memory re-
quirements of our approach are significantly lower than those
of FP-tree. However, we have not considered time-sensitive
queries.

Our work directly builds on top of the recent work by Karp
et al. on memory efficient frequent items analysis [17]. Our
contributions are in extending the work to frequent itemset
mining, establishing a bound on false positives, developing
data-structures for efficient implementation, and a detailed
evaluation and comparison with other frequent itemset min-
ing algorithms.

Now, we compare our work with accurate frequent itemset
mining algorithm, which require two or more passes. The
classical work in this area is the Apriori algorithm [2, 1]. The
basic idea in this algorithm has been extended by several oth-
ers [22, 19]. Our experimental comparison has shown advan-
tages of our approach when the number of distinct itemsets
is large and/or the support level desired is very low. Sev-
eral algorithms since then have required only two passes.
This includes the FP-tree based approach by Han and co-
workers [14]. Again, as our experimental results have shown,
the memory requirements for maintaining the frequent pat-
terns summary increase rapidly when the support levels are
low. Other two pass algorithms for association mining include
those from Savarese et al. [20] and Toivonen [21]. In each of
these cases, the two pass algorithm does not extend to a one
pass algorithm with any guarantees on accuracy. Hidber has
developed a technique which guarantees that the results after
the first pass do not include any false negatives, but produces
a large number of false positives [15]. A detailed compari-
son of frequent itemset mining algorithms has been done by
Zheng et al. [24].
7 Conclusions

In this paper, we have developed a new approach for fre-
quent itemset mining. We have developed a new one pass al-
gorithm for streaming environment, which has deterministic
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bounds on the accuracy. Particularly, it is the first such algo-
rithm which does not require any out-of-core memory struc-
ture and is very memory efficient in practice. We have devel-
oped a new data structure and several other optimizations to
support this algorithm.

Our detailed experimental evaluation has shown the follow-
ing. First, our one pass algorithm is very accurate in prac-
tice. Though a tighter theoretical bound on accuracy can
be achieved by increasing memory requirements, it was not
really required in practice. Second, the memory efficiency
of our one and two pass algorithms allowed us to deal with
large number of distinct items and/or very low support levels.
For other cases, where traditional multi-pass approaches have
worked well in the past, our algorithms are still quite com-
petitive. One exception is datasets with the average length
of an itemset is quite large. In such case, some additional
knowledge of maximal frequent itemsets helps efficiency of
our algorithms.
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