
Space-Efficient Online Computation of Quantile
Summaries

Michael Greenwald
�

Computer & Information Science Department
University of Pennsylvania

200 South 33rd Street
Philadelphia, PA 19104

greenwald@cis.upenn.edu

Sanjeev Khanna
y

Computer & Information Science Department
University of Pennsylvania

200 South 33rd Street
Philadelphia, PA 19104

sanjeev@cis.upenn.edu

ABSTRACT
An �-appro ximate quantile summary of a sequence of N el-
ements is a data structure that can answer quantile queries
about the sequence to within a precision of �N .

We presen t a new online algorithm for computing�-appro xi-
mate quantile summaries of very large data sequences. The
algorithm has a worst-case space requirement of O(1

�
log(�N)).

This improves upon the previous best result ofO(1
�
log2(�N)).

Moreover, in con trast to earlier deterministic algorithms, our
algorithm does not require a priori knowledge of the length
of the input sequence.

Finally, the actual space bounds obtained on experimental
data are signi�cantly better than the worst case guarantees
of our algorithm as well as the observed space requirements
of earlier algorithms.

1. INTRODUCTION
We study the problem of space-e�cient computation of quan-
tile summaries of very large data sets in a single pass. A
quan tile summary consists of a small number of points from
the input data sequence, and uses those quantile estimates to
giv e appro ximate responses to any arbitrary quan tile query .

Summaries of large data sets have long been used by pro-
grammers motivated b y limited memory resources.Elemen-
tary summaries, such as running averages or standard de-
viation, are typically su�cient only for simple applications.
The mean and variance are often either insu�ciently de-
scriptiv e, or are too sensitive to outliers and other anoma-

�Supported in part by DARPA under Contract #F39502-
99-1-0512, and by the National Science Foundation under
Grant ANI-00-81901.
ySupported in part by an Alfred P. Sloan Research Fellow-
ship.

lous data. For suc h cases, online algorithms are necessary to
generate quantile summaries that use little space and pro-
vide reasonably accurate approximations to the distribution
function induced by the input data sequence [6, 1, 5, 13, 2].

1.1 Quantile Estimation for Database Appli-
cations

Recent work (e.g. [8, 9, 12]) has highlighted the importance
of quantile estimators for database users and implementors.
Quantile estimates are used to estimate the size of interme-
diate results, to allow query optimizers to estimate the cost
of competing plans to resolv e database queries. P arallel
databases attempt to partition the data into value ranges
such that the size of all partitions are roughly equal. Quan-
tile estimates can be used to choose the ranges without in-
specting the actual data. Quantile estimates ha veseveral
other uses in databases as w ell. User-interfaces may esti-
mate result sizes of queries, and provide feedback to users.
This feedback may prev ent expensive and incorrect queries
from being issued, and may ag discrepancies betw een the
user's model of the database and its actual content. Quan-
tile estimates are also used by database users to characterize
the distribution of real world data sets.

The existing body of w ork has also iden ti�ed particular
properties that quan tileestimators require in order to be
useful for these database applications | properties that may
not be strictly necessary when estimating quantiles in other
domains. Some of the desirable properties are as follows.
(1) The algorithm should provide tunable and explicit a pri-
ori guarantees on the precision of the approximation. We
say that a quantile summary is �-appr oximate if it can be
used to answer an y quantile query to within a precision of
�N . In other words, for any giv en rankr, an �-appro ximate
quan tile summary returns a value whose rank r0 is guaran-
teed to be within the interval [r � �N; r + �N]. (2) The
algorithm should be data independent. Neither its guaran-
tees should be a�ected by the arriv al order or distribution
of values, nor should it require a priori kno wledge of the
size of the dataset. (3) The algorithm should execute in a
single pass over the data. (4) The algorithm should have as
small a memory footprint as possible. We note here that the
memory footprint applies to temporary storage during the
computation. We can alw aysconstruct an �-appro ximate
summary of size O(1=�) as follows. We �rst construct an
�=2-approximate summary. For i from 0 to 2

�
, query this

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
ACM SIGMOD 2001 May 21-24, Santa Barbara, California USA
Copyright 2001 ACM 1-58113-332-4/01/05…$5.00

58

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

summary for each i �
2
quantile. It is easy to see that the set

of responses constitutes an �-approximate summary.

1.2 Previous Work
Several earlier works have made progress towards meeting
the above-mentioned requirements. Manku, Rajagopalan,
and Lindsay [8] present a single-pass algorithm that con-
structs an �-approximate quantile summary. The algorithm
strictly guarantees a precision of �N , but it requires an ad-
vance knowledge of N , the size of the data set. It requires
O(1

�
log2(�N)) space. In [8] the same authors present an

algorithm that does not require an advance knowledge of
N . However, they must give up the deterministic guaran-
tee on accuracy. Instead, they provide only a probabilistic
guarantee that the quantile estimates are within the desired
precision.

Gibbons, Matias, and Poosala [4] estimate quantiles under
a di�erent error metric, but their algorithm requires mul-
tiple passes over the data. Similarly, Chaudhuri, Motwani,
and Narsayya [3] require multiple passes and only provide
probabilistic guarantees.

Munro and Paterson [10], building on the earlier work of
Pohl [7], showed that any algorithm that exactly computes
the �-quantile of a sequence of N data elements in only p
passes, requires a space of
(N1=p). Thus the notion of
approximate quantiles is inherently necessary for obtained
sub-linear space algorithms.

Many researchers have also addressed the problem of deter-
mining the smallest number of comparisons that are neces-
sary for computing a �-quantile. We refer the reader to a
nice survey article by Paterson [11] for an overview of results
in this area.

1.3 Our Results
We design and analyze a new online algorithm for comput-
ing an �-approximate quantile summary of large data se-
quences. The algorithm has a worst-case space requirement
of O(1

�
log(�N)), thus improving upon the previous best re-

sult of O(1
�
log2(�N)). Moreover, in contrast to earlier deter-

ministic algorithms, our algorithm does not require a priori
knowledge of the length of the input sequence.

Our approach is based on a novel data structure that e�ec-
tively maintains the range of possible ranks for each quantile
that we store. This di�ers from previous approaches that
implicitly assumed that the error in stored quantiles was
distributed roughly uniformly throughout the distribution
of observed values. By explicitly maintaining the possible
range of rank values for each quantile, our algorithm is able
to adaptively handle new observations: values observed near
tightly constrained quantiles are more likely to be dropped
and new values observed near loosely constrained quantiles
are more likely to be stored. Intuitively speaking, the im-
proved behavior of our algorithm is based on the fact (which
we prove) that no input sequence can be \bad" across the en-
tire distribution at once. In other words, an input sequence
cannot persistently present new observations that must be
stored without allowing us to safely delete old stored obser-
vations.

We also note here that our algorithm can be parallelized in
a straightforward manner to deal with the scenario where
a system of P independent processors analyzes P disjoint
streams derived from a parent sequence. Due to space con-
siderations, we will omit the details of this implementation
in this version.

Finally, we study the performance of our algorithm from an
empirical perspective. The actual space bounds obtained
on experimental data are signi�cantly better than both the
worst case guarantees of our algorithm as well as the ob-
served space requirements of earlier algorithms. For exam-
ple, when summarizing uniformly random data with � =
0:001 and N = 107, our algorithm used an order of magni-
tude less memory than the best previously known algorithm.

2. THE NEW ALGORITHM
We will assume without any loss of generality that a new
observation arrives after each unit of time and thus we will
use n to denote both the number of observations (elements
of the data sequence) that have been seen so far as well as
the current time. Our algorithm maintains a summary data
structure S = S(n) at all times, and we denote by s = s(n),
the total space used by it. Finally, we denote the given
precision requirement by �.

2.1 The Summary Data Structure
At any point in time n, the data structure S(n) consists of
an ordered sequence of tuples which correspond to a sub-
set of the observations seen thus far. For each observation
v in S, we maintain implicit bounds on the minimum and
the maximum possible rank of the observation v among the
�rst n observations. Let rmin(v) and rmax(v) denote respec-
tively the lower and upper bounds on the rank of v among
the observations seen so far. Speci�cally, S consists of tu-
ples t0; t1; :::; ts�1 where each tuple ti = (vi; gi;�i) consists
of three components: (i) a value vi that corresponds to one
of the elements in the data sequence seen thus far, (ii) the
value gi equals rmin(vi) � rmin(vi�1), and (iii) �i equals
rmax(vi)� rmin(vi). We ensure that, at all times, the max-
imum and the minimum values are part of the summary.
In other words, v0 and vs�1 always correspond to the min-
imum and the maximum elements seen so far. It is easy to
see that rmin(vi) =

P
j�i gj and rmax(vi) =

P
j�i gj +�i.

Thus gi + �i � 1 is an upper bound on the total number
of observations that may have fallen between vi�1 and vi.
Finally, observe that

P
i gi equals n, the total number of

observations seen so far.

Answering Quantile Queries: A summary of the above
form can be used in a straightforward manner to provide
�-approximate answers to quantile queries. The proposition
below forms the basis of our approach.

Proposition 1. Given a quantile summary S in the above
form, a �-quantile can always be identi�ed to within an error
of maxi(gi +�i)=2.

Proof. Let r = d�ne and let e = maxi(gi + �i)=2. We
will search for an index i such that r � e � rmin(vi) and
rmax(vi) � r+ e. Clearly, such a value vi approximates the

59

�-quantile to within the claimed error bounds. We now ar-
gue that such an index i must always exist. First, consider
the case r > n� e. We have rmin(vs�1) = rmax(vs�1) = n,
and therefore i = s� 1 has the desired property. Otherwise,
when r � n � e, we choose the smallest index j such that
rmax(vj) > r + e. It follows that r � e � rmin(vj�1). If
r� e > rmin(vj�1) then rmax(vj) = rmin(vj�1)+ gj +�j >
rmin(vj�1) + 2e; a contradiction to our assumption that
e = maxi(gi + �i)=2. By assumption, rmax(vj�1) � r + e,
therefore j � 1 is an example of an index i with the above
described property.

The following is an immediate corollary.

Corollary 1. If at any time n, the summary S(n) sat-
is�es the property that maxi(gi + �i) � 2�n, then we can
answer any �-quantile query to within an �n precision.

At a high level, our algorithm for maintaining the quantile
summary proceeds as follows. Whenever the algorithm sees
a new observation, it inserts in the summary a tuple cor-
responding to this observation. Periodically, the algorithm
performs a sweep over the summary to \merge" some of the
tuples into their neighbors so as to free up space. The heart
of the algorithm is in the merge phase where we maintain
several conditions that allow us to bound the space used by
S at any time. By Corollary 1, it su�ces to ensure that at all
timesmaxi(gi+�i) � 2�n. Motivated by this consideration,
we will say that an individual tuple is full if gi+�i = b2�nc.
The capacity of an individual tuple is the maximum number
of observations that can be counted by gi before the tuple
becomes full.

Bands: In order to minimize the number of tuples in our
summary, our general strategy will be to delete tuples with
small capacity and preserve tuples with large capacity. The
merge phase will free up space by merging tuples with small
capacities into tuples with \similar" or larger capacities. We
say that two tuples, ti and tj , have similar capacities, if
log capacity(ti) � log capacity(tj).

This notion of similarity partitions the possible values of
� into bands. Roughly speaking, we try to divide the �s
into bands that lie between elements of (0; 1

2
2�n; 3

4
2�n; : : :

2i�1
2i

2�n; : : : 2�n�1; 2�n). (These boundaries correspond to

capacities of 2�n; �n; 1
2
�n; : : : 1

2i
�n; : : : , 8; 4; 2; 1.) As we will

see shortly, it is useful to de�ne bands in a way that ensures
the property that if two �s are ever in the same band, they
never appear in di�erent bands as n increases. Therefore,
for � from 1 to dlog 2�ne, we let p = b2�nc and we de�ne
band� to be the set of all � such that p�2��(p mod 2�) <
� � p� 2��1 � (p mod 2��1). The (p mod 2�) term holds
the borders between bands static as n increases. We de�ne
band0 to simply be p. As a special case, we consider the
�rst 1=2� observations, with � = 0, to be in a band of their
own. Figure 1 shows the band boundaries as 2�n goes from
24 to 34. We will denote by band(ti; n) the band of �i at
time n, and by band�(n) all tuples (or equivalently, the �
values associated with these tuples) that have a band value
of �.

1111111111222222222233333

2�n 01234567890123456789012345678901234

24

25

26

27

28

29

30

31

32

33

34

Figure 1: Band boundaries as 2�n progresses from
24 to 34. The rightmost band in each row is band 0.

Proposition 2. At any point in time n and for any � �
1, band�(n) contains either 2

� or 2��1 distinct values of �.

Proof. The band�(n) is bounded below by 2�n � 2� �
(2�n mod 2�) and above by 2�n � 2��1 � (2�n mod 2��1).
If 2�n mod 2� < 2��1, then 2�n mod 2� = 2�n mod 2��1,
and band�(n) contains 2� � 2��1 = 2��1 distinct values
of �. If 2�n mod 2� � 2��1, then 2�n mod 2� = 2��1 +
(2�n mod 2��1), and band�(n) contains 2

��1 + 2��1 = 2�

distinct values of �.

A Tree Representation: We will �nd it useful to impose
a tree structure over the tuples. Given a summary S =
ht0; t1; :::; ts�1i, the tree T associated with S contains a node
Vi for each ti and a special root node R. The parent of a
node Vi is the node Vj such that j is the least index greater
than i with band(tj) > band(ti). If no such index exists,
then the node R is set to be the parent. All children (and
all descendants) of a given node Vi have � values larger than
�i. The following two properties of T can be easily veri�ed.

Proposition 3. The children of any node in T are al-
ways arranged in non-increasing order of band in S.

Proposition 4. For any node V , the set of all its de-

scendants in T forms a contiguous segment in S.

2.2 Operations
We now describe the various operations that we perform on
our summary data structure. We start with a description of
external operations:

2.2.1 External Operations
QUANTILE(�) To compute an �-approximate �-quantile

from the summary S(n) after n observations, com-
pute the rank, r = d�ne. Find i such that both
r�rmin(vi) � �n and rmax(vi)�r � �n and return vi.

60

INSERT(v) Find the smallest i, such that vi�1 � v < vi,
and insert the tuple (v; 1; b2�nc), between ti�1 and ti.
Increment s. As a special case, if v is the new minimum
or the maximum observation seen, then insert (v; 1; 0).

INSERT(v) maintains correct relationships between gi, �i,
rmin(vi) and rmax(vi). Consider that if v is inserted before
vi, the value of rmin(v) may be as small as rmin(vi�1) + 1,
and hence gi = 1. Similarly, rmax(v) may be as large as the
current rmax(vi), which in turn is bounded by b2�nc. Note
that rmin(vi) and rmax(vi) get increased by 1 after insertion.

COMPRESS()
for i from s� 2 to 0 do
if ((BAND(�i; 2�n) � BAND(�i+1; 2�n)) &&

(g�i + gi+1 +�i+1 < 2�n)) then
DELETE all descendants of ti and the tuple ti itself;

end if
end for

end COMPRESS

Figure 2: Pseudo-code for COMPRESS

2.2.2 Internal Operations
DELETE(vi) To delete the tuple (vi; gi;�i) from S, re-

place (vi; gi;�i) and (vi+1; gi+1;�i+1) by the new tu-
ple (vi+1; gi + gi+1;�i+1), and decrement s.

DELETE() correctly maintains the relationships be-
tween gi, �i, rmin(vi) and rmax(vi). Deleting vi has no
e�ect on rmin(vi+1) and rmax(vi+1), so DELETE(vi)
should simply preserve rmin(vi+1) and rmax(vi+1). The
relationship between rmin(vi+1) and rmax(vi+1) is pre-
served as long as �i+1 is unchanged. Since rmin(vi+1) =P

j�i+1 gj , and we delete gi, we must increase gi+1 by

gi to keep rmin(vi+1). All other entries are unaltered
by this operation.

COMPRESS() The operation COMPRESS tries to merge
together a node and all its descendants into either its
parent node or into its right sibling. The property that
we must ensure is that the tuple that results after this
merging is not full. By Proposition 4, we know that
a node and its children always form a contiguous se-
quence of tuples in S(n). Let g�i denote the sum of
g-values of the tuple ti and all its decendants in T. It
is easy to see that merging ti and its descendants (by
DELETEing them) into ti+1 would result in ti+1 be-
ing updated to (vi+1; g

�
i + gi+1;�i+1). We would like

to ensure that this resulting tuple is not full. We say
that a pair of adjacent tuples ti; ti+1 2 S(n) is merge-
able if (g�i + gi+1 + �i+1 < 2�n) and band(ti; n) �
band(ti+1; n). At a high level, the COMPRESS op-
eration iterates over the tuples in S(n) from right to
left, and whenever it �nds a mergeable pair ti; ti+1, it
merges ti as well as all tuples that are descendants of
ti in T(n) into ti+1. Note that pairs of tuples that are
not mergeable at some point in time may become so
at a later point in time as the term b2�nc increases
over time. Figure 2 gives pseudo-code describing this
operation.

Note that since DELETE() and COMPRESS() never alter
the � of surviving tuples, it follows that �i of any quantile
entry remains unchanged once it has been inserted.

COMPRESS() inspects tuples from right (highest index) to
left. Therefore, it �rst combines children (and their entire
subtree of descendants) into parents. It combines siblings
only when no more children can be combined into the parent.

Initial State
S ;; s = 0; n = 0.

Algorithm
To add the n+ 1st observation, v, to summary S(n):

if (n � 0 mod 1

2�
) then

COMPRESS();
end if
INSERT(v);
n = n+ 1;

Figure 3: Pseudo-code for the algorithm

2.3 Analysis
It is easy to see that the data structure above maintains
an �-approximate quantile summary at each point in time.
The INSERT as well as COMPRESS operations always en-
sure that gi + �i � 2�n at any point in time. We will
now establish that the total number of tuples in the sum-
mary S after n observations have been seen is bounded by
(11=2�) log(2�n).

We start by de�ning a notion of coverage. We say that a
tuple t in the quantile summary S covers an observation
v at any time n if either the tuple for v has been directly
merged into ti or a tuple t that covered v has been merged
into ti. Moreover, a tuple always covers itself. It is easy
to see that the total number of observations covered by ti
is exactly given by gi = gi(n). The lemmas below give
some simple properties concerning coverage observations by
various tuples.

Lemma 1. At no point in time, a tuple from band � cov-
ers an observation from a band > �.

Proof. Suppose at some time n, the event described
in the lemma occurs. The COMPRESS subroutine never
merges a tuple ti into an adjacent tuple ti+1 if the band of
ti is greater than the band of ti+1. Thus the only way in
which this event can occur is if it at some point in time, say
m, we have band(ti;m) � band(ti+1;m) and at the current
time n, we have band(ti; n) > band(ti+1; n). We now ar-
gue that this cannot occur since if at any point in time `,
band(ti; `) = band(ti+1; `), then for all n � `, we must have
band(ti; n) = band(ti+1; n). The borders between bands are
static, except when two bands combine (forever). Band 0 is
always new. If 2�n � 2��1 mod 2�, then � and �+ 1 com-
bine into the �+1 band (� is a unique band for given n). All
bands > � + 1 remain the same. Because band 0 is always
new, all bands � < � become �+1. In other words, borders
are always removed, never added.

61

Lemma 2. At any point in time n, and for any integer �,
the total number of observations covered cumulatively by all
tuples with band values in [0::�] is bounded by 2�=�.

Proof. By Proposition 2, each band�(n) contains at most
2� distinct values of �. There are no more than 1=2� ob-
servations with any given �, so at most 2�=2� observations
were inserted with � 2 band� . By Lemma 1, no obser-
vations from bands > � will be covered by a node from �.
Therefore the nodes in question can cover, at most, the total
number of observations from all bands � �. Summing over
all � � � yields an upper bound of 2�+1=2� = 2�=�.

The next lemma shows that for any given band value �, only
a small number of nodes can have a child with that band
value.

Lemma 3. At any time n and for any given �, there are
at most 3=2� nodes in T(n) that have a child with band value
of �. In other words, there are at most 3=2� parents of nodes
from band�(n).

Proof. Let mmin and mmax, respectively denote the ear-
liest and the latest times at which an observation in band�(n)
could be seen. It is easy to verify that mmin = (2�n �
2�� (2�n mod 2�))=2� and mmax = (2�n�2��1� (2�n mod
2��1))=2�. Thus, any parent of a node in band�(n) must
have �i < 2�mmin.

Fix a parent node Vi with at least one child in band�(n) and
let Vj be the rightmost such child. Denote by mj the time
at which the observation corresponding to Vj was seen.

We will show that at least a (2�=3)-fraction of all observa-
tions that arrived after time mmin can be uniquely mapped
to the pair(Vi; Vj). This in turn implies that no more than
3=2� such Vi's can exist, thus establishing the lemma. The
main idea underlying our proof is that the fact that COM-
PRESS() did not merge Vj into Vi implies there must be
a large number of observations that can be associated with
the parent-child pair (Vi; Vj).

We �rst argue that g�j (n) +
Pi�1

k=j+1 gk(n) � g�i�1(n). If
j = i � 1, it is trivially true. Otherwise, observe that any
tuple tk that lies between tj and ti must belong to a band
less than or equal to � | else Vk, and not Vi, would be the
parent of Vj . Therefore,

Pi�1
k=j+1 gk(n) � g�i�1(n) and the

claim follows..

Now since COMPRESS() did not merge Vj into Vi, it must
be the case that g�i�1(n)+gi(n)+�i > 2�n. Using the claim

above, we can conclude that g�j (n)+
Pi�1

k=j+1 gk(n)+gi(n)+

�i > 2�n. Also, at time mj , we had gi(mj) + �i < 2�mj .
Since mj is at most mmax, it must be that

g�j (n) +

i�1X

k=j+1

gk(n) + (gi(n)� gi(mj)) > 2�(n�mmax):

Finally observe that for any other such parent-child pair
Vi0 and Vj0 , the observations counted above by (Vj ; Vi) and

(Vj0 ; Vi0) are distinct. Since there are at most n�mmin total
observations that arrived aftermmin, we can bound the total
number of such pairs by (n�mmin)=(2�(n �mmax)) which
is easily veri�ed to be at most 3=2�.

Given a full pair of tuples (ti�1; ti), we say that the tuple
ti�1 is a left partner and ti is a right partner in this full pair.

Lemma 4. At any time n and for any given �, there are
at most 4=� tuples from band�(n) that are right partners in
a full tuple pair.

Proof. Let X be the set of tuples in band�(n) that par-
ticipate as a right partner in some full pair. We �rst consider
the case when tuples in X form a single contiguous segment
in S(n). Let ti; :::; ti+p�1 be a maximal contiguous segment
of band�(n) tuples in S(n). Since these tuples are alive in
S(n), it must be the case that

g�j�1 + gj +�j > 2�n i � j < i + p:

Adding over all j, we get

i+p�1X

j=i

g�j�1 +

i+p�1X

j=i

gj +

i+p�1X

j=i

�j > 2p�n:

In particular, we can conclude that

2

i+p�1X

j=i�1

g�j +

i+p�1X

j=i

�j > 2p�n:

The �rst term in the LHS of the above inequality counts
twice the number of observations covered by nodes in band�(n)
or by one of its descendants in the tree T(n). Using Lemma 2,
this sum can be bounded by 2(2�=�). The second term can
be bounded by p(2�n � 2��1) since the largest possible �
value for a tuple with a band value of � or less is (2�n�2��1).
Substituting these bounds, we get

2�+1

�
+ p(2�n� 2��1) > 2p�n

Simplifying above, we get p < 4=� as claimed by the lemma.
Finally, the same argument applies when nodes in X induce
multiple segments in S(n); we simply consider the above
summation over all such segments.

Lemma 5. At any time n and for any given �, the maxi-
mum number of tuples possible from each band�(n) is 11=2�.

Proof. By Lemma 4 we know that the number of band�(n)
nodes that are right partners in some full pair can be bounded

62

N # Our Algorithm (tuple count) Our Algorithm (space requirement) MLR Algorithm
�! .1 .05 .01 .005 .001 .1 .05 .01 .005 .001 .1 .05 .01 .005 .001

105: 61 120 496 902 3290 183 360 1488 2706 9870 275 468 1519 2859 8334
106: 76 156 664 1230 4983 228 468 1992 3690 14949 378 702 2748 4664 15155
107: 94 185 835 1578 6662 282 555 2505 4734 19986 600 1032 3708 7000 27475
108: 110 224 1067 2063 9148 330 672 3201 6189 27444 765 1477 5960 10320 37026
109: 124 266 1249 2407 11074 372 798 3747 7221 33222 924 1880 7650 14742 59540

Table 1: Number of tuples stored and space requirements for \hard input" sequences. For MRL algorithm,
we assume that each quantile stored takes only one unit of space.

by 4=�. Any other band�(n) node either does not partici-
pate in any full pair or occurs only as a left partner. We �rst
claim that each parent of a band�(n) node can have at most
one such node in band�(n). To see this, observe that if a pair
of non-full adjacent tuples ti; ti+1, where ti+1 2 band�(n),
is not merged then it must be because band(ti; n) is greater
than �. But Proposition 3 tells us that this event can occur
only once for any �, and therefore, Vi+1 must be the unique
band�(n) child of its parent that does not participate in a
full pair. It is also easy to verify that for each parent node,
at most one band�(n) can participate only as a left partner
in a full pair. Finally, observe that only one of the above two
events can occur for each parent node. By Lemma 3, there
are at most 3=2� parents of such nodes, and thus the total
number of band�(n) nodes can be bounded by 11=2�.

Theorem 1. At any time n, the total number of tuples
stored in S(n) is at most (11=2�) log(2�n).

Proof. There are at most 1 + blog 2�nc bands at time
n. There can be at most 3=2� total tuples in S(n) from
bands 0 and 1. For the remaining bands, Lemma 5 bounds
the maximum number of tuples in each band. The result
follows.

3. EMPIRICAL MEASUREMENTS
We now describe some empirical results concerning the per-
formance of our algorithm in practice. We experimented
with three di�erent classes of input data: (1) A \hard case"
for our algorithm, (2) \sorted" input data, and (3) \random"
input data. The \sorted" and \random" input sequences
were chosen for two reasons. First, \random" should yield
some insight into the behavior of this algorithm on \aver-
age" inputs, or after some randomization. Second, these
two scenarios were used to produce the experimental results
in [8]. The MRL algorithm [8] is the best previously known
algorithm.

We observed during these runs that, in practice, the algo-
rithm used substantially less space than indicated by our
analysis from the previous section. The observed space re-
quirements also turn out to be better than those required
by the MRL algorithm. Moreover, when we run our algo-
rithm with the same space as used by the MRL algorithm,
the observed error is signi�cantly better than that of the
MRL algorithm. We will refer to this later variant as the
pre-allocated variant of our algorithm. In contrast, we will
refer to the basic version of the algorithm where we allocate
a new quantile entry only when the observed error is about
to exceed the desired �, as the adaptive variant.

Our implementation of the algorithm di�ered slightly from
that described in Section 2 in two ways. First, new observa-
tions were inserted as a tuple (v; 1; gi +�i � 1) rather than
as (v; 1; b2�nc). The latter approach is used in the previous
section strictly to simplify theoretical analysis of the space
complexity. Second, rather than running COMPRESS after
every 1=2� observations, instead, for each observation in-
serted into S, one tuple was deleted, when possible. When
no tuple could be deleted without causing its successor to
become overfull, the size of S grew by 1. Note that by
preallocating a large enough number of stored quantiles, no
increase in space need ever take place, assuming you know
N in advance.

For each experiment we measured both the maximum space
used to produce the summary, and the observed precision
of the results. We measured space consumption by count-
ing the number of stored tuples. When comparing our space
consumption to the MRL algorithm, we pessimistically mul-
tiplied the number of stored tuples by 3 to account for our
recording the value and both the min and max rank of each
stored element.

3.1 Hard Input
We construct here data sequences in adversarial manner for
our algorithm. At each time step, we generate the next
observation so that it falls in the largest current \gap" in
our quantile summary.

We successively fed observations to our summary, with no
advance hint about the total number of observations to be
seen. We measured the maximum amount of space required
as the size of the input sequence increased to 109. Table 1
reports the results of this experiment for N ranging over
powers of 10 from 105 to 109.

Note that the required number of quantiles stored is approx-
imately a factor of 11 lower than the worst-case bound we
computed in the previous section of this paper. Also note
that the number of quantiles we store is signi�cantly lower
than the number used by the MRL algorithm. Even after
multiplying our tuple count by a factor of 3, we almost al-
ways require less space than MRL. The only exception is in
� = :001 and N = 105, where the space cost of our algorithm
exceeds that of the MRL algorithm.

3.2 Sorted Input
The second scenario, \sorted", measures the behavior of the
summary when the data arrives in sorted order. We �xed
� = :001 and constructed summaries of sorted sequences of
sizes 105; 106, and 107. We computed the actual maximum

63

Observed �
qi # MRL Our algorithm, Preallocated Our algorithm,Adaptive
N ! 105 106 107 105 106 107 105 106 107

jSj 8334 15155 27475 2778 5052 9158 756 756 756
Max � 0.00035 0.000194 0.000167 0.00027 0.000128 0.000090 0.00095 0.000899 0.000819
1 0.00015 0.000199 0.000091 0.00021 0.000020 0.000077 0.00074 0.000057 0.000618
2 0.00006 0.000050 0.000120 0.00024 0.000056 0.000009 0.00039 0.000259 0.000203
3 0.00006 0.000210 0.000062 0.00010 0.000052 0.000031 0.00010 0.000744 0.000665
4 0.00024 0.000161 0.000001 0.00001 0.000016 0.000005 0.00040 0.000860 0.000002
5 0.00002 0.000033 0.000070 0.00002 0.000092 0.000050 0.00016 0.000494 0.000230
6 0.00022 0.000166 0.000053 0.00012 0.000048 0.000014 0.00027 0.000716 0.000632
7 0.00000 0.000037 0.000085 0.00024 0.000060 0.000066 0.00007 0.000388 0.000488
8 0.00010 0.000084 0.000043 0.00012 0.000096 0.000035 0.00021 0.000829 0.000090
9 0.00019 0.000207 0.000095 0.00006 0.000124 0.000014 0.00033 0.000000 0.000038
10 0.00013 0.000060 0.000100 0.00012 0.000088 0.000050 0.00055 0.000036 0.000354
11 0.00005 0.000098 0.000013 0.00002 0.000000 0.000014 0.00005 0.000542 0.000185
12 0.00004 0.000096 0.000001 0.00008 0.000004 0.000022 0.00017 0.000093 0.000010
13 0.00006 0.000107 0.000045 0.00014 0.000008 0.000044 0.00039 0.000263 0.000220
14 0.00002 0.000116 0.000038 0.00020 0.000008 0.000056 0.00022 0.000732 0.000665
15 0.00003 0.000098 0.000049 0.00023 0.000028 0.000041 0.00008 0.000316 0.000425

Table 2: Space and precision measurements for \sorted" case.

error over all possible quantile queries, and chose to query 15
quantiles at rank qi

16
N , for qi = [1::15], to study the behavior

at speci�c quantiles.

We compared three algorithms for constructing the sum-
mary. First, we used the MRL algorithm to compute a sum-
mary where we preallocated the storage required by MRL
as a function of N and �. Second, we pre-allocated the same
amount of storage required by MRL (1/3 as many stored
quantiles as MRL, though), and ran our algorithm without
allocating any more quantiles. Finally, we ran our algorithm
in the adaptive mode; we started with 1

2�
stored quantiles

and only allocated extra storage if it was impossible to delete
existing quantiles without exceeding a precision of :001n.

Table 2 reports the results of this experiment. jSj reports
the number of stored quantiles needed to achieve the desired
precision. The row labeled \max" reports the maximum er-
ror of all possible quantile queries on the summary. In order
to give an indication of the behavior of this algorithm for
speci�c quantiles, the remaining rows list the approximation
error of the response to the query for the qi=16th quantile.

To interpret the entries in Table 2, consider the .5 quan-
tile (50th pctile, or 8/16). For a sequence of 105 elements,
the adaptive algorithm uses only 756 tuples, but returns a
value with an approximation error of .00021. MRL stores
over eight times as many quantiles, and returns a value with
error .00010, almost twice as accurate. Our preallocated
algorithm stores only one third as many tuples as MRL,
but returns a value with an approximation error of .00012 {
comparable accuracy but using only one third the number
of tuples.

In fact, however, the error on any individual quantile is not
representative of the error as a whole | had we chosen to
inspect the 1/4 quantile instead of 1/2, then our algorithm
would have been 24 times as accurate as MRL! Had we cho-
sen 3/4, then MRL would have been twice as accurate as
ours. Of the 15 quantiles we sampled, we outperformed
MRL on 6 out of 15 for a sequence of size 105, 10 out of 15

for size 106, and 11 out of 15 for 107. Individual queries are
highly sensitive to how close the quantile query happens to
be to some single stored quantile. On average, in compari-
son to MRL using the same storage, our algorithm reported
better worst-case observed error, and comparable observed
error (we perform slightly worse for N = 105, but slightly
better for N = 106 and 107). Both algorithms achieved
higher precision than demanded by the a priori speci�ca-
tion.

The most interesting result is that our adaptive algorithm
seems to require only 756 stored quantiles, regardless of the
size of the input sequence. Closer experimentation revealed
that the algorithm only needs all 756 stored quantiles at a
fairly early stage in the computation | the excess storage
reduces the observed error, slightly. One can see this by
observing the maximum error in Table 2. For a desired
� = :001, one would expect that the maximum observed
error would be approximately equal to .001, too. However,
for 105 the maximum error is only :000955 and as N gets
larger the maximum error gets smaller.

The maximum error o�ers another interesting insight into
the behavior of our algorithm. Note that the optimal value
for maximum error in all cases is 1=(2jSj) (this occurs only if
the stored quantiles are distributed evenly among all values,
and we know their rank precisely). For example, for 756
quantiles, the optimal max error is .00066. For 2778 quan-
tiles, the ideal maximum error is .00018. Our algorithm
delivers a maximum error within a factor of 2 of optimal. In
contrast, the optimal max error of 8334 stored quantiles is
5:99 � 10�5, yet the MRL algorithm delivers a max error 6
times as large. In fact, for MRL, the discrepancy between
the ideal max error and observed max error seems to grow
as N (and jSj) gets larger; for N = 107, the observed max
error is more than 9 times the optimal value.

3.3 Random Input
The third scenario, \random", selects each datum by se-
lecting an element (without replacement) from a uniform
distribution of all the remaining elements in the data set.

64

That is, the values in the data set can have an arbitrarily
skewed distribution, but the order in which the values are
observed by the summary is chosen by the uniform random
process.

As in the sorted case, we �xed � = :001 and summarized se-
quences of lengths 105; 106, and 107. We again computed the
maximum error, the quantiles at rank qi

16
N , for qi = [1::15],

and measured the actual maximum storage requirement to
compute the summary. In contrast to the sorted input case
where a single experiment was su�cient to determine the
expected behavior, random input requires running several
trials to illuminate expected behavior. We ran each experi-
ment 50 times and report the min, max, mean and standard
deviation for every measurement. Tables 3 through 5 report
these results.

The observed � of our preallocated algorithm is roughly twice
as accurate as MRL, although our advantage seems to in-
crease steadily as N gets larger. Not surprisingly, the ob-
served � of our adaptive algorithm stays close to 0.001 re-
gardless of how large N gets. The observed storage require-
ments, however, may be surprising. These are once again
the most interesting results of our \random" scenario. It
appears that for uniformly random input the required space
is independent of N , the size of the dataset, and dependent
only upon �. In all our experiments, a :001-approximate
summary of a random input was achieved with roughly 920
tuples.

4. CONCLUDING REMARKS
We presented a new online algorithm for computing quantile
summaries of very large sequences of data in a space-e�cient
manner. Our algorithm improves upon the earlier results in
two signi�cant ways. First, it improves the space complexity
by a factor of
(log(�N)). Second, it does not require a
priori knowledge of the parameter N | that is, it allocates
more space dynamically as the data sequence grows in size.
An obvious question is whether or not the space complexity
achieved by our algorithm is asymptotically optimal. We
believe that the answer is in the a�rmative indeed.

Our empirical study of the new algorithm provides evidence
that our algorithm compares favorably with the previous
algorithms in practice as well. A curious trend observed in
our experiments is that on random inputs, the space require-
ments of the algorithm seem only to depend on the error pa-
rameter � and become independent of the sequence length
N . It will be interesting to analytically verify this behavior
and to understand the minimal characteristics of the data
sequences that lead to such improved space requirements.

5. REFERENCES
[1] Rakesh Agrawal and Arun Swami. A one-pass

space-e�cient algorithm for �nding quantiles. Proc.
7th Int. Conf. Management of Data, COMAD,
28{30 December 1995.

[2] Khaled Alsabti, Sanjay Ranka, and Vineet Singh. A
one-pass algorithm for accurately estimating quantiles
for disk-resident data. Proceedings of the 23rd Intl.

Conference on Very Large Data Bases, Athens,

Greece, 26{29 August 1997, pages 346{355, Los Altos,
CA 94022, USA, 1997. Morgan Kaufmann Publishers.

[3] Surajit Chaudhuri, Rajeev Motwani, and Vivek
Narasayya. Random sampling for histogram
construction: how much is enough? In ACM SIGMOD
'98, volume 28, pages 436{447, Seattle, WA, June 1{4,
1998.

[4] Phillip B. Gibbons, Yossi Matias, and Viswanath
Poosala. Fast incremental maintenance of approximate
histograms. In Proceedings of the 23rd Intl. Conf. Very

Large Data Bases, VLDB, pages 466{475. Morgan
Kaufmann, 25{27 August 1997.

[5] Michael B. Greenwald. Practical algorithms for self
scaling histograms or better than average data
collection. Performance Evaluation, 27&28:19{40,
October 1996.

[6] R. Jain and I. Chlamtac. The P 2 algorithm for
dynamic calculation of quantile and histograms
without storing observations. Communications of the
ACM, 28(10):1076{1085, October 1986.

[7] I. Pohl. A minimum storage algorithm for computing
the median. IBM Research Report RC 2701, November
1969.

[8] Gurmeet Singh Manku, Sridhar Rajagopalan, and
Bruce G. Lindsay. Approximate medians and other
quantiles in one pass and with limited memory. ACM
SIGMOD '98, volume 28, pages 426{435, Seattle, WA,
June 1998.

[9] Gurmeet Singh Manku, Sridhar Rajagopalan, and
Bruce G. Lindsay. Random sampling techniques for
space e�cient online computation of order statistics of
large datasets. In ACM SIGMOD '99, volume 29,
pages 251{262. Philadelphia, PA, June 1999.

[10] J. I. Munro and M.S. Paterson. Selection and sorting
with limited storage. Theoretical Computer Science,
vol. 12: 315{323; 1980.

[11] M.S. Paterson. Progress in selection. Technical Report,
University of Warwick, Coventry, UK, 1997.

[12] Viswanath Poosala, Venkatesh Ganti, and Yannis E.
Ioannidis. Approximate query answering using
histograms. Bulletin of the IEEE Technical Committee
on Data Engineering, 22(4):6{15, December 1999.

[13] Viswanath Poosala, Peter J. Haas, Yannis E.
Ioannidis, and Eugene J. Shekita. Improved
histograms for selectivity estimation of range
predicates. In ACM SIGMOD 96, volume 26, pages
294{305, Montreal, Quebec, Canada, June 4{6, 1996.

65

qi # MRL Our Algorithm, Preallocated Our Algorithm, Adaptive

jSj ! 8334 2778 [898-939], 919.18�8.63
[range (�10�4)] avg�stdev [range (�10�4)] avg�stdev [range (�10�4)] avg�stdev

Max � [4.3-5.2] 0.0004698�2.02e-05 [2.9-2.95] 0.0002920�0.24e-05 [8.25-8.70] 0.0008487�0.91e-05
1 [0.0-3.2] 0.0000928�7.38e-05 [0.1-2.5] 0.0001074�7.19e-05 [0.1-7.8] 0.0003222�1.88e-04
2 [0.0-3.0] 0.0001130�7.58e-05 [0.2-2.5] 0.0001216�6.42e-05 [0.1-7.0] 0.0003216�1.88e-04
3 [0.0-3.5] 0.0001104�8.86e-05 [0.0-2.7] 0.0001220�7.36e-05 [0.2-7.7] 0.0003406�2.07e-04
4 [0.0-2.8] 0.0001040�6.93e-05 [0.0-2.7] 0.0001236�7.44e-05 [0.1-7.6] 0.0002952�1.98e-04
5 [0.0-3.7] 0.0001172�8.81e-05 [0.0-2.6] 0.0000844�6.07e-05 [0.1-6.6] 0.0003102�1.88e-04
6 [0.1-3.0] 0.0001046�7.69e-05 [0.0-3.3] 0.0000912�7.41e-05 [0.2-6.7] 0.0002986�1.64e-04
7 [0.2-3.6] 0.0001346�7.97e-05 [0.0-2.5] 0.0001078�6.45e-05 [0.0-6.9] 0.0003090�1.89e-04
8 [0.1-3.8] 0.0000982�8.86e-05 [0.0-3.1] 0.0001134�7.08e-05 [0.0-7.7] 0.0002910�1.94e-04
9 [0.0-2.7] 0.0001222�7.37e-05 [0.0-2.5] 0.0001074�7.62e-05 [0.0-6.6] 0.0002910�1.75e-04
10 [0.0-3.4] 0.0001278�7.68e-05 [0.0-2.3] 0.0000912�6.01e-05 [0.0-7.0] 0.0002740�1.69e-04
11 [0.1-3.1] 0.0001204�7.87e-05 [0.0-2.8] 0.0000954�7.31e-05 [0.1-6.9] 0.0002790�1.84e-04
12 [0.1-2.4] 0.0001040�6.83e-05 [0.0-2.4] 0.0000940�6.71e-05 [0.2-8.2] 0.0003566�2.32e-04
13 [0.0-3.0] 0.0000878�6.83e-05 [0.0-2.3] 0.0001114�6.49e-05 [0.2-7.6] 0.0003446�2.01e-04
14 [0.0-3.1] 0.0000982�8.05e-05 [0.0-2.5] 0.0001196�6.80e-05 [0.4-8.2] 0.0003424�1.99e-04
15 [0.0-2.8] 0.0001000�7.12e-05 [0.0-2.8] 0.0001330�8.24e-05 [0.1-6.2] 0.0002952�1.86e-04

Table 3: N = 100; 000; Samples = 50; random order.

qi # MRL Our Algorithm, Preallocated Our Algorithm, Adaptive

jSj ! 15155 5052 [900-939] 919.38�8.92
[range (�10�4)] avg�stdev [range (�10�4)] avg�stdev [range (�10�4)] avg�stdev

Max � [3.02-3.63] 0.0003275�1.44e-05 [1.495-1.520] 15.04e-05�0.06e-05 [7.835-8.215] 0.0008004�0.82e-05
1 [0.02-3.00] 0.0001194�7.88e-05 [0.05-1.41] 5.41e-05�3.37e-05 [0.00-7.78] 0.0003173�2.12e-04
2 [0.09-3.19] 0.0001248�7.69e-05 [0.04-1.41] 5.79e-05�3.65e-05 [0.06-6.94] 0.0003259�1.80e-04
3 [0.01-2.90] 0.0001253�7.27e-05 [0.01-1.28] 5.73e-05�3.71e-05 [0.15-7.11] 0.0003172�1.87e-04
4 [0.01-2.71] 0.0001092�7.47e-05 [0.02-1.43] 5.57e-05�3.46e-05 [0.07-7.04] 0.0003546�1.97e-04
5 [0.12-2.84] 0.0001260�7.44e-05 [0.03-1.36] 5.45e-05�3.59e-05 [0.02-7.06] 0.0002907�1.78e-04
6 [0.01-3.20] 0.0000984�7.68e-05 [0.01-1.22] 5.89e-05�3.26e-05 [0.29-6.57] 0.0002972�1.76e-04
7 [0.01-2.79] 0.0001256�7.52e-05 [0.01-1.38] 5.03e-05�3.58e-05 [0.09-6.30] 0.0002951�1.60e-04
8 [0.05-3.27] 0.0001299�6.03e-05 [0.01-1.21] 4.55e-05�3.37e-05 [0.11-7.10] 0.0002892�1.73e-04
9 [0.22-3.27] 0.0001268�7.75e-05 [0.05-1.24] 5.88e-05�3.57e-05 [0.04-7.15] 0.0003015�2.04e-04
10 [0.13-3.74] 0.0001389�8.64e-05 [0.03-1.61] 7.14e-05�3.88e-05 [0.02-7.07] 0.0002924�2.04e-04
11 [0.09-3.01] 0.0001431�7.67e-05 [0.00-1.38] 5.81e-05�3.58e-05 [0.11-6.43] 0.0002989�2.01e-04
12 [0.03-3.32] 0.0001446�8.64e-05 [0.00-1.46] 4.86e-05�3.33e-05 [0.20-6.71] 0.0003378�1.66e-04
13 [0.04-2.84] 0.0001339�7.25e-05 [0.00-1.34] 5.30e-05�3.42e-05 [0.04-6.69] 0.0003128�1.70e-04
14 [0.04-2.74] 0.0001288�8.91e-05 [0.03-1.43] 5.65e-05�3.60e-05 [0.02-7.03] 0.0003146�1.86e-04
15 [0.02-2.92] 0.0001284�8.82e-05 [0.02-1.67] 5.45e-05�3.86e-05 [0.05-6.46] 0.0002797�1.72e-04

Table 4: N = 1; 000; 000; Samples = 50; random order.

qi # MRL Our Algorithm, Preallocated Our Algorithm, Adaptive

jSj ! 27475 9158 [899-939] 918.42�8.71
[range (�10�4)] avg�stdev [range (�10�4)] avg�stdev [range (�10�4)] avg�stdev

Max � [2.032-2.641] 2.35e-04�1.18e-05 [0.799-0.806] 8.01e-05�1.8e-07 [7.628-8.016] 7.82e-04�9.75e-06
1 [0.026-1.466] 4.98e-05�3.29e-05 [0.002-0.712] 2.74e-05�1.96e-05 [0.187-6.123] 2.87e-04�1.65e-04
2 [0.022-1.922] 6.32e-05�4.98e-05 [0.001-0.764] 2.94e-05�2.22e-05 [0.166-6.814] 3.04e-04�1.80e-04
3 [0.019-1.750] 5.90e-05�4.62e-05 [0.002-0.656] 2.93e-05�1.80e-05 [0.008-7.040] 3.68e-04�1.91e-04
4 [0.024-1.953] 6.19e-05�4.37e-05 [0.003-0.615] 2.98e-05�1.65e-05 [0.096-7.149] 2.98e-04�1.81e-04
5 [0.022-1.892] 7.02e-05�5.03e-05 [0.011-0.722] 2.99e-05�1.63e-05 [0.111-7.297] 2.56e-04�1.80e-04
6 [0.026-1.766] 6.61e-05�4.65e-05 [0.008-0.655] 2.60e-05�1.86e-05 [0.021-6.618] 3.27e-04�1.72e-04
7 [0.038-1.987] 5.75e-05�4.33e-05 [0.025-0.688] 3.30e-05�1.63e-05 [0.009-5.620] 2.14e-04�1.47e-04
8 [0.004-1.801] 5.69e-05�4.29e-05 [0.006-0.712] 2.69e-05�2.01e-05 [0.043-7.718] 3.17e-04�1.96e-04
9 [0.012-2.252] 6.47e-05�4.19e-05 [0.003-0.675] 2.90e-05�1.83e-05 [0.116-7.167] 2.83e-04�1.93e-04
10 [0.011-1.840] 6.11e-05�4.28e-05 [0.006-0.649] 2.64e-05�1.67e-05 [0.050-7.225] 3.09e-04�1.83e-04
11 [0.010-1.640] 6.67e-05�4.41e-05 [0.005-0.727] 2.99e-05�1.78e-05 [0.231-6.606] 2.60e-04�1.66e-04
12 [0.013-1.847] 6.09e-05�4.69e-05 [0.013-0.686] 2.68e-05�1.71e-05 [0.018-6.639] 2.95e-04�1.51e-04
13 [0.005-1.747] 5.80e-05�3.87e-05 [0.015-0.680] 2.82e-05�1.93e-05 [0.014-6.518] 3.06e-04�1.90e-04
14 [0.026-1.853] 7.12e-05�5.07e-05 [0.000-0.671] 3.43e-05�1.84e-05 [0.051-7.385] 2.69e-04�1.99e-04
15 [0.022-1.510] 5.57e-05�3.56e-05 [0.019-0.775] 2.91e-05�1.83e-05 [0.029-6.415] 2.74e-04�1.80e-04

Table 5: N = 10; 000; 000; Samples = 50; random order.

66

