
Ad Hoc OLAP : Expression and Evaluation

Damianos Chatziantoniou
Department of Computer Science , Stevens Institute of Technology

damianos@cs.stevens-tech.edu

Abstract

Users frequently formulate complex data analysis
queries in order to identify interesting trends, make unusual
patterns stand out, or verify hypotheses. Being able to
express these data mining queries concisely is of major
importance not only from the user’s, but also from the sys-
tem’s point of view. Recent research in OLAP has focused
on datacubes and their applications; however, expression
and processing of ad hoc decision support queries has been
given very little attention. In this paper we present an
appropriate framework for these queries and introduce a
syntactic construct to support it. This SQL extension allows
most OLAP queries, such as pivoting, complex intra- and
inter-group comparisons, trends and hierarchical compar-
isons, to be expressed in a compact, intuitive and simple
manner. This succinct representation of a complex OLAP
query translatesimmediatelyto a novel, simple and efficient
evaluation algorithm. We show how to optimize, analyze
and parallelize this algorithm and discuss issues such as
multiple query analysis and scaling. We present several
experimental results of real-life queries that show orders
of magnitude of performance improvement. We argue that
this tight coupling between representation and algorithm is
essential to efficient processing of ad hoc OLAP queries.

1. Brief Description

Although significant research has been conducted on
datacubes, both in terms of modeling and evaluation, little
has been done on query optimization of complexad hoc
decision support queries, despite of their importance. To
express such queries in SQL, a high degree of redundancy
is required: multiple self-joins, correlated subqueries and
repeated group-bys. Consider a representative OLAP query
over the relationSales(cust, prod, day, month, year, sale):

“For each product and foreach month of1997, show the
product’s average salebeforethis month,duringthis month,
andafter this month.”

With this query, one can identify those months of 1997

that were “significant” for the sales of a product. The main
idea of this query is the following:for eachvalue(p;m) of
(prod, month) attributes we want to define two subsets
of Sales ,X(p;m) andY(p;m), where the first subsetX(p;m)

contains the sales of productp prior to monthm, and
the second subsetY(p;m) contains the sales of productp
following monthm. Then we want to compute the average
quantity ofX(p;m) andY(p;m). We believe that the ability
to iterate over the values of one or more attributes domain,
coupled with the ability to define foreach such value one
or more “interesting” subsets of the relation constitutes the
gist of complex data analysis. The challenge is to provide
the user with this “looping” ability without sacrificing the
declarativeness of SQL. To achieve that we extend the syn-
tax presented in [1]. The user can definefor eachgroup sev-
eral grouping variables (tuple variables that range over the
entire table). These are declared in thegroup by clause,
separated by the grouping attributes with asemicolon. Their
range is defined in thesuch that clause. These queries
are called extended multi-feature (EMF) queries. The pre-
vious query can be expressed in the EMF syntax as:

select prod,month,avg(X.sale),avg(sale),avg(Y.sale)
from Sales
where year=“1997”
group by prod, month; X , Y
such that X.prod=prod and X.month<month,

Y.prod=prod and Y.month>month
Our implementation takes advantage of the particular

structure of our extended SQL queries. The algorithm scans
one or more times the base relation and for each scanned
tuple t, the rows of the resulting table affected byt are
identified and updated appropriately. Our optimization
techniques try to (i) reduce the number of scans, (ii) rep-
resent the resulting table optimally by an appropriate data
structure, and (iii) parallelize the evaluation.

References

[1] D. Chatziantoniou and K. Ross. Querying Multiple Features
of Groups in Relational Databases. In22nd VLDB Confer-
ence, pages 295–306, 1996.


